
Switch-Based Iterative Learning Control
for Tracking Iteration Varying References ?

Efe C. Balta ∗ Dawn M. Tilbury ∗ Kira Barton ∗

∗Department of Mechanical Engineering, University of Michigan, Ann
Arbor, MI 48109, USA {baltaefe,tilbury,bartonkl}@umich.edu

Abstract: Iterative Learning Control (ILC) is a control strategy that improves the performance
of repetitive systems by enabling near-perfect reference tracking. Iteration-invariant reference
signals have been a fundamental assumption for most existing ILC developments. This
assumption poses limitations on many applications of ILC where the iteration-varying reference
is known to the controller a priori. This work presents a switch-based ILC scheme that combines
the performance of standard ILC with guarantees on the error for switched reference signals.
The proposed controller is formulated and its performance is analyzed. A simulation case study
is provided at the end to illustrate the performance.
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1. INTRODUCTION

Iterative Learning Control (ILC) is a control strategy
that enables enhanced reference tracking in repetitive pro-
cesses, where a reference signal is tracked by a dynamical
process in each iteration. Repetitive processes often arise
in industrial systems where a task is repeated in a cyclic
manner, such as pick-and-place operations of a robot, or
deposition of material by an additive manufacturing (AM)
system on subsequent layers. Due to its wide application
opportunities and its robustness to model uncertainty and
disturbances, ILC has been extensively studied in the
literature in both temporal (Barton and Alleyne, 2008;
Ahn et al., 2007; Zsiga et al., 2016) and spatial domains
(Hoelzle and Barton, 2016; Altin et al., 2018).

The repetitive process (the plant) considered in the ILC
tracking problem is often a closed-loop system with a
stabilizing feedback controller. Most of the classical re-
sults in ILC assume an iteration invariant reference, fixed
iteration length, and fixed (and identical) initial condi-
tions for each iteration. Typical ILC applications provide
robustness with respect to iteration-invariant exogenous
disturbances and model mismatch. Some important appli-
cations of ILC with repetitive processes include robotic
precision motion stages (Altın and Barton, 2014; Barton
and Alleyne, 2008), wafer scanning (Mishra et al., 2010),
robotic pick-and-place operations (Freeman et al., 2010),
and additive manufacturing (Hoelzle and Barton, 2016;
Altin et al., 2018).

Some fundamental assumptions of ILC, such as iteration-
invariant reference signals, limit the applicability of the
approach for many practical implementations of interest.
Developments in intelligent manufacturing systems allow
for on-the-fly changes to the system references and tasks,
which require control reconfiguration (Qamsane et al.,
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2019). In this control reconfiguration scenario, the refer-
ence signal changes between iterations in a planned and
predefined manner.

Another tracking problem of interest is in AM processes,
where deposition in each layer is controlled by a feed-
forward reference signal that prescribes the deposition
path. After the material is deposited in a layer, the
deposition system moves to the next layer to produce a
3D geometry in a layer-by-layer fashion. ILC has been
used extensively in AM applications to track an iteration
invariant deposition trajectory for each layer (Hoelzle
et al., 2010; Altin et al., 2018). However, in practice, AM
processes have multiple layers that have varying deposition
paths (Balta et al., 2019; Guo and Mishra, 2016). Classical
ILC developments fail to provide tracking performance
guarantees under such iteration-varying references.

To compensate for iteration-varying references, multiple
solutions have been proposed in the literature. In (Hoelzle
et al., 2010) a method for partitioning common signals into
individual bases and a framework for composing a refer-
ence for an iteration from these task-bases are proposed.
The proposed controller achieves precise deposition track-
ing for a micro-AM application, but requires a training
phase that may be impractical in a large-scale industrial
setting. General methods for decomposing reference sig-
nals into polynomial and rational basis functions have also
been proposed for iteration-varying references. An exten-
sive framework for ILC with iteration-varying references
is presented in (van Zundert et al., 2016) where rational
basis functions are utilized in conjunction with online
parameter identification techniques to provide a flexible
ILC framework. Although an optimal performance with
iteration-varying references is achieved, the performance
is often conservative for the iterations with fixed reference
when compared to standard ILC controllers. This is due
to the fact that these developments aim to compensate
for general iteration-varying references, which may result
in conservative performance bounds. However, in many
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practical applications as listed above, both the iteration at
which a reference will switch and the new reference signal
after the switch are known. In this work, we provide a novel
switch-based ILC scheme that changes the learning law at
the iteration of the known reference switch. The resulting
ILC combines the tracking performance of standard ILC
techniques and provides performance guarantees on the
tracking error when the reference switches.

The contributions of this work are:

• Formulation of a novel switch-based ILC scheme for
systems with known switched references
• Performance analysis and guarantees for the proposed

controller for known switched references

The rest of the paper is structured as follows. Section 2
provides the notations, preliminaries on norm optimal
ILC, and the problem formulation. Section 3 presents the
proposed ILC scheme and provides a formal analysis of its
performance. Section 4 provides a simulation case study
to illustrate the performance of the proposed controller
for various controller weights, references, and disturbances.
Section 5 provides closing remarks and future directions.

2. PRELIMINARIES

2.1 Notation

Zn and Rn denote the set of n-dimensional integers and
real numbers, respectively, and the subscripts + and
+0 denote the positive and nonnegative projections of
these sets, respectively. Spectral radius of a matrix is
denoted with ρ(·). The `2 norm of a vector x and the
corresponding induced norm of a matrix A are denoted
with ‖·‖. Additionally, the scaled, squared Euclidean-norm
is denoted as ||x||2W = xTWx, for a symmetric positive
definite matrix W .

2.2 Norm-Optimal ILC

Norm-optimal ILC (NO-ILC) is a widely used control
method in the literature (Ratcliffe et al., 2006; Barton
and Alleyne, 2008; Hoelzle and Barton, 2016; Owens et al.,
2012). Here we provide the preliminaries on the formula-
tion of NO-ILC and some of its stability properties. Con-
sider a discrete-time linear time-invariant (LTI) system
with the dynamics given as:

H :

{
xk(t+ 1) = Axk(t) +Buk(t)

yk(t) = Cxk(t),
(1)

where t = 0, 1, . . . , (ni − 1) is the discrete time index of
length ni ∈ Z+ for an iteration, k = 1, 2, . . . is the iteration
index, xk(t) ∈ Rnx , uk(t) ∈ Rnu , yk(t) ∈ Rny are the state
vector, control input, and output of iteration k, respec-
tively. A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈ Rny×nx are
the state, input, and output matrices. We assume that the
pair (A,B) is controllable and (A,C) is observable. Next,
we will denote the so-called “lifted” representation of (1)
to evaluate the iteration dynamics of the system. Without
loss of generality, we will assume an iteration invariant
initial condition to be xk(0) = 0 for all k. Then, we have
the iteration dynamics yk = Huk, where k denotes the

iteration index, yk = [yk(0)T , yk(1)T , . . . , yk(ni − 1)T ]T ,
uk = [uk(0)T , uk(1)T , . . . , uk(ni − 1)T ]T , and

H =


CB 0 . . . 0

CAB CB
. . .

...
...

...
. . . 0

CAni−1B CAni−2B . . . CB

 .
The iterative task for system (1) is for the output yk to
track a repetitive reference r ∈ Rni . The reference r is
assumed to be the iteration-invariant and ni dimensional
discretized representation of a continuous reference signal.
The control objective in NO-ILC is to follow the reference
r with minimum error with respect to the cost function

J = eTk+1Qek+1 + uT
k+1Suk+1 + (ūk+1)

T
R(ūk+1) , (2)

where ūk+1 = uk+1−uk, the error for iteration k is given

by ek = r − yk, and (Q,S,R) , (qI, sI, rI) are diagonal
matrices with q, s, r ∈ R+. Minimizing J with respect to
uk+1, and rearranging the solution results in the NO-ILC
update that has the form

uk+1 = Luuk +Leek, (3a)

Lu =
(
HTQH + S +R

)−1 (
HTQH +R

)
, (3b)

Le =
(
HTQH + S +R

)−1
HTQ, (3c)

which results in the rearranged control input update given
by uk+1 = (Lu −LeH)uk+Ler. Thus, the NO-ILC itera-
tion scheme is asymptotically stable if ρ (Lu −LeH) ≤ 1.

The control input reaches its steady state defined as u∞ ,
lim
k→∞

uk with the steady state error as e∞ = r1−Hu∞ and

the control u∞ = (I −Lu +LeH)
−1
Ler (Barton and

Alleyne, 2008; Bristow, 2008). The convergence of NO-ILC
is guaranteed by the asymptotic stability of the iterations,
but it is often desirable to have monotonic convergence
on the control signal to avoid large transients. The rate
of convergence is given by ξ = ‖Lu −LeH‖, for the
convergent iterations ‖u∞ − uk+1‖ < ξ ‖u∞ − uk‖, and
a necessary condition for monotonic convergence is given
as ξ < 1. In later discussions, this NO-ILC formulation is
referred as the standard NO-ILC.

2.3 Problem Formulation

While the reference r is assumed to be iteration-invariant
in the classical NO-ILC developments, here we will analyze
the problem where the input changes at a known iteration
denoted as k′. Therefore, we have the following switching
reference scheme: {

r = r1 if k < k′

r = r2 if k ≥ k′, (4)

where r1, r2 ∈ Rni . The control objective here is to
minimize the error in each iteration and keep the error as
close to zero as possible during the switch. In the context of
this work, we name this problem as the reference switching
problem and denote it with Ps. Furthermore, we call the
iteration at which the reference changes (k′) a switching
iteration. As mentioned before, we only consider Ps for the
cases where a switching iteration is known a priori to the
controller.

The problem Ps has practical applications in industry
where the switching iteration k′ and the switched refer-
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ences ri are known a priori. Such applications include
AM processes where cross-sectional geometry and the de-
position path changes in predefined layers (Balta et al.,
2019), pick-and-place robotic manipulators that switch
their trajectory based on scheduled events (Qamsane et al.,
2019), and reconfiguration of a milling process in which the
cutting path is changed in a predefined manner.

Next, we provide a generalization and a standing assump-
tion for the problem Ps for completeness. The switching
scheme in (4) is given for a switch between two refer-
ences, but the reference switching problem generalizes to
switching between ns different references without loss of
generality as long as the following assumption holds.

Assumption 1. The system (1) with the control input uk

at iteration k = k′ − 1 is assumed to be in steady state
so that we have uk−1 = uk (i.e. uk = u∞) prior to the
switching iteration k′.

This assumption holds well for monotonically convergent
and exponentially convergent (Amann et al., 1996) NO-
ILC. While this assumption may be stringent for cer-
tain systems, we utilize it in our preliminary work to
provide performance guarantees. Thus, the error prior to
the switching iteration is minimized and the controller
converges to its steady-state u∞ in finite iterations. The
rate of convergence is a design choice on the weights of
the matrix R, with ‖R‖ = 0 yielding immediate con-
vergence and the rate approaching 0 as ‖R‖ → ∞. Here
‖R‖ = ρ(R) since R = rI with r > 0.

While existing NO-ILC approaches provide perfect ref-
erence tracking and robust convergence guarantees for
bounded disturbances, they do not provide guarantees on
a bounded error when the reference of the system changes
as given in (4). In this work, we will develop a switch-based
NO-ILC scheme to provide guarantees and bounds on the
`2 norm of the error in the switching iteration k′.

3. THE PROPOSED SWITCH-BASED NO-ILC

In this section, the proposed switch-based NO-ILC scheme
and implementation of the proposed scheme for problem
Ps is presented and a performance analysis is given.

3.1 Proposed Norm-Optimal Formulation

Here we derive a NO-ILC scheme for the known switching
iteration k′ according to (4) where the reference for the sys-
tem switches from r1 to r2. We assume that the switching
iteration k′ and the references r1, r2 are known a priori
and a NO-ILC controller for tracking r1 is implemented
for (1). We call this NO-ILC the nominal NO-ILC for the
system in further discussion.

As stated before, the iteration error is given by ek = r −
Huk. We have k = k′ − 1 with the reference as r = r1,
and k + 1 = k′ with the reference r = r2, as given in (4).

Based on Assumption 1, the system has a small error
norm ‖ek‖ = ‖e∞‖ at iteration k′ − 1. Leveraging this
fact, a switch-based NO-ILC at iteration k′ minimizes the
change in the error norm between iterations k′−1 and k′ to
keep the error norm small during the change of reference
signal from r1 to r2. The intuition behind this goal is to

utilize the controller for the already small tracking error of
the system at iteration k′ − 1 to evaluate a control signal
that will retain the small error at the switching iteration.
Therefore, we have the two errors ek = r1 − Huk and
ek+1 = r2 −Huk+1. The proposed controller minimizes

Js = ēTk+1Q̂ēk+1 + uT
k+1Ŝuk+1+(ūk+1)

T
R̂ (ūk+1) , (5)

where, ēk+1 = ek+1 − ek denotes the difference of errors

between consecutive iterations, (Q̂, Ŝ, R̂) , (q̂I, ŝI, r̂I)
are diagonal matrices with q̂, ŝ, r̂ ∈ R+.

As with standard NO-ILC, we want to compute the control
signal uk+1 that minimizes the objective function Js in
(5). Taking the partial derivative of Js with respect to
uk+1 yields

∂uk+1
Js = −HT Q̂ (r̃ −Hūk+1) + (Ŝ + R̂)uk+1 − R̂uk,

where, r̃ = r2 − r1. Setting ∂uk+1
Js = 0 and applying

necessary substitutions, the resulting control update of the
proposed switch-based NO-ILC is given by:

ûk+1 = L̂uuk + L̂e (r2 − ek) , (6a)

L̂u =
(
HT Q̂H + Ŝ + R̂

)−1
R̂, (6b)

L̂e =
(
HT Q̂H + Ŝ + R̂

)−1
HT Q̂. (6c)

Note that by taking (Q̂, Ŝ, R̂) = (Q,S,R), we have

L̂e = Le. The proposed switch-based NO-ILC utilizes
the control ûk+1 only for the trial k′ where the reference
switches. Since the objective of the controller is to mini-
mize the change in error `2 norm between iterations, using
the switch-based controller after the reference switches
may result in an under-performing controller in the error
norm between iterations. To avoid such responses and pro-
vide a controller with the performance of NO-ILC during
the iterations with fixed reference, the following switching
control scheme is provided for implementation.

(1) Use NO-ILC with the choice of (Q,S,R) and the
control iterations in (3) for iterations k = 1, . . . , k′−1

(2) After iteration k′−1, use (6) to evaluate the switching

control with the choice of (Q̂, Ŝ, R̂) and implement
ûk+1 for iteration k′

(3) After iteration k′, use the previous NO-ILC (although
weights can be readjusted for the new reference)
with the control iterations in (3) for future iterations
(k ≥ k′ + 1).

3.2 Performance Analysis

The main theorem to guarantee the tracking performance
of the proposed switch-based controller for problem Ps is
presented next.

Theorem 2. For problem Ps, the switch-based NO-ILC in
(6) with the weights (Q̂, Ŝ, R̂) = (Q,S,R) and control
input ûk′ is guaranteed to yield a better performance in
the sense that we get d =‖η2‖2−‖η1‖2 < 0, where, η1 =
r2−Huk′ and η2 = r2−Hûk′ at the switching iteration k′

if we have (r̃−ek)T
(
ΓTΓ− 2Γ

)
(r̃−ek) < 4eTk Γ (r̃ − ek),

where k = k′ − 1, r̃ = r2 − r1, and Γ = HL̂e.

Proof. First we want to analyze if the proposed itera-
tion in (6) with ûk+1 yields a smaller error norm when
compared to the nominal NO-ILC with the input uk+1
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evaluated according to (3) for the switching iteration k′.
For this purpose, we consider two errors η1 = r2−Huk+1

and η2 = r2−Hûk+1 and analyze the sign of the following

difference of error norms d = ‖η2‖2 − ‖η1‖2, noting that
k = k′ − 1. We expand this difference in the following

d = ûT
k+1H

THûk+1 − uT
k+1H

THuk+1 − 2rT2Hũk+1,

= (ûk+1 + uk+1)THTHũk+1 − 2rT2Hũk+1,

= ũT
k+1H

THũk+1 − 2ηT
1Hũk+1, (7)

where ũk+1 = ûk+1 − uk+1. Additionally, rearranging (6)
we have

ûk+1 = M−1(R+HTQH)uk +M−1HTQr̃,

where M = HT Q̂H + Ŝ + R̂. Here, let (Q̂, Ŝ, R̂) =
(Q,S,R) without loss of generality. Then, it can be shown
that we have ûk+1 = Luuk + Ler̃ and we get ũk+1 =
Le(r̃ − ek). Additionally, using Assumption 1 we have
uk = uk−1 thus, η1 = r2−Huk+1 = r2−Huk = r̃+ ek.
Then (7) becomes

d = (r̃ − ek)TLT
eH

THLe(r̃ − ek)

− 2(r̃ + ek)THLe(r̃ − ek),

= (r̃ − ek)T
(
ΓTΓ− 2Γ

)
(r̃ − ek)− 4eTk Γ (r̃ − ek) ,

where Γ = HLe. The following necessary and sufficient
condition guarantees d ≤ 0, which implies that the error
norm of the proposed controller is at most the same as the
error norm of the nominal controller, given as:

(r̃ − ek)T
(
ΓTΓ− 2Γ

)
(r̃ − ek) ≤ 4eTk Γ (r̃ − ek) ,

which completes the proof. 2

Theorem 2 provides necessary and sufficient conditions for
the proposed switching controller to not under-perform
when compared to a nominal NO-ILC. Note that the anal-
ysis is provided for the case when (Q̂, Ŝ, R̂) = (Q,S,R),
but it can be extended to the cases where the weights are
different between the nominal and switch-based NO-ILC.

A performance analysis for the conditions under which
we get d < 0 (see Theorem 2) is given next. Due to
Assumption 1, we can further conclude that we have
‖ek‖ = ‖e∞‖ < ε at the iteration k = k′ − 1 where, ε > 0
is a small number that can be estimated based on the NO-
ILC design. Thus, we assume that ‖ek′−1‖ < ε < ‖r̃‖ holds
in general for a (scaled) Euclidean norm.

Corollary 3. If the matrix Γ = HLe is symmetric positive
definite with ρ(Γ) < 1, and if we have 3 ‖ek′−1‖Γ < ‖r̃‖Γ,

then the Theorem 2 holds, i.e. we get d =‖η2‖2−‖η1‖2 < 0,
where η1 = r2 −Huk+1 and η2 = r2 −Hûk+1.

Proof. First, note that for a symmetric positive definite
matrix P ∈ Rn×n with ρ(P ) < 1 we have xTP TPx <
xTPx, x ∈ Rn. Then the following holds for some γ > 0:

||r̃ − ek||2ΓTΓ − ||r̃ − ek||
2
Γ < γ||r̃ − ek||Γ, (8)

where k = k′ − 1, which holds with strict inequality since
the left-hand side is a negative number (due to ρ(Γ) < 1)
while the right-hand side is positive. Then, noting ||r̃||Γ−
3||ek||Γ > 0, the following holds:

||r̃||Γ − 3||ek||Γ = 2(||r̃||Γ−||ek||Γ)− (||r̃||Γ+||ek||Γ),

≤ 2(||r̃||Γ−||ek||Γ)− ||r̃ − ek||Γ, (9)

where we use the fact ||x|| + ||y|| ≥ ||x − y||, x,y ∈ Rn.
Now, let γ = 2(||r̃||Γ−||ek||Γ)− ||r̃ − ek||Γ, where clearly
γ > 0 (due to (9)), and re-arrange (8) as:

||r̃ − ek||2ΓTΓ < (||r̃ − ek||Γ + γ) ||r̃ − ek||Γ,
= 2(||r̃||Γ − ||ek||Γ)||r̃ − ek||Γ,
≤ 2

((
||r̃||Γ − ||ek||Γ

)
(||r̃||Γ + ||ek||Γ)

)
,

= 2
(
||r̃||2Γ − ||ek||2Γ

)
,

= 2(r̃ + ek)TΓ (r̃ − ek) ,

= 4eTk Γ(r̃−ek)+(r̃−ek)T 2Γ(r̃−ek) , (10)

where we again use the fact ||x||+||y||≥||x−y||, x,y ∈ Rn

and the identity a2 − b2 =(a− b)(a+ b), a, b ∈ R. The ex-
pression (10) can be rewritten as (r̃−ek)T

(
ΓTΓ− 2Γ

)
(r̃−

ek) < 4eTk Γ (r̃ − ek), which implies that we have d < 0 by
Theorem 2 and concludes the proof. 2

To see when Γ is symmetric positive definite, note that
Γ = HM−1HT Q̂, with M = HT Q̂H + Ŝ + R̂. Since
M is positive definite (by the fact that q̂, ŝ, r̂ ∈ R+),
we denote its singular value decomposition (SVD) as

M = DVDT , where V = q̂V2 + Ŝ + R̂ and we have
the SVD HTH = DV2D

T , where we assume H is full
rank without loss of generality. Therefore, by noting that
Q̂ = q̂I, we have Γ = HDq̂V −1DTHT � 0.

4. SIMULATION CASE STUDY

Illustration of the proposed controller on a simple double
integrator is given in this section. The proposed switch-
based NO-ILC controller is compared to a nominal NO-
ILC scheme with different weights.

4.1 Simulation Setup

A damped rigid body system dynamics with a time dis-
cretization of 0.025 seconds is used in the case study. The
discrete-time LTI dynamics of the system are given in the
following.

xk(t+ 1) =

[
0.9997 0.0248
−0.0248 0.9873

]
xk(t) +

[
0.0003
0.0248

]
uk(t),

yk(t) = [1 0]xk(t).

We have iteration length as τ ∈ [0, 10] seconds and
the time is discretized in 0.05 second intervals so that
the discrete time index for an iteration has ni = 201
(e.g. t = 0, 1, . . . , 200). References r1(t) = sin(0.05t) and
r2(t) = sin(0.0375t) are defined as the two references
for the system to track, and the corresponding time-
discretized reference vectors r1, r2 ∈ Rni are computed
accordingly. The initial condition is given as xk(0) = 0 for
all k. 20 iterations are performed for each simulation study
and the reference is switched according to{

r = r1 if k < 11

r = r2 if k ≥ 11.
(11)

The two references used in the case study are shown
in Fig. 1. Therefore, the system output yk should track
reference r1 during iterations k ∈ [1, 10], and reference r2
during iterations k ∈ [11, 20].

The proposed switch-based NO-ILC scheme is imple-
mented in the simulation so that for iterations k ∈ [1, 10]
the nominal NO-ILC is used. The proposed ILC in (6) is
used for the switching iteration k′ = 11. The nominal NO-
ILC is used for the remaining iterations k ∈ [12, 20]. The
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weights of the nominal NO-ILC are kept constant prior to
and after the switching iteration for all simulations.

0 50 100 150 200

-0.5

0

0.5

Fig. 1. References used in the case study with r1(t) =
sin(0.05t) for k ∈ [1, 10] and r2(t) = sin(0.0375t) for
k ∈ [11, 20].

Three different weights for the nominal NO-ILC are pro-
vided in Table 1. Nominal NO-ILC 1 is the aggressive
setting, nominal NO-ILC 2 has a higher R for high mea-
surement noise, and nominal NO-ILC 3 is robust to the
changes in reference with S. The switch-based NO-ILC
weights are set equal to the corresponding nominal NO-
ILC. Two sets of simulation results are shown. The noise-
free simulation case is when we assume that the output
yk(t) is measured without any noise.

Table 1. Simulation setup weights

Design Parameters

Nominal NO-ILC 1 Q = 102I,S = 10−4I,R = 10−5I

Nominal NO-ILC 2 Q = 102I,S = 10−4I,R = 10−2I

Nominal NO-ILC 3 Q = 102I,S = 10−2I,R = 10−5I

(C1) Q̂ = 102I, Ŝ = 10−4I, R̂ = 10−5I

(C2) Q̂ = 102I, Ŝ = 10−4I, R̂ = 10−2I

(C3) Q̂ = 102I, Ŝ = 10−2I, R̂ = 10−5I

For the simulation with noise, a multivariate normal noise
with zero mean and a covariance matrix given by Σ =
0.0562I is applied to the system. The random variable
has the distribution νk ∼ N (0,Σ) and is added to the
measurements so we have yk = Huk + νk. The mean
and covariance of the noise νk are kept constant in each
iteration but a new random vector is sampled from the
distribution for each iteration k (i.e. i.i.d. samples). All
the controllers are initiated with u1(t) = 0 for the first
iteration k = 1 so that the controller learns from the
response of the system with zero input, which is a standard
practice with most ILC applications in literature.

4.2 Results and Discussion

Figure 2 shows the simulation results for the noise-free
measurement case. In all results, the vertical axes show
the ratio of error norm of an iteration ‖ek‖ to the error
norm for the first iteration ‖e1‖ on a logarithmic scale.

Table 2. Simulation results for RMS of ‖ek‖

Design RMS (noise-free) RMS (with noise)

(C1) 2.1862 2.1890

(C2) 2.1869 2.1896

(C3) 2.1910 2.1930

The nominal NO-ILCs track the initial reference r1 well
until the switching iteration. At the switching iteration,
the nominal NO-ILC controller expects the reference r1,
but the reference is now switched to r2. Due to the
reference switch, the error norm spikes to a level even
higher than the initial error norm with u1(t) = 0. The spike
is highest for the aggressive controller in nominal NO-ILC
1, and it is the lowest among the nominal NO-ILCs for
nominal NO-ILC-3, which is an expected result by design.
After the switching iteration, the nominal NO-ILC tracks
the new reference r2. Note that since the rate of change in
the second reference r2 is less than r1, the nominal NO-
ILC yields a better tracking performance with the switched
reference. This behavior is observed in all simulations.

The proposed switch-based NO-ILC controller with three
different sets of weights ((C1), (C2), (C3)) yields a better
performance on the switching iteration when compared
to nominal NO-ILC as shown in Fig. 2. The root mean
squares of the error norms are in Table 2. Therefore we con-
firm that the more aggressive tuning in (C1) outperforms
the conservative tunings for the noise-free simulation.

5 10 15 20
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10-1

100

11
1.178

1.18

Fig. 2. Results of the case study for the noise-free mea-
surements. The switching iteration k′ = 11 is shown
with a dashed black vertical line.

Figure 3 shows the simulation results where the output has
the noise given by νk. Due to the noise in measurements,
we see that the performance of all the controllers are
worse than the ones shown in the noise-free simulations.
In the noisy setting, the spike is again the highest for the
aggressive controller in nominal NO-ILC 1, and it is the
lowest among the nominal NO-ILCs for nominal NO-ILC
2 as expected by its design. The root mean squares of the
error norms are shown in Table 2. Therefore we see that
utilizing a more conservative set of gains in (C2) does not
yield a performance improvement with the switch-based
NO-ILC, and it provides a worse convergence performance
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when compared to (C1). Similarly, the robust nominal NO-
ILC 3 and the corresponding controller (C3) yields a worse
performance with a higher error when compared to the
aggressive gain setting on (C1). Thus, we conclude that
the choice of aggressive tunings for the proposed controller
yields a more desirable performance and should be favored
for the case of switching references.
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100

11
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Fig. 3. Results of the case study for the noisy measure-
ments. The switching iteration k′ = 11 is shown with
a dashed black vertical line.

The results show that in both noisy and noise-free simu-
lations, the proposed switched controller works well and
guarantees bounded error norm at the switching iteration
as given by Theorem 2 and Corollary 3. Since the con-
troller has a switched structure with a nominal ILC for
the iterations other than the switching iteration, it can be
combined with many of the existing ILC schemes.

5. CONCLUSION AND FUTURE WORK

In this paper, a novel switched ILC scheme is presented
for systems with known iteration-varying (switched) ref-
erences. The proposed controller provides guarantees on
the error norm at the switching iteration. Additionally,
the switching controller implementation scheme provides
a flexible framework to integrate the proposed controller
with existing ILC techniques.

Future work will look into analyzing the proposed con-
troller under measurement and input noises in the process
as well as modeling uncertainties. Additionally, relaxing
the steady-state nominal ILC assumption to consider cases
where the controlled system is in its transient response in
the iteration domain is of interest.
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