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Abstract: The identification of accurate models for the anaerobic digestion process is essential
for the characterization of the region that guarantees the conservation of the bacteria population.
Traditional techniques involve the identification of nonlinear models based on data from the
system. In this paper, we introduce data-driven techniques that allow the characterization of the
system’s behavior via the approximation of the Koopman operator with the extended dynamic
mode decomposition algorithm. We propose methods to reduce the order and dimension of the
representation based on orthogonal polynomials.
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1. INTRODUCTION

The biological process through which multiple organisms
break down organic matter in the absence of oxygen is
called Anaerobic Digestion (AD). What motivates the use
of the AD process on an industrial scale is its capacity of
degrading strong and resilient substrates, the low sludge
production, and the possibility of making a profit out of
the formation of methane gas (Mailleret et al., 2003).
However, the AD process is difficult to operate and control.
Knowledge and expertise are necessary to maintain the
stability of the process and avoid washout conditions.
Varying operating variables such as the concentration of
organic matter at the input feed, the bioreactor dilution
rate, or an accumulation of intermediate compounds can
destabilize the process (Sbarciog et al., 2010).
To study the dynamics of this process, there are well-
accepted and detailed models, such as the Anaerobic Di-
gestion Model 1 (ADM1) (Batstone et al., 2002). Although
the customization of this model fits a variety of wastes and
plant configurations, its high order with 32 state variables
and general complexity raise issues for controller analysis
and design (Giovannini et al., 2018). There are low-order
models to overcome this issue, such as the Anaerobic
Model 2 (AM2) (Bernard et al., 2001), which remains
highly nonlinear. These systems give a proper description
of the dynamics, but the task of calibrating the model
from experimental data using identification techniques is
difficult ((Donoso-Bravo et al., 2011; Yu and Wensel, 2013)
and the references therein).
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The idea of this work is to develop low-order/dimensional
linear models of the process in a data-driven approach
based on selected measurement signals, such as dilution
rate, biomass or substrate concentrations. The chosen
method is the Extended Dynamic Mode Decomposition
(EDMD) algorithm (Williams et al., 2016a). This algo-
rithm gives a truncated approximation of the Koopman
operator, where a set of functions Ψ of a linear operator U
are observables or measures of a particular discrete-time
nonlinear dynamical system (x(k+1) = T (x(k))), i.e., the
evolution of these functions relate to the evolution of the
states of the system (Koopman, 1931). The application of
U on Ψ gives the same result as applying the observables
Ψ on the state evolution

UΨ(x) = Ψ(T (x))

This approach allows for an analysis of the evolution
of functions rather than the analysis of the evolution
of states (Budišić et al., 2012). The trade-off with this
approach concerns linearity and dimensionality, as a finite-
dimensional nonlinear system will be described by an
infinite-dimensional linear system.
The proposed method to get a low-order/dimensional ap-
proximation of the Koopman operator for the AD pro-
cess is twofold. First, a p-q-quasi norm reduction method,
based on the proposed ideas for reliability analysis in poly-
nomial chaos (Sudret, 2001), reduces the maximum order
and the dimension of the observable functions. Second, an
original method is proposed based on an error criterion for
the individual elements of the observable function, which
serves to identify the elements that could be eliminated
from the basis, thus, reducing the dimension even further.
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The rest of this paper is organized as follows. Section 2
gives the general description of the AD process, dynamics,
chosen behavior of the system, and the general objectives.
Sections 3 and 4 provide the current and proposed me-
thods to get the approximation of the Koopman operator,
and the low-order/dimensional approximation, and Sec-
tion 5 presents the results of the methodology applied to
the AD process.
Notation: C denotes the field of complex numbers. R and
R+

0 denote the field of real and nonnegative real numbers,
respectively. For any matrix A ∈ Rn×n, A⋆ denotes com-
plex conjugate transpose, A+ denotes its pseudoinverse,
and ∥x∥ represents the Euclidean norm. The space n × n
of real matrices is denoted by Rn×n. For a complex number
λ, |λ| represents its norm. For any set A, Ā denotes the
closure of A. The operator ◦ is defined as the product term
to term. The vector exponentiation M±η is defined term
by term. A level set of an arbitrary function h(x) for any
constant c is Γ(h(x)) = {x ∈ Rn : h(x) = c}.

2. ANAEROBIC DIGESTION SYSTEM

Anaerobic digestion of the effluent waste from winery and
brewery production is an important downstream process.
In addition to wastewater treatment, anaerobic digestion
can also provide biogas that can be used as a source
of renewable energy. However, this process is delicate to
operate and to start up, particularly because (Dochain
et al., 1991):
(i) The process is very unstable in the sense that varia-

tions in the hydraulic flow at the input, as well as the
concentration of organic load can lead the bioreactor
into the wash out state where the living bacterial
population disappears.

(ii) The output pollution has to be maintained at a pre-
scribed level despite the fluctuations in the organic
load at the input.

These factors are difficult to master because the anaerobic
digestion process involves several bacterial populations,
which interact in a nonlinear fashion. In a simplified view
(considering only two main populations), the interaction
between the acid-forming bacteria, and the methane form-
ing bacteria can produce an imbalance leading to the
washout of one or both of the populations. The dynamics
of this simplified view, where there is only two reactions:
acidogenesis and methanogenesis is described by the fol-
lowing reaction network:

aξ1
r1(ξ)−−−→ cξ2 + ξ3,

dξ2
r2(ξ)−−−→ CH4 + ξ4. (1)

In the first reaction, the acidogenic bacteria ξ3 consumes
the organic substrate ξ1 for growth and produces volatile
fatty acids ξ2. In the second reaction, the methanogenic
bacteria ξ4 uses the volatile fatty acids as a substrate
for growth and produces methane. It is necessary to
maintain the balance between the acidogenesis and the
methanogenesis states in the operation of the AD process
to avoid acidification, which is the state of accumulation
of volatile fatty acids in the reactor that produces the
washout of methanogenic bacteria.

For an ideal continuous stirred tank reactor, the following
differential equation describes the system dynamics of the
reaction network (1):

ξ̇1 = u(ξin1
− ξ1)− ar1(ξ),

ξ̇2 = u(ξin2
− ξ2) + cr1(ξ)− dr2(ξ),

ξ̇2 = −uξ3 + r1(ξ),

ξ̇4 = −uξ4 + r2(ξ).

Where ξ = [ξ1 ξ2 ξ3 ξ4]
T ∈ R4

+ is the state vector, u ∈ R+

is the dillution rate, ξin1
, ξin2

∈ R+ are the concentrations
of organic substrate and volatile fatty acids in the influ-
ent, a, c, d ∈ R+ are the stoichiometric coefficients, and
r1(ξ), r2(ξ) are the reaction rates defined as

r1(ξ) = f1(ξ1)ξ3,

r2(ξ) = f2(ξ2)ξ4,

where the the growth functions, f1(ξ1) and f2(ξ2) are
based on Monod and Haldane type respectively as

f1(ξ1) = µm1

ξ1
Ks1 + ξ1

,

f2(ξ2) = µm2

ξ2

Ks2 + ξ2 +
ξ22
Ki2

.

A canonical state space transformation of the AD system
can be obtained by considering the partition ξ = [ξa ξb]

T ,
where ξa = [ξ3 ξ4]

T and ξb = [ξ1 ξ2]
T , and a linear

transformation of the states xa = ξa and xb = ξb −
CbC

−1
a ξa Bastin and Dochain (1990); Bastin and Van Impe

(1995) as,
ẋa = u(wa − xa) + Caρ(x),

ẋb = u(wb − xb), (2)
with xa , [x3 x4]

T are the state variables that represent
the acidogenic and methanogenic bacteria respectively,
xb , [x1 x2]

T , are the state variables that represent
the linear combination of substrates and species, Ca =
I2, ρ(x) , [ρ1(x) ρ2(x)] are the reaction rates, wa ,
[w3 w4]

T = [0 0]T are the concentration of species in
the input flow, wb , [w1 w2]

T = [ξin1
ξin2

] are the
concentration of substrates in the input flow,

Cb =

[
−a 0
c −d

]
,

is the stoichiometric matrix, and the reaction rates in the
canonical state space are

ρi(x) = ri(ξ)|ξa=xa; ξb=xb+CbC
−1
a xa

, i = 1, 2.

Depending on the magnitude of the dilution rate and
substrate concentration at the inflow, the system may
possess up to six equilibrium points. In Sbarciog et al.
(2010), the authors present the regions in the input space
for which various numbers of equilibria occur and their
stability.
This paper will consider the case in which six equilibrium
points are present, where two of them are asymptotically
stable (AS), one representing the desired working point
of the system, where the acidogenic and methanogenic
bacteria coexist, and the other, the acidification point.
Figure 1 depicts the behavior of the nonlinear part of the
system (2).
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Fig. 1. Orbits and equilibrium points of the AD process.
2.1 Practical Considerations and objectives

Equation (2) has two distinct parts, a nonlinear dynamical
system of the species xa and a linear one representing
a linear combination of the species and substrate xb.
Assuming that the linear part is in steady-state allows for
the analysis of the system as a two-state variables system.
This paper deals with this particular case, where there are
measurements of the species concentrations.
In general, these measurements are not available. They
often come from computer sensors from models such as
(Bernard et al., 2001) whose identification comes from the
available data such as gas flow-rate (sum of all gas com-
pounds), the content of volatile suspended solids, volatile
fatty acids, total organic carbon or chemical oxygen de-
mand among others.
In this paper, the main objective is to establish the feasi-
bility to get accurate models for the later approximation of
the system based on available data. These models not only
give an expanded linear representation of the system, but
they also provide tools from the spectral analysis to obtain
useful information such as the regions of attraction of the
asymptotically stable equilibrium points (Garcia-Tenorio
et al., 2019).

3. METHODS

This section describes the general theory on the Koopman
operator for unforced systems and the current approach
for the approximation of the operator via the EDMD
algorithm for the forced case.

3.1 The Koopman Operator

Consider the autonomous nonlinear discrete-time dynami-
cal system (M;T (x); k), with state variables x ∈ M where
M ⊆ Rn is the nonempty compact space state, k ∈ Z+

0 is
the discrete time, and T : M → M is the differentiable
vector-valued evolution map, i.e.,

x(k + 1) = T (x(k)), x0 = x(0). (3)

The solution to (3) is the successive application of T from
an initial condition x0 ∈ M at k = 0, i.e., xk = T k(x0).

This xk ∈ M is an infinite sequence called a trajectory or
orbit of the system.
For this discrete time system, consider a set of observation
functions f(x) : M → C that belong to some function
space, i.e., f(x) ∈ F . For these functions there is an oper-
ator Uk, where the action of this operator on observables
defines their evolution. This is the Koopman operator,
and its relationship with the observable functions and the
states of the system is[

Ukf
]
(x) = f

(
T k(x)

)
.

In other words, the time-evolution of observations is the
observations of the time-evolution of states. The trade-
off with this approach concerns linearity and dimensional-
ity; finite-dimensional nonlinear systems described by an
infinite-dimensional linear one.

3.2 Extended Dynamic Mode Decomposition

Consider the autonomous nonlinear discrete dynamical
system (3), the EDMD algorithm to approximate the
Koopman operator in discrete time requires N pairs of
data snapshots, either from a real system or a compu-
tationally integrated one at a specific sampling ∆t. The
snapshot pairs, {(xi, yi)}Ni=1, where yi = T (xi), are orga-
nized in data sets

X = [x1 x2 . . . xN ] , Y = [y1 y2 . . . yN ] .

The “extended” part of the EDMD algorithm consists in
the approximation of the Koopman operator of a “lifted”
space of the state variables, rather than approximating
the space state as in the dynamic mode decomposition
algorithm Schmid (2010). The “lifting” procedure consists
in evaluating the space state of the system with a vector-
valued function of observables Ψ: M → Cd×1; Ψ(x) =
[ψ1(x), · · · , ψd(x)]

⊤.
The truncated linear operator Ud ∈ Cd×d satisfies the
following relation for the evaluation of the vector-valued
function Ψ(x) in the snapshot data of the system:

Ψ(Y ) = UdΨ(X) + r(X),

where r(X) ∈ F is the residual term to minimize in order
to find Ud. This minimization accepts a close solution
within the least mean squares problem, where the objective
function has the form

r(X) =
1

N

N∑
i=1

1

2
∥Ψ(yi)− UdΨ(xi)∥22 ,

and the solution is
Ud , AG+, (4)

with matrices G,A ∈ Cd×d defined by

G =
1

N

N∑
i=1

Ψ(xi)Ψ(xi)
⊤, A =

1

N

N∑
i=1

Ψ(xi)Ψ(yi)
⊤.

The choice of the observables ψl(x) usually consists of
an orthogonal basis of polynomials Koekoek et al. (2010),
radial basis functions Korda and Mezić (2018), or an ar-
bitrarily constructed set with polynomial elements, and
trigonometric functions, among others Brunton et al.
(2016). The choice of orthogonal polynomials has the ad-
vantage of being able to recover the state linearly without
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the need to add more elements to the observables function
or by the solution of additional optimization problems.
The solution (4) gives a linear evolution of observables of
the space state,

Ψ(x(k + 1)) = UdΨ(x(k)), (5)
and does not give the evolution of states. If the observables
functions contain a direct observation of the state, i.e.,
ψi(x) = xi for i = 1, · · · , n, the value of the states is
directly available from the observables. Otherwise, if the
functions come from a set of radial basis functions or
other norm-based functions, the application of additional
optimization solutions serve to recover the state. Or if the
functions come from a set of orthogonal polynomials, the
basis contains at least n injective functions of order one,
such that the inverse of these functions gives the value of
the state.
The topic of the next section is on how to select the
polynomial elements of the observables function, and the
proposal of error metrics to eliminate them to get a low
order approximation of the linear operator that captures
the dynamics of the system.

4. LOW-ORDER POLYNOMIAL BASIS

A sequence of orthogonal polynomials {πα(x)}∞α=0 where
πα(x) is a univariate (i.e., x ∈ R) polynomial of de-
gree α, is a sequence defined over a range [a, b] where
some inner product between distinct elements is zero, i.e.,
⟨πi(x), πj(x)⟩ = 0 for i ̸= j. For the particular case of the
approximation of the Koopman operator, either a sequence
of Hermite polynomials or Laguerre polynomials is suitable
for the approximation, as these are defined over the ranges
[−∞,∞] and [0,∞] respectively.
Every element of the multivariate vector-valued function
of observables Ψ(x) where x ∈ M and M ⊆ Rn comes
from the tensor product of n univariate polynomials as in

ψl(x) =

n∏
j=1

παj
(xj). (6)

Consider for example a polynomial basis where n = 2 and
a maximum degree of 2 for every univariate polynomial.
The set of indices α for the construction of the polynomial
basis is

α =

{
α1

α2

}
=

{
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2

}
.

Even though the maximum degree of the univariate poly-
nomials is 2, the maximum degree of the multivariate
elements is 4. By taking the full set of indices for every
state variable, the dimension of the observables function
is

dimΨ(x) =

(
n+ p+ 1

p+ 1

)
,

where p is the maximum degree of the univariate poly-
nomials. This selection of indices poses a problem, as
the dimension of the observables function grows exponen-
tially with the addition of state variables or an increase
in the maximum univariate degree. The growth of the
dimensionality hinders the possibility of calculating the

approximation of the Koopman operator due to the course
of dimensionality problem and because of the error induced
by high order elements in the polynomial basis.
To solve these problems, the use of p-q-quasi 1 norms
(Konakli and Sudret (2016)) reduces the dimension of the
basis by applying a truncation scheme on the maximum or-
der of every multivariate element. This truncation scheme,
for the set of indices of every element of the multivariate
polynomial (6) is

αl = {α ∈ Nn : ∥α∥q ≤ p} (7)
Consider the las example where n = 2 and apply the
truncation scheme (7) with a maximum order p = 3 for
the multivariate polynomial elements, and a norm q = 0.7.
The new set of indices is

α =

{
0 1 2 0 1 0
0 0 0 1 1 2

}
,

this truncation reduces the dimension of the vector-valued
function from 8 to 6. The effect of this truncation is
appreciated when n and p start to grow. For example, for
the case of n = 6 and p = 4, considering a norm q = 1,
the truncation scheme reduces the dimension of the vector-
valued function from 4096 to 204.
Even though the p-q-quasi norm truncation scheme re-
duces the dimension of the vector-valued function, some
of the multivariate polynomial elements do not contribute
to the reduction of the error (1). The elimination of these
elements reduces the dimension of the vector-valued func-
tion and, consequently, reduces the order of the calculated
operator. The next section of this paper shows an error and
elimination criteria for multivariate elements that achieve
an additional reduction.

4.1 Reduction by Polynomial Accuracy

The idea of the reduction is to calculate the error of
the individual multivariate polynomials and eliminate the
elements whose error is greater than a specified threshold.
The approximation of the Koopman operator from the
EDMD algorithm comes from a set of the system’s orbits.
This set of orbits comes from one of two distinct sets,
one for solving the least-squares problem (9) and one
for testing the accuracy of the solution. Evaluating the
posterior time event Y in every element of the vector-
valued function, and comparing it with the effect of the
operator on the evaluation of the anterior time event
X, gives a metric of the contribution of the individual
multivariate elements to the accuracy of the solution.
Every element of this error criterion, ϵ = (ϵ1, · · · , ϵd) is

ϵl =

N∑
i=1

∥ψl(yi)− Udl
ψl(xi)∥2 (8)

where Udl
is the l-th row of the Koopman operator matrix.

Recall that for the case of orthogonal polynomials, the
way to recover the state is by the inverse of n injective
multivariate elements, if these elements are the ones with
index one in each of the state variables, the recovery is
a linear vector-valued function of the observed values.
1 The quantity ∥ · ∥q is not a norm because it does not satisfy the
triangle inequality.
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Therefore, the threshold ϵ̄ for the elimination of elements
is the maximum of the errors with an index equal to one,

ϵ̄ = max(ϵ : ∥αl∥1 = 1)

and the multivariate polynomial elements that stay as a
par of the reduced vector-valued function of observables
ΨR(x) are

ΨR(x) = {Ψ(x) : ϵ ≤ ϵ̄}. (9)

The application of the p-q-quasi norms and polynomial er-
ror reductions allow for the approximation of the Koopman
operator of the underlying systems with significant fewer
basis elements than the current methods and increases
the accuracy of the operator. This increase in accuracy
allows for the training of the operator with less training
trajectories.

4.2 Methodology and Accuracy

The proposed method for obtaining the low-order polyno-
mials based on the p-q-quasi norms and the error of the
multivariate elements is by applying a greedy approach
for the calculation of a suboptimal p-q parameterization,
and a second calculation of the operator based on the
elimination of the multivariate elements.
The greedy approach to find the suboptimal approxima-
tion of the Koopman operator relies on the error from the
comparison on the test set of orbits, and the predicted
orbits of the operator. Consider (5), where the k-th ap-
plication of the operator Ud gives the evolution of the
observables Ψ(x) up to that time. From this evolved state,
consider a matrix B ∈ Rd×n with a unitary value per
column in the position where an element of the vector-
valued function has an index equal to on, i.e., every column
of matrix is defined as

Bl = {el : ∥αl∥1 = 1},
From this definition and defining the inverse of the n
injective function of degree one as Ψ−1(x), the evolution
of the states is

x̂(k) = Ψ−1
(
B⊤Uk

dΨ(x(0))
)
.

The empirical error criterion for a number Ns of test tra-
jectories and a length kj for every one of these trajectories
is

ϵT =
1∑Ns

j=1 kj

 Ns∑
j=1

kj∑
k=1

|xj(k)− x̂j(k)|
|xj(k)|

 . (10)

The first step of the process is to select a set of q norms and
a set of maximum multivariate order p. For each p, sweep
along the parameter q calculating the error (10) until there
is no improvement in two consecutive calculations, then
select the suboptimal parameters from the approximation
that gives the least error. The second step is to compute
the error (8) for the individual multi-variate elements and
select the elements that will stay on the polynomial basis
according to (9). This procedure gives the suboptimal low-
order/dimension polynomial basis.

5. RESULTS

This paper proposes a method to get a low-order/dimension
polynomial basis for the approximation of the Koopman

Table 1. System and simulation parameter

a 42.14 Ks1 7.1
c 116.15 Ks2 9.28
d 268 Ki2 256
µm1 1.2 ξin1 40
mum2 0.74 ξin2 175
∆t 0.1 D 0.45
Polynomial Laguerre
p sweep 5, 6, 7, 8
q sweep 0.7, 0.8, 0.9, 1.0 ∞

operator via the EDMD algorithm. The advantages of this
method are that it gets a linearization in the large, a linear
system of expanded dimension that captures the dynamics
of the state space from which there is available data.
For the particular case of the AD process with six equi-
librium points, eight trajectories evenly distributed in the
state space represent the data set. From this dataset, six
are for training, giving a training set of 3306 data points,
and two are for testing, with a size of 1930 data points. Ta-
ble 1 describes the parameters for the simulation and the
approximation of the Koopman operator. Figure 2 shows
the results of the proposed method applied to the AD
process. It shows that the empirical error (10) decreases
two orders of magnitude from a full index basis to the
suboptimal parameterization where p = 7 and q = 1. This
reduction scheme lowers the maximum order of the poly-
nomial basis from 14 to 7 (50%) and reduces the dimension
from 64 to 36 (43%). The second reduction scheme takes

Fig. 2. Indices α for the full polynomial representation,
the p-q-quasi norm reduction, and the ψ(x) error
reduction with the corresponding orbits for the train,
test, and operator orbits.
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the suboptimal parameterization and calculates the error
(8) per polynomial element and gives a set of observables
that remain in the basis (9). The advantage of this process
is that the reduction of the dimension does not affect the
empirical error.
The importance of these results is twofold. First, the
number of initial conditions, and thus the number of data
points, to accurately approximate the operator for this
unforced representation of the AD process is lower than
the traditional methods for approximating the Koopman
operator. The conventional methods require hundreds of
initial conditions and several thousands of data points to
approximate systems of two state variables. Second, the
dimension of the polynomial basis dictates the feasibility of
the computational implementation of the algorithm. The
evaluation of the polynomial basis on every sample and the
inverse of matrix G in (4) can hinder the process. Kernel-
based methods (Williams et al., 2016b) are useful in these
particular cases, but they pose problems when recovering
the state and give no information about the stability of
fixed points (Garcia-Tenorio et al., 2019)

6. CONCLUSIONS

This paper explores the approximation of expanded linear
models of the nonlinear AD process. These linear models
have the necessary accuracy in predicting the behavior of
the states while keeping the operato’r order and dimension
low.
Although the proposed method relies on the measurements
of the species concentrations, which is not feasible in
practice, it does show that it is feasible to get accurate
models for this particular case, when there is a small
number of available orbits.
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