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Abstract: Mathematical models of biomedical systems often have a high number of uncertain parame-
ters that are difficult or even impossible to estimate precisely. In order to be able to adequately describe
the system, it must be known how large the influence of which factors is on the model behavior and how
uncertainties in the parameters affect the model accuracy. Sensitivity analysis (SA) offers a possibility to
examine to what extent the variance of the model output can be described by the variability of the input
factors. In this paper, a multi-step SA is fulfilled for a unified model of glucose-insulin metabolism that
consists of an Elementary Effects Test for screening purposes, a functional principal component analysis
for dimensionality reduction of the model output variance and a variance-based approach to determine
the sensitivity indices. The concept is tested on several scenarios for type 1 and type 2 diabetic patients,
as well as non-diabetics. Results show that parameters are of different importance, depending on the type
and scenario studied, which should be considered in a further system analysis.
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1. INTRODUCTION

Diabetes mellitus is a chronic disorder in which the body is no
longer able to maintain glucose-insulin homeostasis on its own.
People who have been diagnosed diabetes need lifelong ther-
apy, along with permanent measurement of blood glucose con-
centration and insulin administration. Modeling and simulation
of metabolic processes can help understanding the underlying
mechanisms of this disorder and is a key step towards system
analysis, model driven controller design, individual parameter
identification or state estimation processes (Eberle and Ament
(2012); Russell (2008); Tolks and Ament (2017)). A method-
ological review about models, signals, and control within the
area of diabetes is given by Cobelli et al. (2009).

Parameters identified from experimental data in real-life are
often subject to a high degree of uncertainty. In order to be
able to deal with these uncertainties, sensitivity analysis (SA)
techniques can be used to quantify the influence of parameters
on model quality.

SA is widely used in systems biology (Sumner et al. (2012))
or environmental modeling (Pianosi et al. (2016)) and one key
area is to identify those input factors that contribute most to
the variation in the model output. A systematic review on SA
techniques is given in Pianosi et al. (2016).

When the model output is scalar, e.g. an aggregated statistical
information or the sum of squared errors, a set of quantitative
sensitivity indices describe the variance in that variable induced
by variation of the input factors. However, in biomedical sys-
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tems often the dynamic behavior over time is of interest. Thus,
the model outputs are functions of time and consequently the
sensitivity indices are also time-dependent. This gives infor-
mation on how influential parameters are at certain time-points
(Marino et al. (2008)).

As an alternative scalar features can be derived from the model
output and the indices can be calculated thereof. First proposed
by Campbell et al. (2006) and applied on biological systems by
Sumner et al. (2012) functional principal components seems to
be an expedient method to convert vectorial model outputs into
an alternative format. It aims to transforming functional data
in a set of basis functions that represents the most important
features of the model output. Afterwards, a standard SA method
can be applied to the coeflicients of the principal components
to determine most relevant input factors.

In addition to questions such as local or global SA or qualitative
and quantitative SA, computational considerations also play a
role. Particularly in biological systems, many parameters are
often involved that require efficient algorithms or methods. To
reduce computational cost a multi-step SA is suggested here.
It consists of a screening technique for all parameters of the
model. The indices are then determined using the Elementary
Effects Test (EET) that results in a qualitative ranking of the fac-
tors. From that, a reduced set with only the most influential pa-
rameters is build. Finally, a variance-based sensitivity analysis
(VBSA) is applied for this set to obtain quantitative information
about the sensitivity indices. These are the first-order and total-
order effects, which describe influence of a single parameter on
the variance of the model output and interactions between input
factors, respectively.
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2. MODEL OF THE GLUCOSE-INSULIN METABOLISM

The model of glucose-insulin-glucagon regulation incorporated
here is a unified system that enables simulating non-diabetics,
type 2, and type 1 patients and is presented in (Tolks et al.,
2019, accepted).

The unified model implements components of two widely used
diabetes models: the UVA/Padova type 1 diabetes mellitus sim-
ulator (T1DMS) by Dalla Man et al. (2014) to simulate patients
with type 1 diabetes (TIDM). And second, the meal simu-
lation model presented in Dalla Man et al. (2007a,b). While
the first model is widely used for in-silico trials and testing
of closed-loop algorithms (artificial pancreas), was the second
one added into the unified model in order to simulate non-
diabetic people (TNDM) and patients having diagnosed type 2
diabetes (T2DM). Differences in the models result on one side
in the possibility of subcutaneous administration of insulin and
glucagon and on the other side in the modeling of pancreatic
secretion and distribution of insulin in the body.

A combination of the previously separated models allows a
comprehensive view on the dynamic behavior of glucose-
insulin metabolism with a common set of differential equa-
tions which enables comparisons over several populations. The
model is written in nonlinear state space form with 20 states and
40 independent variables that determine the metabolic behavior.
A set of parameters characterizes an individual and his current
health status, and different manifestations of the disorder can
be described by altered parameter vectors. The variations are
determined by the covariance of the parameters among each
other and their distribution, that is log-normal for most.

The model has three outputs: plasma glucose levels, concentra-
tion of glucose in the subcutaneous space (CGM), and plasma
insulin concentration. Here, the CGM signal is used as the out-
put on which the input factors are tested. Since insulin measures
can only be carried out under lab conditions and blood glucose
records are only available a few times a day, continuous glucose
measurements are best suited in real situations. Note that no
sensor errors were assumed here.

Simulations are possible for TNDM, T2DM, and T1DM sub-
jects. Differences in the model output for the three groups result
only from different values of the respective parameters. There-
fore, the unified model is appropriate for parameter studies.

New developments of the TIDMS by Visentin et al. (2018)
introduce time-variant parameters and extended insulin dosage
forms. But they are not considered here.

3. METHODS
3.1 Concept and workflow

Since the model has many influential factors and quantitative
techniques for sensitivity analysis are computationally expen-
sive, the method presented here is a multi-step SA using a
screening technique, a parameter reduction and a subsequent
quantitative SA, Fig. 1.

First, a screening over the whole parameter vector is carried
out by applying the Elementary Effects Test. Model evalua-
tion results in a time-dependent output signal for each sample.
Next, functional principal component analysis (FPCA) is used
to explain the variance in the model output with a minimal
set of orthonormal basis functions. For each of the principal
components (PCs) the Elementary Effects (EE) can then be
calculated.

Screening using Elementary Effects Test

. Model evaluation FPCA EET
EET Sampling  [-3» (time-dependent [ (functional principal [ o each component
outputs) components)

Results v
Sensitivities . TSI Find reduced
(main, total effects) (llme-(_:lgp_epdem parameter set
sensitivities)
A A
A
FPCA Model evaluation

VBSA

for each component < VBSA sampling

(functional principal [€— (time-dependent |+
components) outputs)

Variance-based Sensitivity Analysis

Fig. 1. Proposed workflow: First, a screening is fulfilled using
the Elementary Effects Test (EET) and the most relevant
parameters are selected. Second, variance-based sensitiv-
ity analysis (VBSA) follows. The model outputs are time-
dependent and thus time-dependent sensitivities (TSI) can
be calculated. Moreover, functional principal component
analysis (FPCA) is used as an input for the SA techniques.

From that, only factors with a high EE are chosen. That means
for the following steps only a reduced parameter set is used.
Second, the main sensitivity analysis is fulfilled using a
variance-based technique. Again, the model must be evaluated
for all samples. Sensitivity indices can be calculated for each
time step of the time-variant output and gives insights into the
dynamics of the indices during the entire time course.

As mentioned before, the model output variance can be de-
scribed by a set of basis functions. And finally, first-order and
total-order effects can be computed for each PC. The entire pro-
cedure is carried out for the three diabetes groups, and also for
various scenarios, see comparison in Section 4. Furthermore,
a log-normal distribution for all parameters is assumed for all
sampling procedures, also taking into account their covariance.
Means are set to the average patient in each group and the stan-
dard deviation to +25 % of the corresponding nominal value.

For screening, four scenarios were selected to reflect specific
aspects of daily life. Likewise, they excite various parts of the
model so parameters are revealed that are more or less active
during the several situations. A meal ingestion scenario with
60 g of carbohydrate intake and a steady-state simulation was
performed. The first one is assumed to show parameters mainly
connected to the digestive tract and the glucose homeostasis
processes. The latter to reveal factors for maintaining basal
state. The third scenario includes an insulin bolus given in addi-
tion to the meal in T2DM and T1DM. In the last scenario, only
an insulin bolus is administered, allowing parameters that are
only related to insulin processing to be determined separately.
For VBSA, only two scenarios have been chosen which re-
flect the most common daily life situations. This is the meal
ingestion case for TNDM, and the same scenario including an
additional insulin bolus at meal time for T2DM and TIDM.

In general, the model formulation is given by

(@ = f(t,u, X) 6))
with y(r) the time-varying output, u the input signal, and X a
vector of M input factors also referred to as parameters of the
model. The factors are assumed to be independent of each other
and its uncertainty is given by a probability function.
Depending on the SA method used, N parameter sets are
sampled and the model is evaluated for each sample.
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3.2 Factor screening and ranking

A well established method for screening and factor ranking is
the method of Morris or Elementary Effects Test (EET). It is
a multiple start approach in which the output perturbation is
determined by multiple points within the input space that are
deflected by a finite difference (Pianosi et al. (2016)). For the
i-th input factor the sensitivity index §; is calculated as

1 .
Si=~ Y EE/ ©))
r £
j=1
B f(fc{,...,)?ii+A{,...,)_C]1;,1)—f()_c{,...,)_cj,...,)_cﬁ/l)c'
r Azj '

where r is the number of finite differences, Af is the perturba-
tion of the i-th parameter, and c¢; a scaling factor to deal with
different units of measurements. To compute the EE, the SAFE
toolbox developed by Pianosi et al. (2015) is used.

The computational cost to derive both sets of indices is
r(M+ 1), with M = 37 parameters and r = 100 finite dif-
ferences which is much lower than variance-based methods.

3.3 Transforming the functional model output

As the model output is a time series one searches for an
expansion of the functional output in an appropriate coordinate
system, i.e., in terms of an appropriate set of basis functions,
followed by a SA of the coefficients of the expansion (Campbell
et al. (2006)). The variance V of the output can be described by
a set of K basis functions ¢(¢) and coeflicients C as

V() = CoT (1), yeRV CeRVK ¢ eRIK, 3)

with N denoting the number of samples and 7 denoting the
number of time points. Output y;(f) can be rewritten from (3) as

K
VIO RFO+ ) cpde®), j=1...N, 4)
k=1

where ¥(7) is the mean function over all realizations y;(7). The
Jj-th output is therefore an approximation of the mean function
and the variance explained by a set of K basis functions.
Further details about theory and how to derive coefficients
and PCs can be found in Miiller (2005); Yao et al. (2005).
Algorithms are implemented in the PACE toolbox (Fan (2015)).

3.4 Quantitative sensitivity analysis

Variance-based sensitivity analysis (VBSA) belongs to a class
of global sensitivity analysis techniques and has been broadly
described, e.g. in Saltelli et al. (2010); Marino et al. (2008). The
first-order indices S ; are a quantity for the direct contribution of
an input factor to the variance of the output:
Vyx [Ex. (Y | X;
_ Vxl f;( | X)) 5)
)
S 7, are the total-order indices and measure the first and higher
order contributions of factor X;:
Ex, [Vx,(Y | X.)] Vx, [Ex,(Y | X.))]
Sr, = =1- ©6)
’ V() V()
Vx, [Ex..(Y | X;)] is the expected reduction in variance that
would be obtained if X; could be fixed and Ex , [Vx,(Y | X;)]
is the expected variance that would be left if all factors but X;
could be fixed (Saltelli et al. (2010)).

S;
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——— T1DM (basal & bolus insulin)
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Time (h)

Fig. 2. Mean functions of the model output taken from EET
for three diabetes types and different scenarios (N = 4100
samples each): In all cases a 60 g carbohydrates meal was
given at t = 0. TNDM got only the meal, diabetics received
the meal with and without insulin bolus at meal time (7 U),
whereas T1DM additionally got an optimal basal insulin.

The computational cost to derive both sets of indices is
N (M +2), with M = 15 denoting the number of parameters
and N = 20000 is the number of samples which leads to 340000
simulations in total. To compute the VBSA indices, the SAFE
toolbox presented by Pianosi et al. (2015) is used.

Time-varying sensitivity indices S;(¢) and S r,(f) show how the
significance of a parameter changes over a time interval and
thus provide insights into the dynamics of a system when parts
of a system are more or less active than others. The indices
can be calculated at specific time points that are known to
be important or over the entire time course using the scheme
described in Section 3.4. This method is also outlined in Marino
et al. (2008). Results can be found in Fig. 4.

4. RESULTS

Figure 2 shows the averaging functions of the model output for
the different diabetes groups and scenarios. The simulation data
was derived from EET sampling. In each scenario a meal of
60 g carbohydrates was given at the beginning of the simulation
and subcutaneous glucose concentrations (model output CGM)
rises in all subjects. Basal glucose level in T2DM and T1DM
are assumed to be in the normal-glycemic range, but higher then
in normal subjects. For TNDM glucose level declines quickly
into steady-state after 4h. TIDM was simulated given an op-
timal basal insulin to remain in steady-state (=20 mU/ min).
Additionally, in one scenario (green solid line) an insulin bolus
at meal time was administered. The optimal basal and bolus
calculation is described in Dalla Man et al. (2014). Simulation
results show that without bolus insulin glucose concentration
remains in the hyperglycemic range for a long time until steady-
state is reached at the end of the simulation (purple line). Better
results are achieved with the optimal insulin bolus. T2DM was
simulated with (yellow line) and without (red line) insulin bo-
lus, too, and has a similar behavior as TIDM. In all scenarios
considered, the disturbance caused by the meal is compensated
by the effect of insulin secretion or externally administered
bolus. It can be seen that there exists a dynamic behavior with
different time scales due to meal ingestion and a steady-state
part at the end of the observation period.

Since the model output is time-variant functional principal
component analysis (FPCA) was performed to approximate the
output variance by a small set of FPCs as described in Eq. (3).
It turned out that in all examined scenarios only three FPCs
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Fig. 3. Time course of the functional principal components
(FPCs) for TNDM and the meal ingestion scenario com-
puted after EET sampling. Only 3 FPCs explain 96 % of
the variability in the output (fraction of variance explained,
FVE). The first PC explains a slow transition into steady-
state, whereas the second and third FPCs account for the
fast dynamics in the system.

were required to explain more than 90 % of variability. Their
time course is exemplarily plotted in Fig. 3 for the non-diabetic
case and a meal ingestion scenario. As shown in the graph the
first FPC explains 69 % of variability, whereas the second and
third FPCs account for 21 % and 6 %, respectively. Looking at
the time course, it is noticeable that the first FPC has a slower
dynamic towards a stationary end value.

Now, for each type and scenario there exists a set of functional
principal components ¢(¢) and scores C from which the EEs
can be calculated. They are reported in the left column of Fig.
5 (results for TNDM and the 15 most influential factors only)
and on the left side in Table 1. The indices must be separately
interpreted for each FPC. Looking at the mean values of the
first FPC in Fig. 3 factor G” is most important compared to
all others. This makes sense regarding the time course of the
first FPC and, since G” is the stationary value of the CGM
output, an alteration directly induces variance. Effects for the
second component are high for the meal related parameter b and
also for factors of glucose transport k;, k, and insulin kinetic
me which is in accordance to the dynamic time course of the
second FPC in Fig. 3. The third component only accounts for
6 % variability and incorporates all less sensitive values.

The computational cost was 17 min for model evaluations and
additional 139 min for the FPCA, for each of the 10 cycles.

After screening of the full parameter set for all scenarios the
most influential factors were chosen for variance-based sensi-
tivity analysis. For this, every group was considered indepen-
dently but all scenarios and FPCs were regarded together in
each group. Then, the 15 unique parameters with the highest
mean value given by the EET were selected. They are shown in
Figure 5 and in Table 1. It is noticeable that certain parameters
are important in all types and scenarios such as basal glucose
level G?, glucose distribution volume Vg, or glucose rates k;
and k,. Likewise, factors for meal intake (b, kjax, Kkmin) OF
Vinx, Which is part of the insulin-dependent glucose utilization,
must be taken into account. For TIDM time constants to model
subcutaneous insulin kinetics kg, k41, and k,, are also important.
Some parameters like kg, the time-lag between plasma and sub-
cutaneous glucose concentration do not have much influence on
the variance of the output. Nevertheless, it should be considered
in parameter identification or control design as it is an important
link between the two glucose measures.
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T T T L

1 T
—Gb
§%) —VG
8 b
© 05 - beta |
.% — VI
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0 T | | [—
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Fig. 4. Time-varying SIs: VBSA was performed for the three
scenarios using the reduced parameter set and N = 20000
samples. Only the six indices with the highest time-
integrated main effects are shown in the graph.

VBSA was fulfilled using a reduced set of 15 parameters for
each diabetes type. In contrast to the EET where different
scenarios were investigated, here, only the most likely setting
for each type was considered. This is the single meal scenario
for TNDM and for T2DM and T1DM a meal ingestion with
additional optimal insulin bolus. Sobol sampling method was
used to generate the input factors. Computational time was 30 h
per scenario (four cores at 3.6 GHz parallel, 32 GB RAM).
After model evaluation, the time-dependent sensitivity indices
were calculated for each time step. This gives insights into the
impact of input factors at certain times and it can be assumed
that some parameters have a stronger influence on the dynamic
behavior of the model and others on the stationary behavior.
This can be seen in Fig. 4 for three scenarios. Sensitivity of
parameter G”, which is the basal glucose concentration in blood
plasma and therefore determines stationary final value, is in-
creasing with time and remains at its maximum when steady-
state is reached as it can be seen in the mean functions depicted
in Fig 2. Parameter b is mainly related to meal ingestion in
the gastric emptying function, which is delayed in TIDM and
T2DM subjects, compared to the TNDM, and is negatively re-
lated to G?. Parameters k; and k; are rate constants with which
glucose is exchanged between blood plasma and surrounding
tissues. Their SIs are nearly stable over the whole time course
in all types. The pancreatic responsivity to glucose is given by
parameter 8. It is active during the transient part in TNDM and
assumed to be deteriorated in T2DM and absent in TIDM.
Second, to derive a scalar feature from the dynamic model out-
put, functional principal component analysis was again applied
and a set of FPCs is produced that describes the main types
of variance in the CGM signal. Then, for each component, the
sensitivity indices were computed as an indicator for the impor-
tance of the model parameters described by the corresponding
functional component. As it was shown for the EET, sensitivity
indices must be interpreted separately for each component.
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Fig. 5. Parameter sensitivities with regard to the three principal components (PCs) of the CGM model output for the TNDM case
and the OGTT scenario. The left column shows the mean u and standard deviation o of the Elementary Effects Test (first
15 parameters with the highest mean are shown only). A high mean stands for a strong impact of a parameter on the model
output variance and a high standard deviation indicates nonlinear dependencies or interactions between different variables.
On the right side the main and total effects calculated with a variance-based sensitivity analysis is given. Main effects quantify
the level of variance caused by each individual parameter in the model output. Total effects are a measure of the variability in
the model output when parameters interact in combination. Results for T2DM and T1DM cases are summarized in Table 1.

Table 1. Mean values of EET and main effects of VBSA for different diabetes types and scenarios,
respectively (reduced parameter set, rounded). All sensitivities were calculated for each principal
component (indices 1-3). If no entry exists, the parameter was not considered in the corresponding
subject or the scenario.

EET VBSA
TNDM: meal T2DM: meal & bolus T1DM: meal & bolus TNDM: meal T2DM: meal & bolus T1DM: meal & bolus

H H2 M3 H1 H2 M3 M1 M2 H3 S1 S; S S1 S2 S3 S1 S: S3
Gy 690.0 76.0 47.5 902.2 104.1 33.6 771.6 3654 529 09 00 00| 09 00 0.0 0.7 02 0.1
Ve 43.1 242.6 78.3 74.3 403.2 73.9 440.6  370.1 339 00 03 0.1 0.0 06 0.0 02 05 0.0
Vi 67.0 42.8 62.9 102.1 159 67.1 442 21.1 9.1 0.0 00 0.1 0.0 0.0 0.1 - - -
Kabs 16.3 38.7 6.9 21.2 91.5 48.3 359 23.6 15.2 - - - 0.0 0.0 0.0 - - -
Kmax 23.1 46.7 6.2 15.0 78.5 30.4 26.4 109.0 74.1 00 00 00 | 00 00 0.0 00 0.0 0.1
Kmin 45.6 17.8 64.8 6.3 70.4 54.0 29.7 118.6 54.8 00 00 0.1 0.0 0.0 0.1 0.0 0.0 0.1
b 1243 280.2 40.0 432 227.0 68.5 472 151.0 1422 | 00 04 00 | 00 02 0.0 00 0.1 0.4
ki 11.9 79.6 62.6 76.4 168.3 36.1 203.2 164.9 21.8 00 00 0.1 0.0 0.1 0.0 00 0.1 0.0
k> 8.8 71.7 472 544 110.9 29.0 153.0 127.3 20.6 00 00 00 | 00 00 0.0 0.0 0.1 0.0
kp1 13.7 21.0 9.2 39.4 33.1 83.1 - - - 00 00 00 | 00 00 0.1 - - -
kp2 14 52 5.5 3.7 7.4 2.7 109.3 13.3 57.5 - - - - - - 0.0 0.0 0.1
kp3 41.8 6.1 14.5 53.9 239 13.2 46.7 23.7 18.4 00 00 00 - - - - - -
kps 9.6 35 5.7 16.7 5.4 16.8 2.4 1.4 1.0 - - - - - - 0.0 0.0 0.0
my 34.6 26.6 30.4 58.3 34.4 36.1 - - - - - - 0.0 0.0 0.0 - - -
ms 31.6 16.0 39.6 52.7 25.8 52.1 0.0 0.0 0.0 00 00 00 | 00 00 0.0 - - -
mg 51.0 87.9 31.8 73.5 125.7 128.6 - - - 00 00 00 | 00 00 0.3 - - -
Vmx 29.1 37.2 81.5 70.9 37.4 73.7 180.1 17.3 95.1 00 00 0.1 0.0 0.0 0.1 0.0 0.0 0.2
Ko 19.2 23.1 46.5 53.5 30.6 53.2 64.4 154 31.5 - - - - - - 0.0 0.0 0.0
B 99.7 67.7 102.9 125.2 28.2 101.4 - - - 00 00 03 0.0 0.0 0.1 - - -
ki 10.7 154 18.5 28.1 6.8 38.7 19.8 8.2 26.5 00 00 00 - - - - - -
n 114 18.5 8.7 27.9 32.0 22.4 472 18.2 11.5 - - - - - - 0.0 0.0 0.0
Ka1 0.0 0.0 0.0 9.0 21.0 6.0 52.1 23.8 159 - - - - - - 0.0 0.0 0.0
Ka2 0.0 0.0 0.0 6.3 22.7 53 131.1 58.2 55.0 - - - - - - 0.0 0.0 0.1
ka 0.0 0.0 0.0 4.8 16.0 4.4 93.3 242 45.8 - - - - - - 0.0 0.0 0.0
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Fig. 6. Convergence plot of main effects for TIDM (3. PC),
generated by VBSA bootstrapping. Solid lines represent
the input factors, dashed lines confidence bounds.

The first-order and total-order effects returned by the VBSA
method are depicted in the right column of Fig. 5 for the non-
diabetic case and are summarized for all groups on the right
side of Table 1. The results coincide with those of the EE pre-
sented in the previous section. The same input variables were
identified to be important. There are only minimal differences
between main and total order effects visible. This indicates only
minor interaction between parameters. It has to be noted that
some total effects are lower then their corresponding main ef-
fect. This could be an indicator for the presence of correlations
between the input factors and needs further investigation.

Finally, to assess quality of the VBSA technique a convergence
analysis was performed to proof whether indices are dependent
on the number of evaluations. Bootstrapping can address this
question easily since no additional or new model evaluations
must be executed. Figure 6 exemplarily shows the convergence
plot for five most influential parameters for the third PC for
the TIDM case. The estimated indices converge to a stable
value with increasing sample size. The confidence intervals also
shrink as the number of samples increase, so it can be assumed
that the indices found can be trusted.

5. CONCLUSION

We presented a multi-step sensitivity analysis technique applied
on a unified model of glucose-insulin metabolism. Because
quantitative parameter studies with many input factors require a
very high computational effort, screening and ranking methods
as EET are a good first choice to reduce the parameter space to
an affordable degree. Afterwards, a quantitative sensitivity mea-
sure as VBSA can be used to determine first-order and total-
order indices. When considering time-dependent model outputs
a method must be found to derive a scalar representation. We
have shown this using a set of functional principal components
as an approximation of the output signal.

The study was performed comparing certain diabetes types and
scenarios. Results show different influences of the input factors
on the model output variance.

Parameters found to have a high impact on the output variance
are a starting point for further model analysis.
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