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Abstract: Development of model-based fault diagnosis methods is a challenge when industrial
systems are large and exhibit complex process behavior. Latent projection (LP), a statistical
method that extract features of data via dimensionality reduction, is an alternative approach
to diagnosis as it can be formulated to not rely on process knowledge. However, LP methods
may perform poorly at identifying abnormal process variables due a “fault smearing” effect -
variables unaffected by a fault are unintentionally characterized as being abnormal. The effect
occurs because data compression permits faulty and non-faulty variables to interact. This paper
presents an autoencoder (AE), a nonlinear LP method based on neural networks, as a monitoring
method of a simulated nonlinear triple tank process (TTP). Simulated process data was used to
train the AE to generate a monitoring statistic representing the condition of the TTP. Sparsity
was introduced in the AE to reduce variable interactivity. The AE’s ability to detect a fault
was demonstrated. The individual contributions of process variables to the AE’s monitoring
statistic were analyzed to reveal the process variables that were no longer consistent with normal
operating conditions. The key result in this study was that sparsity reduced fault smearing onto
unaffected variables and increased the contributions of actual faulty variables.

Keywords: Fault detection and isolation, machine learning, grey box modelling, learning for
control, subspace methods.

1. INTRODUCTION

Effective online monitoring of process performance is inte-
gral for maintaining stable plant operation, maximizing
production, and ensuring the survivability of industrial
systems. In fact, abnormal events that disrupt plant per-
formance can cause up to 8% annual loss in production
profit (Bullemer et al. [2008]). Due to the increasing
complexity of large-scale industrial processes, statistical
methods - which can be formulated to not rely on process
knowledge - are a practical alternative to more tradi-
tional and rigorous model-based fault detection methods.
The relevance of statistical monitoring schemes is further
supported by the current trend of industries to generate
industrial big data thanks to the integration of additional
sensors, computers, and other technological artifacts con-
nected to every industrial process (Yan et al. [2017]).

This approach to quality control is known as statisti-
cal process control (SPC) (MacGregor et al. [1995]). An
important component of SPC is diagnosis of a detected
abnormal event and determining its cause. Once an unin-
tended plant upset is identified, it is typically up to the op-
erators to decipher which statistical quality variables con-
tain signal characteristics that help diagnose the problem.
Unfortunately, industrial application of SPC-based event
diagnosis is ineffective since the most common practice for
monitoring the quality of a process is to observe traditional

univariate control charts such as Schewart, CUSUM, and
EWMA (Brooks et al. [2014]). Their application inher-
ently assumes that process variables are independent of
one another, potentially making their use ineffective at
diagnosing events that affect multiple process variables.

Multivariate quality control (MQC) methods - which pro-
duce quality variables that summarize the condition of
several process variables - are a better alternative to uni-
variate approaches for monitoring of multivariable pro-
cesses (Peres et al. [2018]). Essentially, the Hotelling’s
T 2 and Q statistics are paired with latent projection
(LP) - dimensionality reduction methods such as principal
component analysis (PCA) that uncover the correlation
structure of data - to detect out-of-control situations. A
process is monitored by comparing current plant behavior
with an LP model representing its “in-control” behavior.
An abnormal event that changes the correlation between
process variables is detected when the monitored deviation
between the current process state and that predicted by
the model exceeds a threshold.

Industrial applications of LP-based process monitoring
tend to use linear methods, such as PCA, due to their ease
of implementation. Unsurprisingly, linear methods result
in high Type I and Type II error rates if the process is
nonlinear (Hallgŕımsson et al. [2019]; Yan et al. [2016]).
Nonlinear extensions of PCA have emerged to uncover
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both linear and nonlinear correlations between variables.
The focus of this paper is on autoencoders (AEs); a type
of artificial neural network that learns salient, encoded
representations via nonlinear transformations of an orig-
inal data set. Dong and McAvoy [1996] show that AEs
can discover principal curves, i.e., a one-dimensional curve
whose shape provides a nonlinear summary of the nonlin-
ear structure of the complex data set it passes through.
Kramer [1991] demonstrates significant improvement in
nonlinear feature extraction by using a multi-layered AE
as opposed to a single-layered AE, assuming that the
dimension of latent layers were consistent.

Recent advances in AE-based process monitoring have
been made by including developments from other appli-
cations of neural networks. Yan et al. [2016] observed
improved fault detectability of the Tennessee Eastman
process over PCA-based process monitoring by using novel
variants of AEs; denoising AEs, which reconstruct the un-
corrupted version of corrupted input data, and contractive
AEs, which penalize the sensitivity of hidden represen-
tations to small (noisy) perturbations around the input.
Lee et al. [2019] used a variational autoencoder (VAE) to
enforce the monitored data to follow a multivariate normal
distribution in the latent space to facilitate appropriate use
of Hotelling’s T 2 monitoring charts for nonlinear and non-
normal processes, resulting in a reduction of Type I and
Type II error rates. Osmani et al. [2019] monitored the
condition of a turbo-compressor using a recurrent neural
network (RNN) that captured temporal dependency of
process variables with the additional regularization con-
straint that activations in the reduced space followed a
Bernoulli distribution. Cheng et al. [2019] combined VAEs
and RNNs to produce a variational recurrent neural net-
work for fault detection of the Tennessee Eastman process.

Contributions in the AE-based SPC literature tend to
prioritize fault detection over fault isolation. Much of the
subject matter focuses on reducing Type I and Type II
error detection rates by: (a) increasing model sensitivity to
faults; (b) obtaining more robust and complex monitoring
statistics; and (c) reducing hampering effects from nominal
process changes. Though AEs have been used as a pre-
training step for fault-classification networks when labeled
fault data is scarce (Sun et al. [2016]), few methods exist
where fault isolation is performed exclusively with an AE.
However, rudimentary diagnosis with PCA models can be
carried out with the analysis of fault contribution plots
(Joe Qin [2003]; Miller et al. [1998]). The plots indicate the
contributions of process variables to an observed increase
in the T 2 or Q statistic, with variables showing large
contributions concluded as no longer following nominal
operating conditions. Operators can then apply process
knowledge to determine an appropriate cause.

There are reports of fault contribution plots suffering from
a property called “fault smearing” - variables unaffected
by the fault demonstrate a contribution and actual faulty
variables are obscured (Westerhuis et al. [2000]). Smearing
occurs because the compression of the input to a smaller
number of latent variables and subsequent expansion to
the original space permits faulty and non-faulty variables
to interact (Van den Kerkhof et al. [2013]).

Gao et al. [2016] imposed an elastic net constraint to
obtain a sparse PCA model for the Tennessee Eastman
process. The result was a reduction in interactivity be-
tween variables in the latent space. It subsequently lead
to the discovery of process knowledge, specifically the
relationships among process variables.

The objective of this paper is to extend the analysis of fault
contribution plots to AEs and investigate the effect re-
duced latent variable interactivity has on process variable
contribution. Two AEs - a dense one and a sparse one - are
generated to monitor a numerical simulation of a nonlinear
triple tank process (TTP) - a variant of the quadruple
tank process (QTP) (Johansson [2000]). Their ability to
detect a fault is demonstrated by inducing an abnormal
bias in one of the TTP’s sensors. Individual contributions
of process variables to the AEs’ monitoring statistics are
then analyzed. The key result in this study was that
sparsity reduced fault smearing onto non-faulty variables
and increased the contributions of faulty variables.

This paper presents the mathematical model of the TTP
in section II. Section III describes how a sparse AE is
obtained and subsequently used in process monitoring.
The effectiveness of the sparse AE method at process
monitoring and improved generation of fault contribution
plots is presented in section IV.

2. THE TRIPLE TANK PROCESS

A schematic drawing of the TTP is given in Fig. 1. The
upper tanks are supplied with liquid that is transported
from a large sump by the means of two gear pumps.
Liquid flows from the upper left tank into the sump. The
liquid from the upper right tank flows into the lower tank,
which sequentially flows into the sump. The objective is
to control the liquid levels in the upper left and lower
right tanks, which are monitored with two voltage-based
level measurement devices. A level measurement device is
also fixed to the upper right tank. A nonlinear numerical
model of the TTP is derived by applying mass balances
and Bernouilli’s law to yield a set of differential equations
that describes the evolution of the liquid level of each tank.
They are:

dh1

dt
= − a1

A1

√
2gh1 +

1

2

k1

A1
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dh2
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1
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A2
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k2

A2
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dh3
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= − a3

A3

√
2gh3 +

a2

A3

√
2gh2

(1)

where Ai is the cross-section of tank i and ai is the cross-
section of its outlet hole. The liquid level of tank i is hi
and g is acceleration due to gravity. The voltage applied
to pump i is vi and the corresponding flow is kivi(1 + ηi),
where ηi ∈ R is zero mean Gaussian noise emitted from
pump i. The system is measured and actuated discretely
with a sample time of Ts. The measured level signals at
sample k are:

y1[k] = kch1[k] + w1[k]

y2[k] = kch2[k] + w2[k]

y3[k] = kch3[k] + w3[k]

(2)
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where wi[k] ∈ R is zero mean measurement noise with
Gaussian distribution for level signal i. For decentralized
control, the error terms are:

e1[k] = r1[k]− y1[k]

e2[k] = r2[k]− y3[k]
(3)

where r1[k] and r2[k] are reference signals for level signals
y1[k] and y3[k], respectively. The error terms are mini-
mized by a discrete PI controller. The closed loop control
laws for the process inputs are:

K1 : v1[k] = KP e1[k] +KI

k∑
i=1

e1[i]Ts

K2 : v2[k] = KP e2[k] +KI

k∑
i=1

e2[i]Ts

(4)

Here KP and KI denote the proportional and integral
gains, respectively, of the PI controller. Monte Carlo sim-
ulations were performed on the TTP to generate data sets
that exhibited nonlinear correlations between the process
variables. The data sets were used to train, validate, and
test an AE model that monitored the process. The un-
certain parameters were the reference signals r1 and r2.
Values for r1 and r2 were sampled from two independent
uniform distributions. Process, controller, and noise pa-
rameters were based on the QTP from Johansson [2000]
and are listed in Table 1.

3. AUTOENCODERS

Process variables tend to be highly correlated with one
another due to the presence of physical laws and con-
trol loops in process plants. Feature extraction can be
performed on the original variable space to reveal the
simplified structure that underlies it. An AE - an artificial
neural network used for learning encoded representations
for a set of data - is applicable when variables exhibit
nonlinear correlations. Given a m × 1 vector of process
variables x, the m× n reference data matrix consisting of
n standardized observations is:

𝒓𝟏

𝒆𝟏

𝒉𝟏 𝒉𝟐

𝒉𝟑

𝒚𝟑

𝒚𝟏

𝒗𝟏 𝒗𝟐

𝒓𝟐

𝒚𝟐

𝐾2𝐾1

- Signal flow- Liquid flow

𝒆𝟐

+ - +-

Fig. 1. A schematic of the TTP showing the connectivity
of the tanks and location of the pumps, dual valves,
and the level measurement devices. Included are the
decentralized feedback loops.

Table 1. List of Parameters

Process param. Noise param.

A1, A3 28 cm2 ηi N (0, 0.1)

A2 32 cm2 wi N (0, 0.0005)

a1, a3 0.071 cm2

a2 0.057 cm2

kc 1 V/cm Controller param.

k1 3.33 cm3/Vs Ts 10

k2 3.35 cm3/Vs KP 20

g 981 cm/s2 KI 0.25

X =


x[1] x[2] ··· x[n]

x1[1] x1[2] · · · x1[n]
x2[1] x2[2] · · · x2[n]

...
...

. . .
...

xm[1] xm[2] · · · xm[n]

 ∈ Rm×n (5)

An AE consists of two parts - an encoder and a decoder.
The encoder transforms its input X into new, higher-
level representative features Z ∈ Rq×n. The decoder then
reconstructs the original data as X̂ ∈ Rm×n with a
transformation of the features (Hinton [2006]). Modifiable
interconnecting weights are introduced in the AE such
that it learns in an unsupervised manner to minimize the
difference between its input and its reconstruction.

The simplest form of an AE is a multilayered, feedforward,
non-recurrent neural network. Nonlinear transformations
occur at the layers of the network, allowing for processing
of data that has inherent nonlinear properties. The en-
coder maps the input X ∈ Rm×n to the latent variables
Z ∈ Rq×n:

Ei =

{
σe1 (We

1X + be1) , for i = 1

σei (We
iEi−1 + bei ) , else

Z = σz (WzEN + bz)

(6)

where i ∈ Z : i ∈ [1, N ]. We
1 is the weight matrix between

the input layer and the first encoder layer. We
i is the

weight matrix between layers i− 1 and i, be is the bias at
layer i, and σei is the component wise activation function
at layer i. Wz, bz, and σz are defined similarly for the
latent layer.

The decoder maps the latent variables Z ∈ Rq×n to the
input reconstruction X̂ ∈ Rm×n:

Di =

{
σd1
(
Wd

1Z + bd1
)
, for j = 1

σdj
(
Wd

jDj−1 + bdj
)
, else

X̂ = σx̂
(
Wx̂DM + bx̂

) (7)

where j ∈ Z : j ∈ [1,M ]. Wd
1 is the weight matrix

between the latent layer and the first decoder layer. Wd
j

is the weight matrix between layers j − 1 and j, bd

is the bias at layer j, and σdj is the component wise

activation function at layer j. Wx̂, bx̂, and σx̂ are defined
similarly for the output layer. The modifiable parameters
We

i ,b
e
i ,W

z,bz,Wd
j ,b

d
j ,W

x̂, and bx̂ are optimized with
respect to minimizing the following reconstruction loss
function via stochastic gradient descent (Nielsen [2015]):

L(X, X̂) =
1

n

∣∣∣∣∣∣X− X̂
∣∣∣∣∣∣2 (8)
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Fig. 2 illustrates a typical autoencoder that gradually
condenses the input to the latent space and then gradually
reconstructs it. The dimension q of the latent layer plays
a significant role in the discovery of informative repre-
sentations of the input. The traditional approach is to
create a bottleneck by setting q < m, thereby forming an
under-complete representation. In this case, the network
pursues an effective compression that retains information
about input X. The compressed data, being sufficiently
representative of the original data, allows for accurate
reconstruction of the input data, albeit with a non-zero
reconstruction error. An AE using linear nodal activation
functions will uncover latent projection that correspond
to the projection onto the subspace obtained from PCA
of the covariance matrix of X (Baldi and Hornik [1989]).
This occurs even if the network is composed of several
layers of linear units. However, Bourlard and Kamp [1988]
show that PCA-like projections can be obtained even if
nonlinear functions are used since it is possible for activa-
tions to remain in the linear regions of functions such as
the sigmoid or tangent hyperbolic. This becomes unlikely
if the AE is composed of several hidden layers with varying
activation functions (Japkowicz et al. [2000]).

3.1 Invoking network sparsity

Further optimization constraints are introduced to obtain
latent representations that generalize better and prevent
over-fitting. One approach is to include the näıve elastic
net weight decay penalty - a regularized regression method
that linearly combines the L1 and L2 weight decay penal-
ties of the LASSO and ridge methods (Zou and Hastie
[2005]). The loss function in (8) becomes:

L(X, X̂,W) =
1

n

∣∣∣∣∣∣X− X̂
∣∣∣∣∣∣2 + λ1 ||W||1 + λ2 ||W||22 (9)

where λ1 and λ2 control the importance of the LASSO and
ridge regressions, respectively, and W is the collection of
weight matrices in (6) and (7). Biases b in (6) and (7) are
not included in the näıve elastic net penalty. Minimization
of (9) yields an optimized AE consisting of shrunk weights
that minimize its reconstruction loss. The individual con-
tribution of each regularization term is: (a) L1 regular-
ization shrinks weights at a constant rate towards zero,
thereby establishing a small number of high-magnitude,
i.e., high-importance, connections by driving redundant

𝑬𝑬1 

𝑬𝑬𝑁𝑁 
𝒁𝒁 

𝑿𝑿 

𝑫𝑫𝑀𝑀 

𝑫𝑫1 

𝑿𝑿� 

Encoder ℰ  Decoder 𝒟𝒟  

Encoded  
representation 

Fig. 2. Illustration of an under-complete AE. Labels for
the encoder and decoder of the network are included.
Biases are excluded from the illustration.

weights to zero; and (b) L2 regularization shrinks weights
by an amount proportional to their magnitude, thus penal-
izing larger weights more than smaller weights. The net re-
sult is an interpretable grouping of correlated variables; L2

regularization opposes the tendency of L1 regularization
to prioritize one variable from a group correlated variables
and ignore the others. Grouping of process variables is rel-
evant for identification of control systems; Gao et al. [2016]
demonstrate that a sparse principal component model can
uncover the underlying process variable relations.

Weight connections deemed redundant can be removed
to clarify the interconnectivity of a neural network.
Magnitude-based weight pruning is a technique that re-
duces the number of non-zero weight parameters to invoke
network sparsity. Zhu and Gupta [2017] introduce a prun-
ing algorithm that progressively trims away redundant
weight connections. Weight connections are removed ac-
cording to a pruning function that sets the current sparsity
percentage, i.e., the ratio of the number zero magnitude
weights to the total number of weights, of a network:

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

for t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t} (10)

The network is first trained for t0 time steps to permit the
weights to converge to an acceptable solution. Thereafter
the initial sparsity of the network is set to si (usually
zero). Weights are then pruned every ∆t steps to gradually
increase the network’s sparsity while allowing it to recover
from any pruning-induced loss in accuracy. The intuition
behind the order of (10) is to rapidly prune the network
in the beginning phase when redundant connections are
plentiful before slowing down once fewer connections re-
main (Fig. 3). The algorithm operates continuously over n
sparsity updates until the final sparsity value sf is reached.
Zhu and Gupta [2017] discovered that large-sparse models
consistently outperformed small-dense models when the
number of parameters was kept the same.

The pruning algorithm presented by Zhu and Gupta [2017]
is extended upon in this paper. At every sparsity update
st, each weight matrix Wi ∈W is divided by the largest
absolute value of Wi. This normalization step is done to
prevent severe pruning of weight matrices whose largest
absolute value is much smaller compared to the other
matrices. The normalized matrices are then flattened and
concatenated. The smallest weights are then masked to
zero until the desired sparsity level st is reached. Further-
more, the pruning algorithm is stopped prematurely if the
validation loss experiences a 5%-10% increase.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

Fig. 3. Example sparsity function used for gradual pruning
with sf = 0.8, si = 0.0, t0 = 3000, ∆t = 100, n = 20.
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Once pruning ends, the näive elastic net weight penalty
is removed from the training session. This is to relax the
constraints on the AE and permit the remaining weights
to maximize their capacity to reduce the loss function in
(8) without the concern of any additional loss penalties.

3.2 Process Monitoring

Process monitoring consists of comparing current plant
behaviour with that predicted by an “in-control” AE
trained with historical data collected when the process
exhibited nominal behaviour. New observations are prop-
agated through the AE to generate the residuals enew =
xnew − x̂new. The quality of new observations is assessed
by computing the squared prediction error (SPE) (more
formally known as the Q statistic) of the residuals of new
observations (MacGregor et al. [1995]):

SPE =

m∑
i=1

(xnew,i − x̂new,i)2
(11)

An abnormal event that changes the correlation between
process variables will cause the SPE to increase. Assuming
that the SPE follows a chi-squared distribution, the control
limit can be computed with the following approximate
value (Box [1954]):

CLSPEAE
=
σ̄2

2µ̄
χ2

(2µ̄2/σ̄2,α) (12)

where µ̄ and σ̄, respectively, are the sample mean and
sample standard deviation of the SPE and α is the false
alarm rate. An abnormal event is deemed to have occurred
if the SPE crosses the control limit. Abnormal process
variables are isolated by analysing the contribution of each
variable i to the SPE in (11) (Miller et al. [1998]):

Ci = (xnew,i − x̂new,i)2
(13)

Variables with large contributions are said to no longer be
consistent with normal operating conditions. It is noted
that analysis of (13) does not determine the underlying
cause of a fault. Rather, it will highlight the process
variables containing signal characteristics of a fault. The
results of (13) must be integrated with a qualitative model
of the process that takes into account the causal nature of
system components to decipher the actual cause.

4. RESULTS AND DISCUSSION

4.1 Derivation of influence rules

It was of practical interest to determine the influence of
reference variables r1 and r2 on the control and measure-
ment variables; steady-state correlations uncovered by the
AE can then be validated to what is implied by the data.
Fig. 4 displays the time series plots obtained from inducing
random step changes in a single reference variable while
keeping the other constant. The plots demonstrate that:
(a) a step change in r1 causes a transient change in the
steady state values of y1, v1, and v2, while variables y2

and y3 experience a transient change that has no affect on
their steady-state values; and (b) a step change in r2 has
no influence on y1 and v1 yet generates a transient change
in the steady state values of y2, y3 and v2. The correlation
sets C1 = (r1, y1, v1, v2) and C2 = (r2, y2, y3, v2) are

determined from the plots. They indicate which process
variables observe a permanent change in their steady state
value caused by a change in a reference signal.

4.2 Data generation from TTP simulation

The TTP was simulated with random step changes in
reference signals r1 and r2 occurring every 200 time steps.
The training set Xt (consisting of 300,000 samples) and
validation set Xv (consisting of 30,000 samples) were gen-
erated to train and validate, respectively, an AE. Fig. 5
displays the distribution of standardized samples of vari-
ables in Xt in the form of scatter and histogram plots. The
scatter plots indicate the existence of nonlinear correla-
tions between variable pairs (r1, v1), (v1, y1), and (v2, y1).
The histogram plots reveal that several variables do not
follow the assumption of normality with v1 in particular.

The fault set Xf (consisting of 300 samples) was generated
by simulating the TTP with a bias in sensor 1, introduced
with the additive fault y1[k] = kch1[k] + w1[k] + f with
f = −0.01. The fault was introduced after 100 time steps.
No reference changes occurred in r1 and r2. Fig. 6 presents
time series plots of the first 200 samples of Xf and shows
the fault’s effect on the process variables. Deterministic
results (in grey) from the same simulation case (obtained
by setting ηi and wi in (1), (2) to zero) are included to aid
in interoperability. The plots demonstrate that: (a) the
fault has no influence on r1 and r2; (b) the fault induces
temporary changes in y1, y2, and y3 that have no influence
on their steady state values; and (c) the fault induces a
permanent change in v1 and v2 and thus carry steady-state
signatures that explain the presence of the fault.

4.3 AE model generation and testing

Two AEs, denoted AE1 and AE2, were trained with the
training set Xt. Both networks were inherently the same,

(a)

(b)

Fig. 4. Time series of simulated process variables where
(a) r1 is changed whilst r2 is held fixed and (b) r2 is
changed whilst r1 is held fixed. Red lines indicate the
references for the measurement.
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i.e., same number and dimension of layers, same number
of latent variables, same initialization of the weights, and
so on, except AE2 included the näive elastic net weight
penalty with λ1 = λ2 = 0.001 and was pruned. The
pruning parameters in (10) of AE2 were sf = 0.9, si = 0.7,
t0 = 5000, ∆t = 100, n = 200, but early-stopping resulted
with a sparsity of 80.86%. Both AEs were trained for 12000
epochs using the Adam gradient-based optimization with
a learning rate of 0.001 for stochastic gradient descent
(Kingma and Ba [2014]). The matrices Xt, Xv, and Xf

were standardized with the mean and standard deviation
of Xt. The dimension of the latent layer in each model
was set to q = 2. This was to see if the sparse AE2 would
expose the correlation sets C1 and C2. The dimensions and
activation function of each layer were specified as:

[
dimL(E) dimL(D)
σei σdi

]
=

[X E1 E2 D1 D2 X̂

7 9 9 9 9 7
tanh tanh tanh tanh I

]
(14)

where tanh is the tangent hyperbolic function and I is the
identity function. The tangent hyperbolic transfer func-
tion was primarily used since the data is mean-centered.
The design of the AE is essentially an expanded under-
represented AE; setting the dimension of the encoder and
decoder layers larger than the size of the input dimension
allowed the AE models to generate complex, higher dimen-
sional features before information retaining compression
occurred (Olah [2014]). The tangent hyperbolic function
was implemented at the latent layer.

The training loss (TL) and validation loss (VL) from
training AE1 and AE2 are plotted in Fig. 7. It can be seen
that the TL and VL of AE2 observe a significant difference
that recedes when pruning ends. This is because the TL
includes the näive elastic net weight penalty in (9) that is
then removed once pruning stops. The figure shows that

Fig. 5. Scatter plot of standardized process variables,
including a histogram along the diagonal.

Fig. 6. Influence of fault f1 at sample tf on (left) measure-
ments and (right) control inputs. Red lines indicate
the references for the measurements.

the VL of AE2 is similar to the VL of AE1 at the end of
training. In fact, the VL of AE2 is only 7.2% larger despite
AE2 having 80.86% fewer weight parameters than AE1.

Fig. 8 portrays the connectivity between network layers of
AE2 and shows the propagation of original variables x to
the reconstructions x̂. It can be seen that the network has
identified the correlations between process variables, thus
eliminating potential fault smearing between uncorrelated
variables. The activation of the second node in the latent
layer is computed by the process variables of correlation
set C1. In addition, the activation is solely responsible for
the reconstruction of the same variables. The activation
of the first latent node is determined by the variables of
correlation set C2 with the exception of v2. However, the
latent node’s activation reconstructs all of the variables
of C2. From this it follows that fault signatures contained
in v2 cannot not smear onto r̂2, ŷ2, and ŷ3. Although it
provides a partial explanation for the loss in validation
accuracy in comparison to AE1 (Fig. 7), AE2 has dis-
covered a form of reconstruction redundancy: although v2

appears both in C1 and C2, it is sufficient to reconstruct it
from a partial subset of process variables. It is noted that
the interconnectivity of AE2 is heavily influenced by the
chosen hyperparameters for the learning rate, regression
coefficients λ1 and λ2, and pruning parameters; a different
selection is bound to result with a different connectivity.

The contribution plots obtained from propagating Xf

through AE1 and AE2 are displayed in Fig. 9. Plots
from the deterministic equivalent of Xf are included to
ease the analysis of the effect of network pruning on
mean contributions. The fault is detected by both AEs
as their SPEs cross their control limit at sample tf , i.e.,
the onset of the fault. Despite the model complexity of
AE1 being greater than that of AE2, their SPEs are nearly
identical over the fault set. This indicates that a more

0    5000 9701 12000
10-2

10-1

100

8000 9000 10000 11000 12000
10-2

10-1

Fig. 7. Training and validation losses during training.
Right figure zooms in on epoch interval [8000,12000]
and includes final losses in its legend.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

753



𝒁

𝑫2𝑫1

𝑿

Encoder ℰ Decoder 𝒟

Encoded
representation

𝑬1 𝑬2

𝑿

𝑟1
𝑟2
𝑣1
𝑣2
𝑦1
𝑦2
𝑦3

Ƹ𝑟1
Ƹ𝑟2
ො𝑣1
ො𝑣2
ො𝑦1
ො𝑦2
ො𝑦3

Input-reconstruction weight connections: ,

Fig. 8. Illustration of trained AE2, showing pruned weight connections (grey) and remaining connections (black). Biases
have been excluded from the illustration.

complex model is not necessarily more sensitive to faults.
Smearing onto unaffected variables r2, y2, and y3 is less
for AE2, indicated by a reduction in the variance (Fig 9a)
and mean (Fig 9b) of their contributions. In fact, their
mean contributions are zero once steady-state is reached
because the steady state fault signatures retained in v1

and v2 cannot propagate to r̂2, ŷ2, and ŷ3 (Fig. 8). Even
though smearing occurs onto non fault-carrying variables
r1 and y1, invoking network sparsity guarantees that the
steady state signal characteristics of faulty variables v1

and v2 stay within the variables of correlation set C1. In
fact, network AE2 generates larger contributions for fault-
carrying variables v1 and v2 and reduces the contributions

for non-fault-carrying variables r1 and y1, indicating that
network sparsity makes faulty variables more highlighted.

It is reiterated that analysis of fault contribution plots does
not determine the cause of a fault. Instead, process vari-
ables containing steady-state fault signatures are inferred.
An additional “causal reasoning” step must be performed
that takes into consideration the causal nature of the
monitored process, e.g, qualitative modeling of relations
between different components of a system, to determine
the root cause of fault-contaminated process variables.
The presented method makes qualitative diagnosis more
effective, since the reduction of fault smearing ensures that
more precise qualitative information is provided.

(a) (b)

Fig. 9. Magnitudes of contributions to the SPE from AE1 (grey) and AE2 (black) via (a) stochastic simulations for Xf

and (b) deterministic simulations for Xf . Dashed line in SPE plot indicates the control limit obtained from Xv.
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5. CONCLUSION

This study introduces the combined application of a spar-
sity constraint and a pruning strategy to produce a sparse
AE with the purpose of diagnosing a sensor fault occurring
in the TTP. The obtained AE lead to the discovery of
process knowledge, specifically the relationships among
process variables. The solution demonstrated that a sparse
AE, which inherently has fewer parameters than a fully
connected AE, suffered little in its validation performance.

The results show that the proposed method improved the
performance of fault contribution plots; process variables
unaffected by the fault produced significant less contribu-
tions due a reduction of fault smearing. The results also
demonstrated that variables carrying no fault signatures,
but were strongly correlated with the faulty variables,
observed reduced contributions. Finally, variables that
contained fault signatures produced larger contributions,
providing further fault isolation capabilities.
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