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Abstract: We address the issue of estimating the topology and dynamics of sparse linear
dynamic networks in a hyperparameter-free setting. We propose a method to estimate the
network dynamics in a computationally efficient and parameter tuning-free iterative framework
known as SPICE (Sparse Iterative Covariance Estimation). Our approach does not assume that
the network is undirected and is applicable even with varying noise levels across the modules
of the network. We also do not assume any explicit prior knowledge on the network dynamics.
Numerical experiments with realistic dynamic networks illustrate the usefulness of our method.
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1. INTRODUCTION

Estimation of dynamic networks have been of increasing
interest in the systems and control community. Networks
are used to efficiently model the signal flow or the depen-
dencies between the different interconnected modules in
a control system (Materassi and Innocenti, 2010). Given
the set of signals which jointly evolve over time across the
nodes of a network, it is often of interest to estimate how
they influence each other (Chiuso and Pillonetto, 2012).
In other words, one wishes to estimate the topology and
dynamics of the network from the observed signals.
In the case of linear dynamic networks with J nodes or
modules, the evolution of the signal wi at the ith node
over time t is modelled as (Shi et al., 2019; Van den Hof
et al., 2018)

wi(t) =
∑

j=1,j ̸=i

Gij(q)wj(t) +Hi(q)ei(t), (1)

where Gij denotes the transfer function of the module
connecting the jth node to the ith node, Hi denotes the
transfer function for the noise or innovation ei(t) at the
ith node with variance σ2

i , and q−1 denotes the unit delay
operation. By concatenating the signal equations at all the
J nodes, we have the complete model given by

w(t) = G(q)w(t) +H(q)e(t),

where G(i, j) = Gij and H = diag(H1, · · · ,HJ). The sys-
tem matrix G reflects the underlying topology (presence
or absence of connections) of the system: Gij ̸= 0 indicates
an edge going from node j to node i. Let us further assume
that the network is sparse in the number of edges (which
is typically the case in practical systems), and that the
generating dynamic process is stable.
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Then the model in (1) may be equivalently described in
the prediction error minimization framework (Van den Hof
et al., 2018; Zorzi and Chiuso, 2015) as

wi(t) = wi(t|t− 1) + ei(t),

where

wi(t|t− 1) =

J∑
j=1

+∞∑
k=1

θ
(k)
ij q−kwi(t) (2)

is the best one-step predictor of wi(t) given the past
data until time t − 1, where θ

(k)
ij denotes the kth impulse

response coefficient relating the signal at node j to that at
node i (Chiuso and Pillonetto, 2012). Collecting the signal
values at all the J nodes upto time t−1 in the vector ai(t),
and the corresponding impulse response coefficients in the
vector θi, the signal model at the ith node becomes

wi(t) = ai(t)
⊤θi + ei(t).

Since the network is sparse, θi is also sparse (block sparse,
more specifically): θ(k)ij = 0, ∀k if Gij = 0. Thus, learning
both the topology and dynamics of the underlying network
is equivalent to the estimation of the sparse θi for every
node. While different approaches have been pursued to
address this problem (Chiuso and Pillonetto, 2012; Jahan-
dari and Materassi, 2018; Shi et al., 2019) they typically
involve the estimation of hyperparameters or hyperpriors.
As a result, they become demanding both in the amount
of data and the computational complexity, specially when
one deals with networks of moderate sizes.
Our goal in this work is to develop a method that learns
a sparse linear dynamic network from the given network
data in a computationally efficient and hyperparameter-
free manner. We do this by building upon an iterative
tuning-free covariance-matching based sparse estimation
technique known as SPICE (Sparse Iterative Covariance
Estimation) (Stoica et al., 2011; Zachariah and Stoica,
2015) Specifically, the highlights of our method are as
follows:
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• No hyperparameter-tuning or cross-validation in-
volved unlike many approaches where the number of
hyperparameters scales linearly with the number of
nodes in the network

• Computational efficiency as a result of the parallel
structure and no hyperparameter tuning involved

• Minimal model assumptions since we do not assume
prior knowledge or structure on the predictor param-
eters

• Accomodates varying noise levels across nodes (Het-
eroscedastic noise) since our approach inherently
treats every node independently

1.1 Related Work

Various approaches have been considered in the estimation
of topology and dynamics in network systems. Frequency-
domain methods have been proposed for identification of
networks (Materassi and Innocenti, 2010; Shahrampour
and Preciado, 2015) Module-based analysis and charac-
terization of dynamic networks and conditions on identi-
ficability under diverse system conditions have been stud-
ied (Everitt et al., 2016; Gevers and Bazanella, 2015;
Hendrickx et al., 2019; Materassi and Salapaka, 2016;
Van den Hof et al., 2013; Van den Hof et al., 2012). Reg-
ularized regression approaches which leverage on model
sparsity have been explored(Bolstad et al., 2011; Jahandari
and Materassi, 2018; Materassi et al., 2013; Yuan and Lin,
2006). By modelling the transfer function parameters as
structured random variables, Bayesian approaches have
been also developed (Chiuso and Pillonetto, 2012; Everitt
et al., 2016; Everitt et al., 2018; Shi et al., 2019; Zorzi and
Chiuso, 2015). Among these, the works of (Chiuso and
Pillonetto, 2012) and (Shi et al., 2019) are the closest in
context to our contribution. However, unlike our approach,
these works involve computation of hyperparameters along
with the use of explicit prior structure. We note that one
of our motivations for using the SPICE framework comes
from the recent work of (Venkitaraman and Zachariah,
2019), which employs SPICE in estimating static sparse
partial correlation graphs from multivariate data.

2. THE LINEAR DYNAMIC NETWORK SYSTEM
MODEL

As noted in the Introduction, an equivalent model for (1)
in the prediction error minimization framework is given by

wi(t) = wi(t|t− 1) + ei(t),

where

wi(t|t− 1) =

J∑
j=1,j ̸=i

Gij(q)

Hi(q)
wj(t) + (1−Hi(q)

−1)wi(t),

is the best one-step predictor of wi(t) given the past data
until time t− 1. Then, by defining the impulse responses

(Gij(q)/Hi(q)) ,
+∞∑
k=1

θ
(k)
ij q−k

(1−Hi(q)
−1) ,

+∞∑
k=1

θ
(k)
ii q−k,

we arrive at the predictor form in (2). In practice, however,
one considers the finite-impulse response (FIR) approxi-
mation:

wi(t|t− 1) =

J∑
j=1

K∑
k=1

θ
(k)
ij q−kwi(t).

Notice that the summation over k is now over a finite
window of K delays or past samples. The larger the K,
better would be the model. Let wN

i denote the vector
containing N consecutive samples of wi from t to t +
N . Further, let us define the matrices Aj ∈ RN×K for
j = 1, · · · , J as

Aj =


wj(t− 1) wj(t− 2) · · ·wj(t−K + 1)
wj(t) wj(t− 2) · · ·wj(t−K)

...
...

...
wj(t+N − 1) wj(t+N − 2) · · ·wj(t+N −K)

 .

Then, we have that where

wN
i =

J∑
j=1

Ajθij + eNi

where θij = [θ
(1)
ij , · · · , θ(K)

ij ]⊤ ∈ RJK , and eNi denotes
the noise or innovation over the N time samples. Equiv-
alently, by defining Ai = [Ai · · · AJ ] ∈ RN×JK and
θi = [θi1 · · · θiJ ]⊤, we obtain the predictor model:

wN
i = Aiθi + eNi ,

where θi is sparse, since θij = 0 when there is no edge from
node j to node i.

3. LEARNING SPARSE LINEAR DYNAMIC
NETWORKS

Given the network system model, there are broadly two
ways of approaching the network estimation problem. The
first is to consider that the parameter θi is deterministic
and unknown. Then, one of the most natural methods
would be to solve

min

J∑
i=1

∥wN
i −Aiθi∥22 subject to ∥θi∥0 ≤ Ri ∀i (3)

where ∥∥0 denotes the ℓ0 (pseudo) norm which counts
the number of non-zeros in the argument. Such an ap-
proach requires specification of the upper bounds Ri, and
more importantly is an intractable combinatorial problem
(Donoho et al., 2006). Hence, various convex relaxations
of (3) are often used, such as the LASSO (least absolute
shrinkage and selection operator) (Tibshirani, 1994; Yuan
and Lin, 2006) which solve the following

min

J∑
i=1

∥wN
i −Aiθi∥22 +

∑
j

λij∥θij∥1

 (4)

where λij are the regularization hyperparameters corre-
sponding to the jth node for the estimation at the ith
node. We see that such approaches require cross validation
and the number of hyperparameters scale with the number
of nodes, if further simplifications such as assuming σ2

i to
be the same across nodes are not employed.
The second approach to solving the problem is to assume
that θi is a stochastic variable with a given prior and to
treat the estimation in a completely Bayesian setting with
hyperpriors or kernels. In such a case, it is usually assumed
that the prior on θij takes the form of kernels which
have their own hyperparameters. The optimal estimate
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is then obtained by maximizing the posterior probability.
For certain choice of the priors, the Bayesian estimation
becomes identical to solving (4). Nevertheless, one has
to still compute for the hyperparameters even in this
approach.
An alternative, which we pursue in this work, is to take
an intermediate path by assuming that θi for every i is
a random variable with expected value 0 and a diagonal
covariance, prior to observing the data at time t. More
precisely, we have

E(θi|t− 1) = 0, and Cov(θi|t− 1) = diag(Πi)

where Πi is the vector of variances of different components
of θi. Then, the optimal estimate maximum aposteriori
(MAP) estimate of θi is given by

θi = (A⊤
i Ai + σ2

i diag(Πi))
−1A⊤

i w
N
i .

Then, the hyperparameters Πi and σ2
i are estimated by

matching the posterior covariance of wN
i given by

Cov(wN
i |t− 1) = Aidiag(Πi)A

⊤
i + σ2

i diag(Πi),

with the sample covariance wN
i (wN

i )⊤. Such a covariance
-matching treatment is well studied in sparse estimation
problems. Further, the resulting estimation is known to
be equivalent to solving the weighted square root LASSO
(Belloni et al., 2011; Stoica et al., 2014):

min
θi

∥wN
i −Aiθi∥22 +

∑
j

∑
k

λjk|θ(k)ij |, (5)

where λjk is given by the ℓ2 norm of the jkth column of
Aj . This approach of sparse estimation through covariance
matching is known as SPICE (Sparse Iterative Covariance
Estimation).
Thus, we advocate the use of the SPICE framework for
learning sparse dynamic networks. As a result, our method
offers the desirable properties for the problem:

• it is free from hyperparameter tuning − the effective
hyperparameters are specific to the nodes and can
hence accommodate noise levels that vary from one
node to the other (heteroscedastic noise),

• it does not assume any explicit additional knowledge
or prior on the parameters,

• it is computationally efficient (scales as O(JK2N2))
and even allows for an online formulation (Zachariah
and Stoica, 2015), and lastly,

• the formulation makes no assumptions on the network
being directed or undirected.

3.1 On identifiability and uniqueness

We wish to highlight here that our approach estimates a
sparse dynamical network entirely in a data-driven way
from the given input and output data. As a result, a
possible short coming of our approach is that it is not guar-
anteed theoretically to converge to the true network de-
scription. Indeed, it is known that the same input-output
data may be associated with multiple network topologies
and apriori network specific information in the form of
identifiability conditions would be key in identifying the
true topology and dynamics exactly (Gevers et al., 2017;
Hayden et al., 2016; Weerts et al., 2018). We believe that
it should be possible to modify our approach to explicitly
incorporate apriori knowledge. This shall be the subject

of our future study. However, we also wish to point out
that our approach shows a promising performance in terms
of the true positive rate and false positive rate in the
numerical experiments which we have considered.

4. EXPERIMENTS

We next apply our approach to realistic dynamic network
data in two experiments. We consider the following data
generation strategy for both the experiments. We first
randomly generate graphs of size J = 8 at sparsity level
ρ = 0.25, that is, by considering that only 25% of the total
number of possible edges are non-zero in the graph. Having
generated the topology, we assign a transfer function over
each non-zero edge (i, j) randomly as follows:

• Experiment 1: Gij and His are FIR (finite impulse
response) filters of length K = 3, where the impulse
response taps are drawn randomly from the uniform
distribution over [0, 1] using the functions drss(·) and
that generates a random stable discrete state-space
system of a given order.

• Experiment 2: Gijs and His are randomly generated
stable rational functions with orders randomly chosen
between 1 to 5.

The variances σ2
i are drawn randomly from the uniform

distribution over [0, 1]. For a fixed instance of G, we
generate corresponding data as

w(t) = [I −G(q)]−1e(t)

where we consider only those realizations of transfer func-
tions that result in a stable [I −G(q)]−1.
We note that while θi estimated by our method will have
values very close to zero, they are never usually perfect
zeros. This is an observation we share with most sparse
estimation techniques. As a result, in order to get exact
zeros, one must specify a tolerance or threshold δ > 0
such that θj(hk) is set to zero if |θj(hk)| < δ. We note
here that the thresholding operation is not an inherent
part of our method, rather is typical to all graph/network
estimation methods–specially when topology identification
is the motive. In our experiments, we set δ = 10−1.
We measure the performance of our approach using three
different metrics: True positive rate (TPR) which is the
ratio of the edges rightly identified by the total number of
true edges, the false positive rate (FPR) which is the ratio
of the edges falsely identified to the ratio of zero-edges or
no-edges, and lastly the distance (dis) defined as

dis =
√

(FPR)2 + (1− TPR)2

which measures the deviation from the ground truth
or oracle estimation which produces no false edges and
identifies all existing edges. We wish to note here again
that in general it cannot be claimed that our estimate
will converge to the true underlying network dynamics.
Nevertheless, our goal here is investigate if our approach
produces a network estimate that approximates the true
network reasonably well.
In Figure 1(a), we show the performance of our approach
in terms of the three metrics as a function of the ratio
of the available datasamples N to JK (the dimension of
θi), averaged over all the J nodes and over 50 Monte-
Carlo simulations, for Experiment 1. We observe that as
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Fig. 1. Results for Experiment 1 (a) Performance, (b)
NMSE in the values of the filter taps (c) An instance
of the FIR filter taps estimated.

more data becomes available for estimation relative to the
number of unknowns, all three metrics improve: TPR gets
closer to unity, FPR closer to zero, and dis also tends to
zero as N is increased. In order to evaluate the closeness of
the estimated FIR taps with that of the ground truth, we
evaluate the NMSE in estimation of θj averaged over all
nodes, and over the Monte Carlo simulations. The NMSE
is shown in Figure 1(b) and shows that NMSE improves
progressively as N is increased from very small to large
values. Figure 1(c), we show an instance of the true FIR
impulse responses used to generate the data and those
estimated by our method for N = 1 × JK. We observe
that our estimates for the FIR dynamics almost coincide
with the ground-truth.
In Figure 2, we show the performance of our method
for Experiment 2 in terms of the three metrics as N is
increased. Once again, we observe the same trend that the
estimation improves in terms of all the three metrics as N
becomes large.

5. CONCLUSIONS

We proposed a computationally efficient and tuning-free
method for learning the topology and dynamics of a
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Fig. 2. Performance of our method for Experiment 2.
sparse linear dynamic system. We achieved this by building
upon the hyperparameter-free covariance matching frame-
work. Experiments with realistic linear dynamic systems
revealed that our approach results in superior topology
identification even with moderate number of available
data. A possible drawback of our approach is that it does
not currently guarantee the uniqueness of the estimated
network. Our future work will focus on how our approach
may be modified to incorporate identifiability conditions
explicitly.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

82



REFERENCES

Belloni, A., Chernozhukov, V., and Wang, L. (2011).
Square-root lasso: pivotal recovery of sparse signals via
conic programming. Biometrika, 791–806.

Bolstad, A., Van Veen, B.D., and Nowak, R. (2011).
Causal network inference via group sparse regulariza-
tion. Trans. Sig. Proc., 59(6), 2628–2641.

Chiuso, A. and Pillonetto, G. (2012). A bayesian approach
to sparse dynamic network identification. Automatica,
48(8), 1553–1565.

Donoho, D.L., Elad, M., and Temlyakov, V.N. (2006).
Stable recovery of sparse overcomplete representations
in the presence of noise. IEEE Trans. Inf. Theor., 52(1),
6–18.

Everitt, N., Bottegal, G., Rojas, C.R., and Hjalmarsson, H.
(2016). Identification of modules in dynamic networks:
An empirical bayes approach. In 2016 IEEE 55th
Conference on Decision and Control (CDC), 4612–4617.

Everitt, N., Bottegal, G., and Hjalmarsson, H. (2018). An
empirical bayes approach to identification of modules in
dynamic networks. Automatica, 91, 144 – 151.

Gevers, M. and Bazanella, A.S. (2015). Identification in
dynamic networks: Identifiability and experiment design
issues. In 2015 54th IEEE Conference on Decision and
Control (CDC), 4005–4010.

Gevers, M., Bazanella, A.S., and Parraga, A. (2017).
On the identifiability of dynamical networks. IFAC-
PapersOnLine, 50(1), 10580 – 10585. 20th IFAC World
Congress.

Hayden, D., Chang, Y.H., Goncalves, J., and Tom-
lin, C.J. (2016). Sparse network identifiability via
compressed sensing. Automatica, 68, 9 – 17. doi:
https://doi.org/10.1016/j.automatica.2016.01.008.

Hendrickx, J.M., Gevers, M., and Bazanella, A.S. (2019).
Identifiability of dynamical networks with partial node
measurements. IEEE Transactions on Automatic Con-
trol, 64(6), 2240–2253.

Jahandari, S. and Materassi, D. (2018). Topology identi-
fication of dynamical networks via compressive sensing.
IFAC-PapersOnLine, 51(15), 575 – 580.

Materassi, D. and Innocenti, G. (2010). Topological
identification in networks of dynamical systems. IEEE
Transactions on Automatic Control, 55(8), 1860–1871.

Materassi, D., Innocenti, G., Giarré, L., and Salapaka, M.
(2013). Model identification of a network as compressing
sensing. Systems & Control Letters, 62(8), 664 – 672.

Materassi, D. and Salapaka, M.V. (2016). Graphoid-based
methodologies in modeling, analysis, identification and
control of networks of dynamic systems. In 2016 Amer-
ican Control Conference (ACC), 4661–4675.

Shahrampour, S. and Preciado, V.M. (2015). Topology
identification of directed dynamical networks via power
spectral analysis. IEEE Transactions on Automatic
Control, 60(8), 2260–2265.

Shi, S., Bottegal, G., and Van den Hof, P.M.J.
(2019). Bayesian topology identification of linear
dynamic networks. CoRR, abs/1903.06205. URL
http://arxiv.org/abs/1903.06205.

Stoica, P., Babu, P., and Li, J. (2011). SPICE: A sparse
covariance-based estimation method for array process-
ing. IEEE Trans. Signal Processing, 59(2), 629–638.

Stoica, P., Zachariah, D., and Li, J. (2014). Weighted
SPICE: A unifying approach for hyperparameter-free

sparse estimation. Digital Signal Processing, 33, 1–12.
Tibshirani, R. (1994). Regression shrinkage and selection

via the lasso. Journal of the Royal Statistical Society,
Series B, 58, 267–288.

Van den Hof, Dankers, A., Heuberger, P.S., and Bombois,
X. (2013). Identification of dynamic models in complex
networks with prediction error methods—basic methods
for consistent module estimates. Automatica, 49(10),
2994 – 3006.

Van den Hof , P.M., Dankers, A.G., and Weerts, H.
(2018). Identification in dynamic networks. Computers
& Chemical Engineering, 109, 23 – 29.

Van den Hof, P.M.J., Dankers, A.G., Heuberger, P.S.C.,
and Bombois, X. (2012). Identification in dynamic
networks with known interconnection topology. In 2012
IEEE 51st IEEE Conference on Decision and Control
(CDC), 895–900.

Venkitaraman, A. and Zachariah, D. (2019). Learning
sparse graphs for prediction of multivariate data pro-
cesses. IEEE Signal Process. Lett., 26(3), 495–499.

Weerts, H.H., Van den Hof, P.M., and Dankers,
A.G. (2018). Identifiability of linear dynamic
networks. Automatica, 89, 247 – 258. doi:
https://doi.org/10.1016/j.automatica.2017.12.013.

Yuan, M. and Lin, Y. (2006). Model selection and
estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1), 49–67.

Zachariah, D. and Stoica, P. (2015). Online
hyperparameter-free sparse estimation method. IEEE
Trans. Signal Processing, 63(13), 3348–3359. doi:
10.1109/TSP.2015.2421472.

Zorzi, M. and Chiuso, A. (2015). A bayesian approach
to sparse plus low rank network identification. In 2015
54th IEEE Conference on Decision and Control (CDC),
7386–7391.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

83


