
Stereo Visual-Inertial Fusion for UAV State
Estimation

Jinyao Zhu ∗ Chao Yao ∗ Klaus Janschek ∗

∗ Institute of Automation, Technische Universität Dresden, Germany
(e-mail: jinyao.zhu@mailbox.tu-dresden.de, {chao.yao,

klaus.janschek}@tu-dresden.de)

Abstract: Visual-inertial fusion is frequently used for state estimation in aerial robotic
applications due to the low-cost, simple hardware setup as well as the high accuracy. This work
proposes a stereo visual-inertial fusion system based on the monocular method VINS-Mono,
which tightly combines the visual and inertial measurements. Timing statistics are provided
for the system running on an Intel NUC Mini-PC. The system real-time capability fulfills the
requirements of the closed-loop control for a UAV. The proposed fusion system is evaluated in
the public EuRoC MAV dataset and compared with several representative state-of-the-art open-
sourced state estimators. According to the results, our method achieves competitive performance
with relative low estimation errors in a computationally efficient manner.

Keywords: State Estimation, Sensor Fusion, Visual Inertial Odometry, Aerial Robot

1. INTRODUCTION

State estimation plays a significant role in the navigation
and control of aerial robotics. Because of the absence
of absolute positioning measurements such as GPS or
motion tracking system in some challenging environments,
state estimation is a difficult task for unmanned aerial
vehicles (UAVs). Dead reckoning based on the inertial
measurement unit (IMU) can provide a high sample rate
but suffers from accumulative integration error. On the
other hand, visual odometry (VO) can estimate the camera
motion with low drifts. Yet, only with low image update
rate and limited robustness, VO is usually not sufficient
for the low-level control of a UAV, which requires a high
update rate and smooth state feedback. It comes naturally
to combine both inertial and visual measurements in
the state estimation problem, thus compensate for the
drawback of each sensor. This type of system is named
visual-inertial odometry (VIO).

Depending on the camera setup, VIO systems are catego-
rized into monocular and stereo VIOs. In monocular case,
additional inertial measurement eliminates the scale am-
biguity of a pure mono VO system, hence forms a minimal
suite for metric scale 6D pose estimation. A benchmark
comparison of mono VIOs is provided by (Delmerico and
Scaramuzza, 2018). In monocular system, degenerated mo-
tion modes of the UAV such as pure rotation motion, or
hovering which causes the lack of visual cue parallax, can
introduce substantial uncertainties in the visual landmark
triangulation, thus easily lead to divergence of the sys-
tem state. Moreover, due to the lack of direct distance
measurement and prior scale information, mono system
usually needs rigorous system bootstrap process which
makes it more difficult to be applied to the UAV appli-
cations. Stereo VIO, on the other hand, overcomes above
problems by providing redundant visual sensing, thus can
triangulate 3D landmarks directly and is independent of

the UAV flight modes, making it more suitable for UAV
state estimation.

Several VIO frameworks with promising performance are
proposed in recent years: The open keyframe-based visual-
inertial SLAM (OKVIS) is an tightly-coupled optimization-
based visual-SLAM framework from (Leutenegger et al.,
2015), which is confirmed to have a relatively high compu-
tational cost both in (Delmerico and Scaramuzza, 2018)
and our tests. VINS-Mono (Qin et al., 2018) is also
a tightly-coupled optimization-based VIO framework. It
provides a robust initialization procedure that is able to
bootstrap the system from an unknown initial state. It in-
cludes re-localization and loop closure modules, which pro-
vides the possibility to achieve a drift-free pose estimation.
Since it only supports monocular cameras, VINS-Mono
could potentially suffer from the previously mentioned de-
generated motion modes. VINS-Fusion (Qin et al., 2019) is
an extension of VINS-Mono prepublished during the mid-
term progress of this work. The authors aim at providing a
general framework that supports multiple sensor combina-
tions. Multi-State Constraint Kalman Filter (MSCKF) for
vision-aided inertial navigation, which is tightly-coupled
and filter-based, is proposed by (Mourikis and Roume-
liotis, 2007). (Sun et al., 2018) presented a stereo im-
plementation based on MSCKF called S-MSCKF with a
noticeable small computational cost. However, according
to our practical tests of the open-sourced implementation,
the system states tend to become divergent in specific
motion modes such as pure-rotation or fast motion, and
reveals a relative inferior robustness in comparison to other
optimization-based framework.

To this end, we summarize our contributions as follows:

(1) We propose a stereo visual-inertial fusion system
based on the framework of VINS-Mono: We redesign
its image processing system front-end which supports

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9555



stereo camera while taking advantage of inertial mea-
surements. We introduce a stereo visual residual term
into the local bundle adjustment problem. We sim-
plify the initialization procedure by taking advantage
of the stereo visual measurement.

(2) The real-time capability is proved by providing timing
statistics of the proposed system recorded on an
Intel R© NUC computer.

The rest of the paper is structured as follows. Processing
steps of the visual-inertial fusion are introduced in Section
2. In Section 3, we present the experiment results of timing
statistics and accuracy evaluation. Finally, the paper is
concluded in Section 4.

2. SYSTEM DESIGN

2.1 Image Processing

Visual features are detected and tracked in the system
image processing front-end, then tracked stereo features
are published to the system back-end.

For feature detection, features in left images are detected
using the Shi-Tomasi Corner detector. The number of
features in each frame is limited by a maximum feature
number (typ. 100 – 200). The features are enforced to obey
a uniform distribution by setting circle mask around corner
with a minimum pixel distance. For feature tracking, the
pixel coordinates of each 2D feature on the latest left image
will firstly be predicted, using the IMU integration during
the update interval of consecutive image frames, to give a
good initial guess. The rotation of the body(IMU) frame
between two camera frames is calculated as

Bk

Bk+1
R =

∫ tk+1

tk

Bk
t R [ω̃b − bωb

]× dt (1)

with Bk
t R ∈ SO(3) being the rotation of the body frame

{B} at time t w.r.t. the body frame {Bk} which is at
time tk. ω̃b is the body angular velocity measured by
IMU, and bωb

is gyroscope bias. [v]× denotes the 3 × 3
screw-symmetric matrix from the 3D vector v. Under the
assumption that the angular velocity remains constant
during the IMU sampling interval [ti, ti+1], the rotation
between two IMU measurements can be modeled discretely
as (Forster et al., 2015):

Bk
ti+1

R ≈ Bk
ti R

(
I + [∆t (ω̃bi − bωb

)]×
)

(2)

where ti is the time index of the IMU measurement within
the camera sampling interval [tk, tk+1], and ∆t = ti+1− ti
is the IMU sampling time interval. Assuming the IMU is
synchronized with the camera, i.e. Bk

t0 R = I, then (1) can
be approximated using discrete inertial measurements:

Bk

Bk+1
R ≈

i=N−1∏
i=0

(
I + [∆t (ω̃bi − bωb

)]×
)

(3)

where N is the number of IMU measurements in [tk, tk+1].
The rotation of the camera is computed with

Ck+1

Ck
R = Cl

BR
Bk+1

Bk
R B

Cl
R = B

Cl
R> Bk

Bk+1
R> B

Cl
R (4)

with B
Cl
R being the relative rotation between the body

frame {B} and the left camera frame {Cl} w.r.t {B}.

Features from last image are projected onto the latest
image with the following equation (without considering
the relative translation):[

û
Ck+1

i

v̂
Ck+1

i

]
= πCl

(
Ck+1

Ck
R π−1

Cl

([
uCk
i

vCk
i

]))
(5)

where
[
uCk
i , vCk

i

]>
is the pixel coordinate of the i -th fea-

ture in image frame Ck, and
[
û
Ck+1

i , v̂
Ck+1

i

]>
is the corre-

sponding predicted location in image frame Ck+1. πCl
(·) is

the projection function of left camera which maps a point
from normalized image plane onto image plane.

Having prediction from IMU measurements, KLT algo-
rithm is then applied to refine the position of each feature
on the latest image: Two time-successive left images and
the pixel coordinates of each feature initialized with the
IMU prediction (5) are input to the KLT algorithm.

Subsequently, stereo matching is performed on the latest
stereo image pair to find the correspondences of the current
tracked features: Firstly, the features from the left image
are projected (ignoring the relative translation) onto the
right image with:[

ûCr
i

v̂Cr
i

]
= πCr

(
Cr

Cl
R π−1

Cl

([
uCl
i

vCl
i

]))
(6)

where
[
uCl
i , vCl

i

]>
and

[
ûCr
i , v̂Cr

i

]>
are pixel coordinates

of the i-th feature on the left image and its prediction on
the right image. Cr

Cl
R is the rotation matrix between the

left {Cl} and right camera {Cr} w.r.t. {Cr}.
Since prediction from (6) only compensates for the rota-
tion between the cameras, a relative large prediction error
may still exist, especially for the features in the near view.
In order to achieve a more precise prediction, an offset in
pixel coordinate is heuristically added to each predicted
position: [

u∆

v∆

]
= Ksd̄

(
CrtCl

‖CrtCl
‖

)
xy

(7)

where Ks is a heuristically selected proportional coeffi-
cient, d̄ is the average disparity computed from the tracked
features from the last stereo image pairs, and CrtCl

is
the translation between the left and right camera. (·)xy
indicates that only x, y components of the vector are used.
KLT algorithm is performed to refine the feature positions
on the right image, similar to that for the feature track-
ing on the left image, while treating the predicted right
position using (6) and (7) as the initial guess.

In addition, thresholding based on epipolar constraint is
performed between the left and right images for prelimi-
nary outlier rejection.

All features on the left and right images are undistorted
and projected onto the normalized image plane with

pCl
i = πCl

([
uCl
i

vCl
i

])
pCr
i = πCr

([
uCr
i

vCr
i

])
(8)

where pCl
i ,pCr

i ∈
{
R3|z = 1

}
are coordinates on the

normalized image plane of the left and right camera.
The essential matrix E between left and right camera is
computed with the camera extrinsic parameters:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9556



E =
[
CrtCl

]
×

Cr

Cl
R . (9)

The epipolar line lCr
i ∈ P2 (Hartley and Zisserman, 2004,

p.26) corresponding to the i -th feature in the right camera
is

lCr
i = EpCl

i . (10)

In ideal case, the corresponding feature seen by the right
camera will lie exactly on the epipolar line, such that

pCr
i

>
lCr
i = 0. In practice, due to noise or incorrect

matching, pCr
i probably locates outside of the epipolar

line. To quantify the error, the distance between point pCr
i

and line lCr
i is computed:

di = pCr
i

>
l̃Cr
i (11)

where l̃Cr
i is the epipolar line in normalized homogeneous

coordinate and can be computed with:

l̃Cr
i =

lCr
i√

a2 + b2
, with lCr

i = [a b c]
>
. (12)

Then di is converted into the pixel unit:

di,pixel = di · fCr
xy (13)

where fCr
xy =

fCr
x +fCr

y

2 is the averaged focal length factor
of the right camera.

Finally, each feature from the stereo matching is thresh-
olded with a given maximum pixel error:

di,pixel < dmax,pixel . (14)

Features that do not satisfy (14) will be marked as outliers.

To further remove outliers from the matched feature pairs,
fundamental matrix based RANSAC algorithm is per-
formed between the latest two time-successive left/right
image frames and the latest stereo pairs.

2.2 Optimization

Optimization system back-end subscribes stereo features
(expressed in normalized image plane) from system front-
end and performs joint optimization in sliding window
fashion.

Triangulation Tracked 2D features are triangulated with
Direct Linear Transformation (DLT) method to obtain
their corresponding 3D points. Let p,p′ be two 2D mea-
surements on the normalized image planes of two cameras
from the projection of a single 3D point p in a global
frame, which have p = Mp and p′ = M ′p, M ,M ′ are
the 3 × 4 projection matrices of the respective left/right
camera without considering the camera intrinsic, and all
points are expressed in homogeneous coordinates. These
two equations are combined into a form Ap = 0, and
A ∈ R4×4, such that:

A =


xm3> −m1>

ym3> −m2>

x′m′
3> −m′1>

y′m′
3> −m′2>

 (15)

where mi>,m′
i>

is the i-th row of M ,M ′, and p =

[x, y, 1]
>

, p′ = [x′, y′, 1]
>

. In case of multiple (n) obser-
vations of a feature, we combine all measurements and

solving the null space for
[
A>1 , · · · ,A>n

]>
p = 0 using SVD

which can achieve a more accurate triangulation result.

Bundle Adjustment Once a new frame of visual mea-
surement (tracked 3D features) is available, local bundle
adjustment (BA) is performed in sliding window fashion.

The system state vector is defined as

s =
[
x0,x1, · · · ,xN ,

B
Cl
x,BCr

x, λ0, λ1, · · · , λm−1

]
(16)

xk =
[
WtBk

,WvBk
,WBk
q , bak

, bωk

]
, k = 0, . . . , N (17)

with B
Cl
x =

[
BtCl

,BCl
q
]
, B
Cr
x =

[
BtCr ,

B
Cr
q
]

are extrinsic

parameter of the stereo camera. AtB ,AvB denote the
translation and velocity vectors of the origin of frame {A}
w.r.t. frame {B}. A

Bq is the unit quaternion corresponding
to the rotation matrix A

BR . bai
, bωi

are accelerometer and
gyroscope bias. λi is the inverse depth of the i -th feature
w.r.t. the coordinate frame of the left camera from its first
observation. N is the number of keyframes in the sliding
window, and m is the total number of features that can be
observed from the current sliding window.

The cost function for the local bundle adjustment is
defined similar to (Qin et al., 2018):

min
s

{
‖rM(s)‖2 +

∑
k∈B

∥∥∥rB (ẑBk

Bk+1
, s
)∥∥∥2

Ωimu

+
∑

(i,j)∈C,k∈F

ρ

(∥∥∥rC (ẑCli

k , ẑ
Crj

k , s
)∥∥∥2

Ωcam

)
(18)

where rM(·) is the prior information from marginalization
based on Schur complement and rB (·) is the IMU residual
from the set of all inertial measurements B in [tk, tk+1],
these terms are same as in VINS-Mono. rC (·) is the
visual measurement residual from set of all features F and
cameras C in current sliding window. And ‖·‖Ω denotes
the mahalanobis norm with the corresponding covariance
matrix Ω, ρ(·) denotes the Cauchy loss function which is
defined as

ρ(s) = log(1 + s) . (19)

IMU measurement residual is defined as

rB =


Bk

WR
(
∆Wt+ 1

2gW ∆t2k −WvBk
∆tk

)
− Bkα̂Bk+1

Bk

WR
(
WvBk+1

+ gW ∆tk −WvBk

)
− Bk β̂Bk+1

2
(
W
Bk
q−1 ⊗W

Bk+1
q ⊗ Bk

Bk+1
γ̂−1

)
xyz

∆ba
∆bω


(20)

where ∆x = xk+1 − xk. (·)xyz denotes the vector part of
a unit quaternion, and ⊗ the quaternion multiplication.
Bkα̂Bk+1

, Bk β̂Bk+1
, and Bk

Bk+1
γ̂ are preintegration terms

that directly computed from the IMU measurements fol-
lowing (Shen et al., 2015) to avoid the computationally
intensive re-propagation:

Bkα̂i+1 = Bkα̂i + Bk β̂i∆ti +
1

2
R
(
Bk
i γ̂

)
(ãbi − bak

) ∆t2i

(21)

Bk β̂i+1 = Bk β̂i + R
(
Bk
i γ̂

)
(ãbi − bak

) ∆ti (22)

Bk
i+1γ̂ = Bk

i γ̂ ⊗
[

1
1
2 (ω̃bi − bωk

) ∆ti

]
(23)

where i is the discrete time index of the IMU measure-
ments in the visual measurements update time interval
[tk, tk+1], R(·) denotes the operation that converts a unit

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9557



1

𝜆𝑘

{B𝑖}

{B𝑗}

{C𝑙𝑖}

{C𝑟𝑖} {C𝑙𝑗}

{C𝑟𝑗}

𝒑𝑘

measurement

re-projection
residual

Re-projection pathෝ𝒑𝑘

L

R L

R

Fig. 1. Re-projection error of the visual measurements.

quaternion into corresponding rotation matrix. ãbi and
ω̃bi are acceleration and angular velocity directly from the
IMU outputs at time ti.

Visual measurement residual is calculated with 2D mea-
surements from both the left and right cameras. Features
observed by i -th left camera are projected into the j -th
right camera. Figure 1 describes the re-projection process.
Assuming that the k-th feature is observed in i-th camera
frame, the residual of the feature in the j-th camera frame
is defined as:

rC

(
ẑCli

k , ẑ
Crj

k , s
)

=

(
p̂
Crj

k

p̂
Crj

k,z

− p̃
Crj

k

)
xy

(24)

p̃Cli

k = π−1
Cl

([
uCli

k

vCli

k

])
(25)

p̃
Crj

k = π−1
Cr

([
u
Crj

k

v
Crj

k

])
(26)

p̂
Crj

k = B
Cr
R >

(
W
Bj
R >

(
W
Bi
R

(
B
Cl
R

1

λk
p̃Cli

k + BtCl

)
+WtBi −WtBj

)
− BtCr

)
(27)

where p̃Cli

k ∈ R3 is the coordinates of the k-th feature
on the normalized image plane of the i -th left camera

directly from the visual measurement. Similarly, p̃
Crj

k is

the feature observed by j-th frame of right camera. p̂
Crj

k
is the predicted feature position in j-th right image based
on the visual measurement from i -th left image and the
system state.

2.3 Initialization

At system start up, the optimization framework needs an
initial guess of the state vector letting the system converge
into a correct state. When the number of sampled frames
reaches the sliding window’s size, all observed features are
triangulated using the methodology described in Section
2.2, using all stereo frames. Recovered 3D features which
can be seen by all camera frames in the sliding window are
projected onto each left camera’s normalized image plane,
the corresponding camera pose is then recovered using the
Perspective-n-Point (PnP) algorithm (Lepetit et al., 2009)
with RANSAC. With the recovered left camera poses, the
pose of IMU frame {Bk} are computed with:

Cl0

Bk
q = Cl0

Clk
q ⊗ B

Cl
q −1 (28)

Cl0tBk
= Cl0tClk

− Cl0

Bk
R BtCl

, k = 0, 1 . . . N. (29)

After recovering the coarse poses. We further estimate the
gyroscope bias using same formulations described in (Qin
et al., 2018).

In the next step, we estimate the velocity vectors in the
sliding window without accounting the metric scale, since
the scale information is already embedded in the stereo
visual measurements. It also implies that our system is
able to be initialized from a static state without any
specific sensor excitation movement which is required by
monocular systems. Moreover, the gravity vector is also
taken into account to give an initialization for the world
frame {W}. The parameter vector is defined as

sI =
[
v>B0

,v>B1
, · · · ,v>BN

,C0g>
]>

(30)

where C0g = Cl0g represents the gravity vector in {Cl0}.
vBi

are body velocities expressed in body frame {Bi}. The
measurement model is given by

αBk+1
= Bk

C0
R

(
C0∆tB +

1

2
C0g∆t2k −

C0

Bk
R vBk

∆tk

)
= Bk

C0
R C0∆tB − vBk

∆tk +
1

2
Bk

C0
R∆t2k

C0g

(31)

βBk+1
= Bk

C0
R
(
C0

Bk+1
RvBk+1

− C0

Bk
RvBk

+ C0g∆tk

)
= −vBk

+ Bk

C0
R C0

Bk+1
RvBk+1

+ Bk

C0
R∆tk

C0g
(32)

with C0∆tB = C0tBk+1
− C0tBk

. The left side of the
equations are the IMU preintegration terms that can be
computed directly with (21) and (22). Rewrite (31) and
(32) into the following form:

ẑBk

Bk+1
=

[
α̂Bk+1

− Bk

C0
R C0∆tB

β̂Bk+1

]
= HBk

Bk+1
sIk (33)

where

HBk

Bk+1
=

[
−I∆tk 0 1

2
Bk

C0
R∆t2k

−I Bk

C0
R C0

Bk+1
R Bk

C0
R∆tk

]
∈ R6×9 (34)

sIk =

 vBk

vBk+1
C0g

 ∈ R9×1. (35)

Thus, the least-squares problem is formulated as

min
sI

∑
k∈[0,N−1]

∥∥∥ẑBk

Bk+1
−HBk

Bk+1
sIk

∥∥∥2

. (36)

The rotation of the first left camera frame w.r.t. the world
frame W

Cl0
R , is computed, using Cl0g and Wg = [0 0 g]

>
,

with g the gravitational acceleration, and enforcing the
yaw angle to be zero. The poses and velocities of all body
frame {Bk} w.r.t. the world frame {W} in the sliding
windows can thus be recovered with W

Cl0
R and the results

from (28) and (29).

3. EXPERIMENT RESULTS

In the following experiments, we evaluate the processing
time of each module in our system on Intel R© NUC7i7DNB
computer with Linux Ubuntu and ROS. Futhermore, the
accuracy of our system is compared with selected state-of-
the-art VIOs. The configuration of the hardware platform
is listed in Table 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9558



Table 1. Configuration of the Intel R© NUC
computer used for the experiments.

Parameter Value

CPU
IntelR© Core i7-86500U
Quad-core @ 1.90GHz

RAM DDR4 SDRAM 16GB @ 2400MHz

Operating System Ubuntu 18.04 Bionic Beaver
ROS Version Melodic Morenia

3.1 Timing Statistics

The system front-end and back-end are separated in two
CPU threads as in VINS-Mono. Table 2 shows the average
time cost of each module in our proposed system running
on the Intel R© NUC computer. Camera update rate is set
to 25 Hz and IMU update rate 200 Hz. The maximum
feature number is 200. For local BA we use Gauss-Newton
algorithm in combination with Powell’s Dog-Leg method
based on Ceres Solver, the maximum number of iteration
is set to 5. Sliding window size for the state vector is set
to 10.

From the results, it can be seen that the dominant time
cost in the front-end is from the feature detection module
which costs ∼14 ms per frame. Therefore, we limited the
update rate of this module to 10 Hz to constraint the
computational load of the system front-end without losing
noticeable robustness and accuracy. The total front-end
thread costs about 20 ms on average, thus the camera
frame rate of 25 Hz can fulfill the real-time requirement
of the system. From further experiments, it was shown
that the feature tracking and matching modules can run
at up to 60 Hz (feature detection module remains at 10
Hz) which can potentially increase the system robustness.
However at this high update rate, we observed occasionally
a relative large lag in system back-end due to the high
CPU load, which, on the other hand, degrades the system
stability.

The system back-end is running at 10 Hz. The major time
costs are from the local BA and marginalization module
(only perform when a new keyframe is inserted into the
sliding window). The average time cost of the optimization
is about 37 ms.

Table 2. Timing statistics of the proposed VIO.

Module Avg. time [ms] Update rate [Hz]

Feature Tracking 6.49 25
Stereo Matching 5.12 25
Feature Detection 14.32 ∼10

Front-end Total 20 25

Triangulation 0.02 10
Local BA 26.81 10

Marginalization 21.74 -

Back-end Total 36.6 10

State vector estimated by the system back-end is updated
at 10 Hz, which is typically not sufficient for most of the
UAV control system. We, therefore, as in VINS-Mono,
forward propagate the most recent IMU measurement with
the latest estimated state to achieve a IMU-rate state
update.

3.2 Dataset Comparison

Our stereo visual-inertial fusion concept named VINS-
Stereo is evaluated using the public EuRoC MAV dataset 1

(Burri et al., 2016), and compared with other state-of-the-
art open-sourced VIO systems including VINS-Mono 2 ,
VINS-Fusion 3 , S-MSCKF 4 , and OKVIS 5 . Except for
VINS-Mono which is our base system, all candidates are
stereo VIOs. S-MSCKF and OKVIS failed due to the con-
tinuous inconsistency in brightness between stereo images
in V2 03 difficult. Therefore, V2 03 difficult sequence is
excluded here. For VINS-Mono, VINS-Fusion, S-MSCKF,
and OKVIS, default configurations/parameters proposed
by authors of the open-sourced implementations are used.
All systems are evaluated without loop closure module.

CPU Load Figure 2 collects the CPU utilization of
each algorithm throughout processing the MH 01 easy
sequence. The usage is represented as a percentage of a
single CPU core on the given platform (see Table 1). As
supposed, the filter-based S-MSCKF had the lowest CPU
utilization, while OKVIS was the most computational
intensive candidate as mentioned before. Our method
requires the lowest computing effort among the three
optimization-based stereo VIOs.

VINS Mono OKVIS VINS Stereo VINS Fusion S-MSCKF
0

50

100

150

200

250

C
P

U
U

sa
ge

[%
]

CPU Usage in MH01

Fig. 2. CPU utilization statistics in MH 01 easy.

8.0 16.0 24.0 32.0 40.0
Distance traveled [m]

0.00

0.25

0.50

0.75

1.00

T
ra

n
sl

at
io

n
er

ro
r

[m
]

Overall RPE

VINS Mono OKVIS VINS Stereo VINS Fusion S-MSCKF

8.0 16.0 24.0 32.0 40.0
Distance traveled [m]

0

2

4

6

Y
aw

er
ro

r
[d

eg
]

Fig. 3. Relative pose errors for the selected VIO pipelines
over all successfully finished dataset sequences.

1 http://robotics.ethz.ch/~asl-datasets
2 https://github.com/HKUST-Aerial-Robotics/VINS-Mono
3 https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
4 https://github.com/KumarRobotics/msckf_vio
5 https://github.com/ethz-asl/okvis

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9559



Table 3. Absolute trajectory errors for the se-
lected VIO pipelines in EuRoC dataset (RMSE
[m]). Blue bold marks the lowest error, black

bold marks the second-lowest.

Data
sequence

VINS-
Stereo

VINS-
Mono

VINS-
Fusion

S-MSCKF OKVIS

MH01 0.13 0.16 0.26 0.22 0.26
MH02 0.12 0.18 0.22 0.18 0.15
MH03 0.13 0.20 0.29 0.15 0.13
MH04 0.28 0.35 0.43 0.17 0.20
MH05 0.28 0.30 0.31 0.30 0.29
V1 01 0.05 0.09 0.12 0.07 0.04
V1 02 0.07 0.11 0.11 0.10 0.06
V1 03 0.13 0.19 0.13 0.28 0.11
V2 01 0.11 0.09 0.14 0.07 0.06
V2 02 0.13 0.16 0.12 0.15 0.08

mean 0.14 0.18 0.21 0.17 0.14

Based on the tool from (Zhang and Scaramuzza, 2018) we
evaluate our system in terms of Relative Pose Error and
Absolute Trajectory Error.

Relative Pose Error Is a metric focus on the local/short-
term accuracy, from all data sequences are summarized in
Figure 3. It can be seen from the box plots, OKVIS pro-
vided the best results. However, the cost for the accurate
estimations is the long per-frame processing time and high
CPU load (see Figure 2). Following OKVIS, VINS-Stereo
exhibited lower yaw error level than other candidates. In
terms of the translational error, our method is similar to
S-MSCKF and better than VINS-Mono and VINS-Fusion.

Absolute Trajectory Error Is usually used in VO/ VIO/
SLAM comparison to give an insight into the global con-
sistency of the system and the accumulated drifts on
the whole trajectory. We compared the absolute trajec-
tory errors for the selected systems in different sequences
of the EuRoC MAV dataset. Table 3 shows compre-
hensive test results of the algorithms in terms of the
root-mean-square error (RMSE). The numbers in blue
indicate the lowest values while the bold numbers are
the second-lowest. According to the results, our system
and the OKVIS performed better than others in most
cases. The estimations using the proposed fusion system
show the lowest or second-lowest RMSE except in the se-
quences MH 04 difficult, V2 01 easy, and V2 02 medium.
In terms of the average score in all sequences, VINS-Stereo
and OKVIS have same superior accuracy followed by S-
MSCKF with a gap of 3 cm. Considering OKVIS requires
much more computational resources, the proposed fusion
system is more efficient.

4. CONCLUSION

In this work, we present a stereo visual-inertial fusion
pipeline based on the framework of VINS-Mono, especially
for UAV state estimation. Timing statistics of individual
module is provided for the Intel R© NUC computer installed
on our drone. According to the experimental evaluations
carried out with the EuRoC MAV dataset, the proposed
approach shows competitive performance in most cases
in comparison with other state-of-the-art VIO algorithms
while keeping the computational cost at a relative low
level.

In the future, the system will be integrated into the UAV
control loop. Hardware acceleration for image processing
could be investigated as well. Furthermore, line features
are to be included to enhance the robustness in challenging
scenarios.

REFERENCES

Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J.,
Omari, S., Achtelik, M.W., and Siegwart, R. (2016).
The euroc micro aerial vehicle datasets. The Inter-
national Journal of Robotics Research. doi:10.1177/
0278364915620033.

Delmerico, J. and Scaramuzza, D. (2018). A bench-
mark comparison of monocular visual-inertial odometry
algorithms for flying robots. doi:10.1109/ICRA.2018.
8460664.

Forster, C., Carlone, L., Dellaert, F., and Scaramuzza,
D. (2015). On-manifold preintegration theory for
fast and accurate visual-inertial navigation. CoRR,
abs/1512.02363.

Hartley, R. and Zisserman, A. (2004). Multiple View
Geometry in Computer Vision. Cambridge University
Press.

Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). Epnp:
An accurate o(n) solution to the pnp problem. Inter-
national Journal of Computer Vision, 81. doi:10.1007/
s11263-008-0152-6.

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and
Furgale, P. (2015). Keyframe-based visualinertial odom-
etry using nonlinear optimization. The International
Journal of Robotics Research, 34(3), 314–334. doi:10.
1177/0278364914554813.

Mourikis, A.I. and Roumeliotis, S.I. (2007). A multi-state
constraint kalman filter for vision-aided inertial naviga-
tion. Proceedings 2007 IEEE International Conference
on Robotics and Automation, 3565–3572.

Qin, T., Li, P., and Shen, S. (2018). Vins-mono: A robust
and versatile monocular visual-inertial state estimator.
IEEE Transactions on Robotics, 34(4), 1004–1020. doi:
10.1109/TRO.2018.2853729.

Qin, T., Cao, S., Pan, J., and Shen, S. (2019). A general
optimization-based framework for global pose estima-
tion with multiple sensors. CoRR, abs/1901.03642.

Shen, S., Michael, N., and Kumar, V. (2015). Tightly-
coupled monocular visual-inertial fusion for autonomous
flight of rotorcraft mavs. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), 5303–
5310. doi:10.1109/ICRA.2015.7139939.

Sun, K., Mohta, K., Pfrommer, B., Watterson, M., Liu, S.,
Mulgaonkar, Y., Taylor, C.J., and Kumar, V. (2018).
Robust stereo visual inertial odometry for fast au-
tonomous flight. IEEE Robotics and Automation Let-
ters, 3(2), 965–972. doi:10.1109/LRA.2018.2793349.

Zhang, Z. and Scaramuzza, D. (2018). A tutorial on
quantitative trajectory evaluation for visual(-inertial)
odometry. In IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9560


