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Abstract: This paper addresses the problem of change detection for a quadcopter in the presence of
wind disturbances. Different aspects of the quadcopter dynamics and various flight conditions have been
investigated. First, the wind is modeled using the Dryden wind model as a sum of a low-frequent and a
turbulent part. Since the closed-loop control can compensate for system changes and disturbances and
the effect of the wind disturbance is significant, the residuals obtained from a standard simulation model
can be misleading. Instead, a sensor-to-sensor submodel of the quadcopter is selected to detect a change
in the payload using the Instrumental Variables (IV) cost function. It is shown that the mass variation
can be detected using the IV cost function in different flight scenarios.

Keywords: sensor-to-sensor model, change detection, quadcopter, instrumental variables.

1. INTRODUCTION

Autonomous aerial vehicles have gained a lot of attention from
commercial entities, researchers, and military in recent years.
This is due to the feasibility and maneuverability which make
the aerial vehicles useful for several applications in remote,
uncertain and hazardous environments (Mahony et al., 2012).
However, an unexpected change (fault) in the system can lead to
a complete breakdown (failure) (Marzat et al., 2012). To allow
the vehicle to continue its mission, it is therefore important
to identify these system faults as quickly as possible, which
increases the overall system reliability.

In general, system reliability can be improved using two op-
tions: hardware redundancy and analytical redundancy (Marzat
et al., 2012; Isermann, 2006). Hardware redundancy is a clas-
sical choice. The idea is that multiple sensors or actuators with
the same function are attached to the platforms. Even if this
technique is popular in the aerospace industry, it implies an ad-
ditional cost and increases the weight of the system. Also, some
process faults in the system will result in the same behaviors of
the sensors and actuators due to the closed-loop control. Hence,
there is a need to use the analytical redundancy, i.e., to exploit
the mathematical relations between measured and estimated
signals, to detect any possible system changes (Zhang and
Jiang, 2008). The resulting technique does not require adding
any additional components whereas it still offers a possibility
of change detection.

A model-based fault detection typically consists of three stages:
residual generation, residual evaluation and decision logic
(Zhang and Jiang, 2008). The residual generation uses a math-
ematical model of the system with the control input sent to the
actuators and the outputs measured by the sensors to predict
the behavior and to compare it with the actual behavior of
the system. The residual should be close to zero in fault-free
conditions and deviate from zero after a fault has occurred.
Multiple residuals can be used where each residual is sensitive
to a particular fault. When a residual corresponding to a fault

deviates from zero and beyond a threshold, a fault detection
test alerts that this fault has happened.

Various fault detection and isolation algorithms have been
proposed for quadcopters including extended Kalman filters
for sensors (Zhong et al., 2019) and actuators (Amoozgar
et al., 2013), a Thau observer (Freddi et al., 2012), a two-
stage estimation eXogenous Kalman filter (Hasan et al., 2019),
and neural networks for sensors (Aboutalebi et al., 2018) and
actuators (Abbaspour et al., 2017) and so on. In Zhong et al.
(2019) a two-stage extended Kalman filter approach based on
a nonlinear model has been proposed to estimate the bias fault,
drift fault and oscillatory fault in the Inertial Measurement Unit
(IMU) sensors. The actuator faults can be detected, isolated and
estimated using a linearized dynamic model of the quadcopter
around the trim condition (Hasan and Johansen, 2018).

If the quadcopter performs maneuvers indoors, the environmen-
tal factors, such as wind turbulence, have less effect on the
maneuvers of the quadcopter. However, quadcopters often carry
out the mission in situations where environmental disturbances
become dominant. Some efforts have been made to estimate
the wind vector (speed and direction) in real-time based on
measurement data from on-board sensors only (Neumann and
Bartholmai, 2015; Xiang et al., 2016; González-Rocha et al.,
2019). In this work, we will consider different flight conditions
where the wind has a strong influence on the quadcopter that
makes change detection harder. Note that we do not focus on
designing a filter to track changes in the quadcopter. The aim
is to present a reliable method to detect payload variations,
despite significant disturbances and closed-loop control. This
payload change can be estimated using an offline method (Ho
et al., 2017) where a sensor-to-sensor model was used. Here
it is shown that this model is also useful for change detection.
A common approach in the literature is to consider a complete
nonlinear or linearized model. However, simulations of such
models often give large residuals when there are significant
process disturbances, which can cause false alarms. Here, the
sensor-to-sensor model and an instrumental variables (IV) cost
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Figure 1. The inertial and body-fixed coordinate frames of the
quadcopter.

function are used to eliminate the effect of the disturbance
whereas a payload variation can be detected.

The remainder of the paper is organized as follows. Section 2
presents the kinematics and kinetics of the quadcopter. State
estimation and control design for the quadcopter are given
in Section 3. The proposed method for change detection is
presented in Section 4. The numerical study in Section 5 shows
the performance of the method under different flight conditions.
Section 6 contains some conclusions and future work.

2. QUADCOPTER MODELLING

First, a standard model for a quadcopter derived from Newton-
Euler equations is presented (Mahony et al., 2012). The model
consists of 12 state variables.

2.1 Kinematics

We consider a quadcopter as in Figure 1. The position of the
quadcopter in the inertial frame is defined as ξ = [x, y, z]T . The
Euler angles are η = [φ , θ , ψ]T where φ , θ and ψ are the roll,
pitch and yaw angles, respectively. In the body frame, the body-
fixed velocity vector is defined as VB = [u, v, w]T and the body-
fixed angular velocity as ω = [p, q, r]T .

The rotation matrix R(η) is given by

R(η) =

[CψCθ Cψ Sφ Sθ −Cφ Sψ Sφ Sψ +CφCψ Sθ

Cθ Sψ CφCψ +Sφ Sψ Sθ Cφ Sψ Sθ −Cψ Sφ

−Sθ Cθ Sφ CφCθ

]
(1)

in which Sφ = sinφ and Cφ = cosφ and describes the relation
from the translational velocities in the body-fixed frame VB to
those in the inertial frame ξ̇ as

ξ̇ = R(η)VB (2)
Further, the transformation matrix T (η) for angular velocities
from the inertial to the body-fixed frame is defined as

η̇ = T (η)ω (3)
where

T (η) =

[1 Sφ Tθ Cφ Tθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ

]
(4)

in which Tθ = tanθ .

2.2 Kinetics

For each rotor i ∈ [1, 2, 3, 4], the thrust is given by

Ti = kω
2
i (5)

where k is the thrust coefficient. Assuming that all rotors are
identical and with fixed pitch, the total thrust from the rotors
will be along the vertical direction in the body-fixed frame as

TB =

[Tx
Ty
Tz

]
=


0
0

k
4

∑
i=1

ω
2
i

 (6)

Another common assumption is that the quadcopter has a sym-
metric mechanical structure with four aligned arms. Therefore,
the torques around the body-fixed axes τφ , τθ and τψ are given
by

τB =

[
τφ

τθ

τψ

]
=

lk(ω2
1 −ω

2
2 −ω

2
3 +ω

2
4 )

lk(ω2
1 +ω

2
2 −ω

2
3 −ω

2
4 )

b(ω2
1 −ω

2
2 +ω

2
3 −ω

2
4 )

 (7)

where l is the distance from any rotor to the center of mass of
the quadcopter and b is the yaw torque coefficient.

By Newton’s second law, the total forces acting on the quad-
copter are equal to the quadcopter mass times its acceleration

m(V̇B +ω×VB) = mRT (η)gz +TB +Fd +Fw (8)
where m is the quadcopter mass and gz = [0, 0, g]T is the gravity
acceleration vector. TB, Fd and Fw represent the lift force (6), the
drag force and the external force due to wind, respectively.

Based on the symmetric structure assumption of the quadcopter,
the drag force is given by

Fd =−ΛVB =

[−λ1u
−λ1v
−λ2w

]
(9)

where Λ = diag([λ1, λ1, λ2]) is the drag coefficient matrix.
More precisely, the coefficient λ1 in (9) defines the drag forces
acting in the x−y plane of the body-fixed frame. The drag force
is mainly due to the interaction between the airflow and the
propellers (Mahony et al., 2012). Assuming that the chirp speed
of the propeller is much larger than the translational speed of the
quadcopter as well as the wind speed, the external forces due to
the wind can be modeled as

Fw =−ΛRT (η)Vw =−ΛRT (η)

[uw
vw
ww

]
(10)

where Vw = [uw, vw, ww]
T is the wind velocity in the inertial

frame.

Furthermore, the rigid body rotational equation of the quad-
copter can be derived as

Iω̇ +ω× (Iω) = τB−∆ω (11)
where ∆ = diag([∆1, ∆1, ∆2]) is the damping ratio matrix in the
rotation dynamics and the inertial matrix I is diagonal as

I =

[Ix 0 0
0 Iy 0
0 0 Iz

]
(12)

By rearranging (8) and (11), a 6 degrees of freedom model of a
quadcopter is obtained.

2.3 Wind model

In the following the wind velocity Vw is modeled as the sum of
a low frequent V l

w and a high frequency turbulent V h
w as

Vw =V l
w +V h

w (13)
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Figure 2. The overall closed-loop quadcopter system.

The low-frequent V l
w here is modeled as a constant whereas

the turbulent wind velocity V h
w is modeled by the Dryden wind

model as the output of a filter acting on white noise, see Beard
and McLain (2012) for fixed-wing vehicles and Tran et al.
(2015) for rotorcraft vehicles. The Dryden transfer functions
are given as

Hu(s) = σu

√
2Va

Lu

1
s+ Va

Lu

(14a)

Hv(s) = σv

√
3Va

Lv

s+ Va√
3Lv(

s+ Va
Lv

)2 (14b)

Hw(s) = σw

√
3Va

Lw

s+ Va√
3Lw(

s+ Va
Lw

)2 (14c)

where σu, σv and σw are the intensities of the turbulence along
the vehicle frame axes; Lu, Lv and Lw are spatial wavelengths
and Va is the airspeed of the vehicle in the stationary flight con-
dition. The turbulence intensities and scale lengths for heights
of less than 300m can be found using the ESDU data curves
(Tran et al., 2015; Howard, 2007).

3. STABILISATION OF THE QUADCOPTER

This section describes the state estimation and control needed
to stabilize the quadcopter.

3.1 Position control

Much work has been devoted to control design for quadcopters
(Zuo, 2010; Hua et al., 2013). Since the control design is not
the main goal of this paper, classical PID controllers are used
to stabilize the quadcopter. The control system is designed to
consist of two loops: an inner loop and an outer loop. The
inner loop is the orientation control while the outer loop is the
position control. The overall structure of the system is shown in
Figure 2.

For the position control loop, the measured position ξm of the
quadcopter in the inertial frame is obtained using a GPS system
as ξm = ξ when it flies outdoors. The position controllers use
the desired position ξre f and measured position ξm to compute
the desired accelerations ξ̈d = [ẍd , ÿd , z̈d ]

T .

The quadcopter is an under-actuated vehicle with only four
control variables to control six degrees of freedom. Hence, two
degrees of freedom are controlled implicitly using the system
dynamics. Using the desired accelerations ẍd , ÿd , z̈d as outputs
of the position loop, the desired roll and pitch angles as well as
the total thrust can be computed as (Zuo, 2010)

Tz = m
√

ẍ2
d + ÿ2

d +(z̈d +g)2 (15a)

φd = asin
ẍd sinψd− ÿd cosψd√

ẍ2
d + ÿ2

d +(z̈d +g)2
(15b)

θd = atan
ẍd cosψd + ÿdsinψd

z̈d +g
(15c)

where ψd is the desired yaw angle (course angle) obtained from
the trajectory generator. The desired angles ηre f = [φd ,θd ,ψd ]

T

are the reference of the orientation control loop.

3.2 Orientation control

The inner control loop in Figure 2 handles the roll, pitch and
yaw angles of the quadcopter. Assuming that a magnetometer
is used to measure the magnetic field, its measurements in the
body-fixed frame relate to the earth magnetic vectors m̊y (north-
south) and m̊z (down-up) in the inertial frame as[mx

my
mz

]
= R(η)

[ 0
m̊y
m̊z

]
(16)

From this the course angle ψ of the quadcopter can be obtained.

To estimate the roll and pitch angles, the inertial sensors,
such as accelerometers measuring accelerations and gyroscopes
measuring angular velocities in the body frame can be used.
The acceleration measurements are given by[ax

ay
az

]
=

1
m
(TB +Fd +Fw) =

1
m

[ −λ1(u+uBw)
−λ1(v+ vBw)

Tz−λ2(w+wBw)

]
+ ea (17)

where [uBw, vBw, wBw]
T is the wind velocities in the body-fixed

frame.

The angular velocity measurements are

ωm = ω + eω (18)

The accelerometer and gyro measurement noises ea and eω are
assumed to be zero-mean white Gaussian random variables.

Using these measurements, an approach to estimate, for exam-
ple the roll angle of the quadcopter is to use a complementary
filter as

φ̂ = H(z)φ̂g +L(z)φ̂a (19)

where H(z) and L(z) = 1−H(z) are high- and low-pass filters,
respectively. Here, φ̂g is obtained by integrating the roll rate
measurements numerically as

φ̂g = T ∑ pm (20)

where pm is the measured roll rate and T is the sampling time.

From (8) and (17), the estimate φ̂a is obtained by

φ̂a =−
ay− ˙̂VBy

g
(21)

where the estimated body-fixed velocities are obtained by

V̂B = RT (η̂)ξ̇m (22)

and ξ̇m is the linear velocities obtaining by computing the ap-
proximate derivative of the measured position ξm (Leishman
et al., 2014). Hence, the estimated Euler angles ηest are ob-
tained.
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4. METHOD FOR CHANGE DETECTION

Since our focus is on detecting payload changes on the quad-
copter under the effect of the environmental disturbances, two
models can be derived. The first model is a linearized six
degrees of freedom model which is commonly used to detect
various faults. The second model is a sensor-to-sensor model
where only the measurements from the IMU are used.

4.1 Six degrees of freedom model

Considering a quadcopter flying around the hovering condition
with small Euler angles θ and φ and Tz = mg, the rotation
matrix (1) can be simplified to

R(η) =

[cosψ −sinψ θ cosψ +φ sinψ

sinψ cosψ θ sinψ−φ cosψ

−θ φ 1

]
(23)

and the angular velocity transformation matrix (4) becomes

T (η) =

[1 0 θ

0 1 −φ

0 φ 1

]
(24)

The linearization of the translational model (8) is given as[ u̇
v̇
ẇ

]
=

1
m

([ 0
0
Tz

]
−

[
λ1(u+uw)
λ1(v+ vw)
λ2(w+ww)

])
+

[−gθ

gφ

g

]
(25)

Similarly, the rotational model (11) is linearized as

[ṗ
q̇
ṙ

]
=


1
Ix
(τφ −∆1 p)

1
Iy
(τθ −∆1q)

1
Iz
(τψ −∆2r)

 (26)

Hence, the simulated position and orientation can be obtained
as [xs

ys
zs

]
=
∫

R(η)

[ u̇
v̇
ẇ

]
dt,

[
φs
θs
ψs

]
=
∫

T (η)

[ṗ
q̇
ṙ

]
dt (27)

4.2 Sensor-to-sensor model

Given a linearized model (25) and (26) of the quadcopter,
described in the previous section, a state-space submodelφ̇

θ̇

u̇
v̇

=

0 0 0 0
0 0 0 0
0 −g −λ1/m 0
g 0 0 −λ1/m


φ

θ

u
v

+
pm

qm
0
0


[

âx
ây

]
=−λ1

m

[
u
v

] (28)

can be obtained where pm are qm are the measured roll and
pitch rates of the quadcopter, respectively. Hence, the prediction
errors of the linearized sensor-to-sensor model are

r1(t) = ax(t)−ϕ
T
x (t)ϑx (29a)

r2(t) = ay(t)−ϕ
T
y (t)ϑy (29b)

where ϕx(t) = [−ax(t−1),−ax(t−2), qm(t−2)]T and ϕy(t) =
[−ay(t−1),−ay(t−2),−pm(t−2)]T . ϑx =ϑy = [−2+ λ1

m T, 1−
λ1
m T, λ1

m gT 2].

Table 1. The quadcopter parameters

Parameters Symbol Value

Gravity acceleration g 9.81
Quadcopter mass m 0.5
Rotor distance l 0.5
Ix inertial Ix 0.002
Iy inertial Iy 0.002
Iz inertial Iz 0.005
Roll-pitch damping ∆1 0.002
Yaw damping ∆2 0.005
Horizontal drag λ1 0.36
Vertical drag λ2 0.6

Cost function with forgetting factor An approach to detect a
playload change based on the prediction error (29) is to consider
the instrumental variables (IV) cost functions as

JIV 1,2(t) =
∥∥∥ t

∑
i=t−Nw+1

λ
t−iZ(i)r1,2(i)

∥∥∥
2

(30)

where λ is a forgetting factor and Nw is the window length.
The instrument vector Zt = [−åx(t− 1),−åx(t− 2), q̊] for the
pitch rate longitudinal acceleration model is created using the
simulated signals åx and q̊ generated from the reference to
model equations.

5. RESULTS

All simulations have been performed using an ARDrone model
and an autopilot in Matlab/Simulink. The simulations were 120
seconds long with a sampling time of 0.005 s. The quadcopter
parameters are given in Table 1.

5.1 Simulation setup

In this simulation study, the aim is to study the possibility to
detect a change in the payload of the quadcopter under different
flight conditions. From the hovering position, the quadcopter
follows a square 8×8 m with a constant altitude of z = 8 m. To
excite the quadcopter for detection purposes, a speed profile is
also added to the square-shaped path along the x− y axes as
vx = vy = 0.5sin(2.51t)cos(3.14t)+0.5sin(3.14t)cos(4.19t)

+0.5sin(4.19t)cos(6.28t)
Since the quadcopter is flying at low altitude and in light
turbulence, we use the following Dryden gust model parameters

h = 8, Lu = 65.8567, Lv = 19.2356, Lw = 2.8,
σu = 1.1006, σv = 0.6576, σw = 0.4168

and the deterministic wind components occur only in x− y
directions as V l

wx = 1 and V l
wy =−1. Figure 4 shows an example

of the wind speed profiles.

The measurement accelerometer noise ea and gyro noise eω

are assumed to be zero-mean white Gaussian signals as ea ∼
N (0,10−6I3×3) and eω ∼N (0,10−12I3×3), where I3×3 is the
3×3 identity matrix (Amoozgar et al., 2013).

There are two flight scenarios: the first scenario is to keep the
course angle constant (ψ = 0) and the second flight scenario
is to change the quadcopter heading angle by 90◦ at some
occasions, see Figure 5. In both scenarios, the total mass of the
quadcopter increases linearly from m = 0.5 kg for t ≤ 40 s to
m = 1 kg for t ≥ 42 s.

The forgetting factor of the IV cost function (30) is chosen as
λ = 0.999 and the window length is Nw = 500. These factors
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Figure 3. The quadcopter position in one simulation.

Figure 4. The wind speeds in x, y and z directions used in
simulations of the quadcopter when it flies outdoors.

Figure 5. The quadcopter course angle ψ .

are tunable to cope with the separation between disturbances
and changes.

5.2 Change detection results

From Figure 6, the wind disturbances and the changes in the
course angle have strong impacts on the estimation of the Euler
angles in both flight scenarios when the linear model (25) – (27)
is used. The reason is that there is a coupling between roll, pitch
and yaw dynamics in (11). Moreover, due to the effect of wind,
using (27) directly gives a biased position of the quadcopter.

Figure 7 shows the residuals computed directly from the mea-
sured and simulated signals p, q, ax and ay obtained from the

Figure 6. The true and estimated position and orientation of the
quadcopter without and with changes in ψ on the left and
right subplots, respectively. The simulated position/orien-
tation are obtained from the linear model (25) – (27).

Figure 7. The residuals between the measured and simulated
signals p, q, ax and ay in case of the constant yaw angle
ψ = 0 when simulated signals are obtained from the 6
DOF nonlinear model without disturbances.

Figure 8. The residuals r1 and r2 (29) in x and y directions under
the effect of the wind and a change of the course angle.

6 DOF nonlinear model. Again, the mass change at t = 40 s
cannot be detected since its effect on the residual can be mixed
up with the wind.

The residuals r1 and r2 from (29) are shown in Figure 8 for
two scenarios: with and without a change in the course angle.
The mass is assumed to be changed from m = 0.5 kg for
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Figure 9. The criterion IV cost function JIV 1 (upper subplot)
and JIV 2 (lower subplot) under the effect of the wind and
without/with a change of the course angle.

t ≤ 40 s to m = 1 kg for t ≥ 42 s but this is difficult to detect
since the closed-loop control and disturbances hide the effect
of system changes. A better approach to detect the mass change
is to consider the IV cost functions (30), computed using the
parameter vectors ϑx and ϑy with m = 0.5 kg. In Figure 9, both
IV cost functions JIV 1,2 show a increase after t = 40 s due to a
change in the mass. It is obvious that the IV cost function is not
as sensitive to the wind and the course angle changes.

6. CONCLUSION

In this paper, different versions of the quadcopter models have
been investigated for detecting changes in mass under different
flight scenarios. Since some model residuals can be misleading
due to closed-loop control hiding system changes or to the
effects of disturbances, an IV cost function approach is pro-
posed based on a sensor-to-sensor linearized submodel of the
quadcopter.

It is shown in simulations that a payload change can be detected
using the IV cost function approach whereas the effects of the
mass variation in residuals obtained from a more complete six
DOF model can be mixed up with the wind.

Future work will involve integrating sensor and actuator faults
in the approach and testing the payload variations in outdoor
experiments.
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