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Abstract: In hyperthermia treatments, cancer tissue is heated to enhance the desired effects
of radio- and chemotherapies. A powerful technology for noninvasive feedback-controlled
hyperthermia is magnetic-resonance-guided high-intensity focused ultrasound (MR-HIFU),
which enables fast and millimeter-accurate heating inside the body. Electronic beam steering
allows for volumetric heating, but due to its limited steering range can only be used to treat
small tumors. For the treatment of larger tumors, the transducer itself must be mechanically
relocated as well. Due to system limitations, however, the admissible transducer positions must
be restricted to a finite set that is chosen a priori. Moreover, non-negligible time is needed for
transducer relocation, during which no heating is possible. In this paper, we present a mixed-
integer model predictive controller that simultaneously optimizes over the power deposition by
electronic beam steering – a continuous subproblem – as well as the mechanical transducer
motions – a discrete subproblem. By incorporating model knowledge of the tissue’s thermal
response and of the transducer carrier motion system into the predictive algorithm, the controller
optimizes treatment temperature while respecting temperature and actuation constraints. The
performance of the proposed feedback control setup is demonstrated by means of simulation.

Keywords: Model predictive control, mixed-integer programming, switched systems,
hyperthermia, cancer treatment, large-area high-intensity focused ultrasound.

1. INTRODUCTION

In mild local hyperthermia treatments, cancer tissue is
heated to temperatures around 42 ◦C for a duration of
approximately 90 minutes. In the past decades, abundant
clinical evidence has shown that mild hyperthermia acts
on both cellular and tissue level, enhancing the cancer-
killing effects of chemo- and radiotherapy, see Oei et al.
(2015); Datta et al. (2016); Issels et al. (2018) and the
references therein, for example. By locally heating only
the tumor (and possibly some surrounding tissue), while
avoiding temperature elevations in the remainder of the
body, the tumor is selectively sensitized compared to the
healthy tissue. Furthermore, using thermo-sensitive drug
carriers, local hyperthermia enables the targeted release of
anti-cancer drugs and improved tissue uptake specifically
in the tumor area (Hijnen et al. (2014); Staruch et al.
(2015)). Combined with the fact that hyperthermia itself
introduces no additional toxicity, it allows for improved
treatment outcome without increasing the undesirable
side effects typically associated with cancer treatment,
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made available by Top Sector Life Sciences & Health. This work is
also partially funded by the European Union via the IPaCT Project.

see Datta et al. (2015); Mallory et al. (2016). Therefore,
hyperthermia is considered to be an effective and valuable
addition to the existing cancer treatment modalities.

Controlling the target temperature in feedback can be
done by means of magnetic-resonance-guided high-intensity
focused ultrasound (MR-HIFU), where an MRI scanner
is used for near-real-time thermometry, and an acoustic
transducer generates ultrasound waves to locally deposit
heat inside the body, see Maloney and Hwang (2015);
Hynynen and Jones (2016). When an extracorporeal HIFU
transducer is used, both the measurement and the actu-
ation are completely noninvasive, which is highly desir-
able for patient comfort. Using a phased-array transducer,
modulating the acoustic driver signals allows for rapidly
moving the HIFU beam through the tumor. This is re-
ferred to as electronic beam steering, and enables powerful
volumetric heating with millimeter-range accuracy.

In Deenen et al. (2018); Sebeke et al. (2019), model predic-
tive control (MPC) has been successfully used to achieve
safe and optimal heating by electronic beam steering for
MR-HIFU hyperthermia. The key advantage of the devel-
oped MPC algorithms compared to other existing methods
(e.g., the binary controller in Partanen et al. (2012) or the
hybrid proportional-integral-derivative (PID) and bang-
bang controller in Bing et al. (2015)) is their ability to
explicitly take into account the tissue’s thermal dynamics
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and the system’s restrictive input constraints (such as the
inability to actively remove heat from inside the body)
when computing the desired heating input. Consequently,
more homogeneous and stable target region temperatures
can be achieved over a prolonged period of time.

Unfortunately, these MPC algorithms are currently only
applicable to small-size tumors. That is, the accuracy of
heating by HIFU using electronic beam steering comes
at the cost of severely limited range, which hampers the
treatment of larger tumors. To increase the treatable vol-
ume, the transducer itself can also be moved mechani-
cally, see Tillander et al. (2016). Due to MR thermometry
limitations, however, the admissible transducer positions
must be confined to a discrete set. Moreover, mechanically
relocating the transducer from one position to another
requires a significant amount of time, compared to the
sampling interval, during which no heating is possible. To
allow for MPC to also enable the optimal treatment of
larger tumors, the MPC designs that have previously been
used to improve small-area MR-HIFU hyperthermia must
be extended such that they can additionally take these
effects into account.

Therefore, as the first key contribution of this paper,
we develop a mixed-integer (MI-)MPC setup for large-
area MR-HIFU hyperthermia. Our approach is specifically
tailored to handle the switching of the transducer position
and the thereby induced actuator downtime in a compact
and systematic manner, leading to an efficient model (fit-
ting in the mixed logical dynamical (MLD) system frame-
work of Bemporad and Morari (1999)), that is directly
suitable for the formulation of a constrained mixed-integer
program (MIP). This MIP constitutes the core of our MI-
MPC setup. The proposed controller solves on-line the
constrained MIP, thereby simultaneously optimizing the
local heating profile generated by electronic beam steering
(while keeping the transducer stationary), which involves
continuous control input variables, as well as the range-
extending mechanical motion of the transducer to enable
heating different parts of a large tumor, which is a discrete
actuator allocation problem. When including the latter
subproblem in the control algorithm, MPC again offers
a major advantage over PID-based or binary controllers.
That is, using MPC we are able to account for the signifi-
cant transducer travel times when optimizing the trans-
ducer trajectory, which, due to the induced transducer
inactivity, have a crucial influence on the achievable tem-
perature distribution throughout the entire tumor. As the
second main contribution of this paper, we demonstrate
the performance of the novel control design by means of a
realistic simulation study.

The remainder of the paper is organized as follows. First,
the MR-HIFU hyperthermia setup and treatment are
discussed in Section 2. Then, in Section 3 the state-space
model describing the tissue’s thermal dynamics is derived,
where we pay specific attention to the manner in which
the transducer switching is incorporated. In Section 4,
we present the MI-MPC setup, for which we validate the
effectiveness in achieving accurate temperature control for
larger tumors in Section 5. Section 6 states the conclusions.

2. SYSTEM DESCRIPTION

In this section, we first discuss the MR-HIFU hyperther-
mia treatment setup, highlighting relevant aspects of the

Fig. 1. Philips 3T Achievar and Profound Sonallever MR-
HIFU therapy platform.

MR thermometry, and the heat delivery system consist-
ing of the HIFU transducer and its carrier system. The
latter enables the mechanical movement of the applicator.
Then, we briefly describe the objectives of a hyperthermia
treatment.

2.1 MR-HIFU hyperthermia therapy platform

Although the MPC setup developed in this paper is
generally applicable to any system that exhibits actuator
switches while the system dynamics remain unchanged,
in this work it is designed for an MR-HIFU system as
depicted in Fig. 1, consisting of the combination of a
Philips 3T Achievar MRI scanner used for near-real-time
thermometry, and a Profound Sonallever HIFU platform.
The latter is a dedicated trolley-tabletop in which an MR-
compatible HIFU transducer and its carrier system are
integrated, allowing for noninvasive heating of internal
tissue volumes. The combined setup is already being used
in clinics for the treatment of patients with uterine fibroids
and for palliative pain management in patients with bone
metastases.

2.2 MR thermometry

The thermal maps are obtained noninvasively using the
temperature-dependent proton resonance frequency shift
(PRFS) method, see Ishihara et al. (1995); Winter et al.
(2016). This provides the temperature change relative to
some baseline, by inspecting the difference of the current
MR image with respect to a reference image. Typically, the
reference is acquired before treatment when the treatment-
induced temperature elevation is known to be zero.

Although this is one of the best available measurement
technologies for image-guided hyperthermia feedback con-
trol, as argued in Quesson et al. (2000); Rieke and Butts
Pauly (2008); Hynynen and Jones (2016), it is sensitive
to modifications in the magnetic field. One source that
can lead to significant distortion of the magnetic field
is the transducer itself, even when it consists of non-
ferromagnetic material. As a result, for accurate PRFS-
based MR thermometry given a certain transducer po-
sition, a baseline image is required which was obtained
with the transducer in the same position. Therefore, we
constrain the admissible mechanical transducer positions
to a predefined discrete set, such that we can obtain a
reference image for each location before treatment, and
use a lookup table to select the correct reference image for
relative thermometry during treatment.
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Fig. 2. Schematic of HIFU beam into focal plane in tumor
area, with focal point by electronic beam steering.

2.3 HIFU transducer

The Sonalleve contains a phased-array HIFU transducer
consisting of 256 acoustic elements, each of which is able to
generate high-intensity ultrasound waves. By coordinated
phase and amplitude shifts of the individual elements,
referred to as electronic beam steering, a focal spot with
variable position can be created at which the acoustic
energy is highest, see Fig. 2. The power deposition profile
is relatively large in the beam’s axial direction, but narrow
in radial direction. Consequently, the resulting volumetric
temperature distribution is fairly uniform along the beam
axis (sufficiently near the focal plane), meaning volumetric
heating of the target tissue can be achieved by setting
the focal plane halfway the target volume and controlling
only the in-plane temperature distribution. Therefore, in
this paper we consider temperature control in the two-
dimensional focal plane only.

For a fixed transducer position, the treatable region within
the range of electronic beam steering is referred to as a
treatment cell. Using electronic beam steering, the focal
spot can rapidly be scanned through the cell area, ef-
fectively allowing for temporally quasi-continuous heating
of the tissue inside the cell. For lateral beam deflections
larger than approximately 8 mm from the transducer axis,
the focus quality significantly deteriorates. Consequently,
a treatment cell cannot be larger than a 16 mm diameter
circle.

The HIFU transducer is carried by a robot arm, which is
also embedded in the MR-HIFU treatment table. Using
the robot arm to mechanically displace the transducer
allows for the heating of multiple cells, thereby increas-
ing the treatable target size. Due to the aforementioned
limitations of MR thermometry, the number of admissible
treatment cell locations is finite, and they must be chosen
before treatment. Moreover, once a transducer motion is
initiated, it must be completed. In this paper, we desire
to heat the region of interest (ROI) R depicted in Fig. 3
using the Nq = 4 treatment cells also indicated in the
figure. Here, the cell locations are chosen manually for
simplicity. As future work, this may be optimized for
improved control performance.

2.4 Hyperthermia treatment

The main goal in a hyperthermia treatment is to maintain
a controlled and homogeneous temperature elevation in
the ROI R. The heat-induced tissue sensitization is trig-
gered at temperatures around 41 ◦C, which is why the
healthy tissue outside S in Fig. 3 will be safeguarded
against temperatures above 40 ◦C. Optimal treatment
quality is achieved at 42 ◦C in the ROI, while overheating
above 43 ◦C reduces the beneficial heat-induced effects and
should therefore be avoided.
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Fig. 3. The distribution of the sonication points (•) of
the four treatment cells, for which the center (×) and
electronic beam steering range (circles) are indicated,
over a large ROI R. The tissue outside S must be
safeguarded against overheating.

3. MIXED-INTEGER MODELING

This section discusses the state-space model describing the
tissue’s thermal dynamics, in which we incorporate the
transducer switching in a compact and intuitive manner
specifically designed to obtain a small-size MLD model
that is directly suitable to incorporate in a MIP.

3.1 Transducer switching

In our modeling approach, we need only define the opera-
tional actuator modes

q ∈ Q = {1, . . . , Nq}, (1)

where Nq is the number of treatment cells. In Fig. 3,
we have Nq = 4. Contrary to using a lifting approach
(Subramanian et al. (2012)), which results in a constrained
switched linear system (Philippe et al. (2016)), using our
approach we need no additional “inactive” modes to model
the actuator downtime during transducer switching. In-
stead, we will incorporate this behavior using systemati-
cally derived inequality constraints, resulting in a signif-
icantly more compact model. These constraints will be
based on σk ∈ Q, which denotes the desired (operational)
actuator mode, i.e., the actuator mode which the system is
in or towards which it is transitioning, at some time instant
k ∈ N. The time instant k connects to real time tk = kTs,
where Ts = 3.2 s denotes the sample time that follows from
the MR thermometry protocol. Note that σk effectively
lumps together two “transducer states” (moving towards
and being at a cell), which is instrumental in facilitating
the reduced-complexity system description. Furthermore,
to describe the cell-to-cell travel times using our approach,
we need only conveniently specify the so-called setup time
matrix, which for the example in Fig. 3 reads

S =







0 1 2 3
1 0 1 3
2 1 0 2
3 3 2 0






, (2)

of which the elements sqq̃ correspond to the travel time
from cell q to q̃, for any q, q̃ ∈ Q. Since staying in a cell
requires no movement and thus no travel time, we have
sqq = 0 for all q ∈ Q. Moreover, S = S⊤ in (2) since in
the considered MR-HIFU system the travel times do not
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depend on the relative direction of motion. Note, however,
that our modeling approach can also be used if S is not
symmetric.

3.2 Thermal state-space model

To model the tissue’s thermal dynamics, we follow a
procedure similar to Deenen et al. (2018). In summary,
this entails first describing the underlying physical system
using the Pennes bioheat equation (Pennes (1948)) and
then spatially discretizing this partial differential equation
on a two-dimensional square grid with 2.25 × 2.25 mm2

voxels (depicted in Fig. 3 by the grid lines) using the
central difference scheme, which in Sebeke et al. (2019)
was verified to be the method that best balances model
simplicity with descriptive accuracy. Finally, the model is
temporally discretized using the forward Euler method,
which preserves model sparseness, while providing suffi-
cient accuracy for the considered system.

The resulting discrete-time state-space model is given by

xk+1 = Axk +Buk, (3a)

yk = xk + vk, (3b)

where the states xk ∈ R
nx , nx = 362 = 1296, represent the

temperature elevations with respect to the baseline of the
voxels in the focal plane. The matrix A has the form of a
2D discrete Laplacian matrix, capturing the effects of heat
transfer by conduction and by blood perfusion. The voxels
are chosen such that their centers coincide with the points
measured by MR thermometry, resulting in full state
measurements yk ∈ R

nx corrupted by MR measurement
noise vk ∈ R

nx , which can be well approximated by zero-
mean Gaussian noise with a standard deviation of 0.4 ◦C.
Per treatment cell q ∈ Q, we use nq

u = 20 voxels at
the centers of which we allow sonication by appropriate
steering of the focal spot. These locations are referred to
as sonication points, which are also shown in Fig. 3 by

the markers ‘•’. The modal input uq
k ∈ R

nq
u

≥0 describes the
average sonication power applied at each of the sonication
points in cell q ∈ Q over the course of one sampling
interval. The modal inputs are collected in the input vector

uk =







u1
k
...

u
Nq

k






∈ R

nu

≥0, (4)

where nu =
∑

q∈Q nq
u = 80. Accordingly, the input matrix

is given by

B =
[

B1 · · · BNq
]

∈ R
nx×nu , (5)

where each submatrix Bq ∈ R
nx×nq

u describes the system’s
thermal response to the heating power uq

k at the sonication
points in the corresponding cell q ∈ Q.

3.3 Mixed-integer linear input constraints

First, for compatibility with the MLD modeling frame-
work, let us formalize the nonnegativity of the heating
inputs in (4) using the element-wise inequality

0nu
≤ uk, for all k ∈ N, (6)

where 0nu
denotes the zero vector of length nu. Next, to

describe that heating is only possible in the cell corre-
sponding to the current transducer position, and impos-
sible during transducer motion, we use inequality con-

straints on the input uk that also involve logical variables.
To this end, let us introduce the Boolean activation signal

δk =







δ1k
...

δ
Nq

k






∈ {0, 1}Nq , (7a)

where

δqk =

{

1, if σk = q,
0, otherwise,

(7b)

for all q ∈ Q, i.e., δqk = 1 if at time k ∈ N the transducer
is at or traveling towards location q ∈ Q (indicated by
σk = q), and δqk = 0 otherwise. This results in the identity

∑

q∈Q

δqk = 1. (8)

As previously mentioned, using our new modeling ap-
proach we do not need to introduce any additional aux-
iliary variables to explicitly describe the transducer in-
activity during relocation. Instead, we infer whether the
transducer is moving at time k using the information
in S (2) in relation to the current and past activation
signal values δk−τ (which are directly related to σk−τ ),
τ = 0, . . . , s, where s = min{k,maxq,q̃∈Q sqq̃} denotes the
largest occurring setup time specified in S (upper bounded
by k). The Nq(s + 1) input constraints that capture the
transducer switching are then given by

INqnu
uk ≤ uΣδk, (9a)

INqnu
uk ≤ uΣS

⊤
τ δk−τ , τ = 1, . . . , s, (9b)

for all k ∈ N, where uΣ = 100W is the maximum allowable
sonication power delivered during one sampling period, the
matrices

Sτ =







sτ,11 · · · sτ,1Nq

...
. . .

...
sτ,Nq1 · · · sτ,NqNq






∈ {0, 1}Nq×Nq , (10a)

follow uniquely from S in (2) according to

sτ,qq̃ =

{

1, if sqq̃ < τ,
0, otherwise,

(10b)

and INqnu
represents the block diagonal matrix

INqnu
=









1⊤n1
u

. . .

1⊤
n
Nq
u









∈ {0, 1}Nq×nu , (11)

such that INqnu
uk is a vector of length Nq of which the

q-th element 1⊤
n
q
u
uq
k describes the total input power in

cell q ∈ Q. Since each individual input element must
be nonnegative by (6), constraining a cell’s total input
power in (9) to zero effectively disables all heating in
that cell. To further clarify the working principle of the
inequality constraints (9), let us consider the following
example related to Fig. 3.

Example 1. Consider the input u1
K corresponding to cell

q = 1 at some time K ∈ N≥3. Using S in (2), we compute
the matrices Sτ , τ = 1, 2, 3, as in (10) to be

S1 = I4, S2 =







1 1 0 0
1 1 1 0
0 1 1 0
0 0 0 0






, S3 =







1 1 1 0
1 1 1 0
1 1 1 1
0 0 1 0






. (12)

Then, by the inequality constraints (9), combined with the
nonnegativity constraints (6), heating in cell 1 can occur
only if it holds that
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δK = δK−1 =







1
0
0
0






, δK−2 ∈

















1
0
0
0






,







0
1
0
0

















,

δK−3 ∈

















1
0
0
0






,







0
1
0
0






,







0
0
1
0

















.

(13)

Note that (13) includes all sequences that allow for heating
in cell 1 according to the travel times in S (2). In
particular, (13) contains the cases that the transducer was:

• at or traveling towards cell 1 at all times k = K −
3, . . . ,K, which combined with the largest travel time
towards cell 1 being 3 samples, see (2), guarantees
that the transducer is at cell 1 at time K at the latest;

• at or traveling towards cell 2 until time K − 2 at the
latest, then traveling towards cell 1 at time K − 1,
which by (2) requires 1 sample, and thus is at cell 1
at time K;

• at or traveling towards cell 3 until time K − 3 at the
latest, then traveling towards cell 1 at times k = K−
2,K− 1, which by (2) requires 2 samples, and thus is
at cell 1 at time K.

The cases listed in Example 1 describe all activation signal
sequences δ[K−3,K] = (δK−3, . . . , δK) that are admissible,
i.e., correspond to a physically realizable transducer path,
and that allow for nonzero heating in cell 1 at time K.
However, the inequalities (9) also allow for spurious se-
quences δ[K−3,K] that do not describe a realizable trajec-
tory, as can be seen from the combinations in (13) that
do not correspond to one of the listed cases. The most
obvious example is when no heating is required at some
time K ∈ N≥3, i.e., uK = 0, by which the values δk,
k = K − 3, . . . ,K, may differ at each time instant. Such
sequences are undesirable, because they do not show, in
an unambiguous manner, which cell the transducer should
be at or traveling towards, and consequently cannot be
used directly for mechanical transducer steering. Using
our modeling approach, however, we need not introduce
additional constraints to ensure admissibility of δ[0,K], the
derivation of which is not straightforward, but instead we
use the procedure presented in the next subsection.

3.4 Admissibility assurance

First, note that (9) correctly constrains the control inputs
in relation to all admissible transducer paths. Secondly,
given any feasible pair (δ̃[0,K],u[0,K]), i.e., where δ̃[0,K]

and u[0,K] = (u0, . . . , uK) satisfy the inequalities (9) for all
k ∈ N[0,K], we can construct a (possibly different) sequence
δ[0,K] that is admissible and that renders (δ[0,K],u[0,K])
feasible. In particular, one such (alternative) δ[0,K] follows

from a feasible pair (δ̃[0,K],u[0,K]) according to

δk =







δ̃k, if uk 6= 0,

δ̃L+(k), if uk = 0 and L+(k) ∈ N[k+1,K],

δ̃L
−
(k), if uk = 0 and L+(k) /∈ N[k+1,K],

(14a)

for all k ∈ N[0,K], where

L+(k) = inf{l ∈ N[k+1,K] | ul 6= 0}, (14b)

L−(k) = max{l ∈ N[0,k−1] | (ul 6= 0 or l = 0)}, (14c)

which we refer to as the admissibility assurance. This
is a computationally fast procedure, which effectively

constructs the admissible transducer path that enables
the heating described by u[0,K] while switching as little
and as early as possible. Hence, after first solving an MI-
MPC optimization problem that includes the inequality
constraints (6) and (9) to find an optimizing feasible

pair (δ̃[0,K],u[0,K]), we can use (14) to swiftly obtain
the admissible activation signal sequence corresponding
to u[0,K] to be used for the mechanical steering of the
transducer.

4. MIXED-INTEGER MPC

In this section, we first state the controller and observer
models. Then, we translate the MR-HIFU hyperthermia
treatment objectives into a cost function and a set of con-
straints, which together with the admissibility assurance
constitute our MI-MPC setup.

4.1 Controller and observer models

The MPC prediction model is given by

xi+1|k = Axi|k +Bui|k, (15)

where xi|k ∈ R
nx and ui|k ∈ R

nu denote the predicted
states and inputs, respectively, at i ∈ N time steps ahead
of the prediction sequence’s starting time k ∈ N. Although
model uncertainty in (3) is typically inevitable in practice,
for the scope of this work a deterministic approach suffices.
For an indication of the influence of model error on control
performance for small-size tumors, see Sebeke et al. (2019).
As future work, the algorithm developed here may be
adapted to be more robust, for example using an offset-free
implementation such as proposed in Deenen et al. (2018)
for single-cell MR-HIFU hyperthermia.

To obtain improved temperature estimates with respect to
the noise-corrupted MR thermometry readings, we design
a Luenberger-type observer given by

x̂k = Ax̂k−1 +Buk−1 + L(yk − ŷ−k ), (16a)

where
ŷ−k = Ax̂k−1 +Buk−1 (16b)

denotes the model-based measurement estimate at time k
before applying the correction by output injection to ob-
tain x̂k. The observer gain matrix is given by L = 0.25Inx

,
which yields a stable estimator, and has been tuned in
simulation to achieve desirable convergence properties.

4.2 Optimization problem

The temperature objectives are schematically depicted in
Fig. 4 in cross-section perspective. We use Ω ⊂ R

2 to
denote the patient domain in the focal plane. Tr : R →
R represents the optimal ROI treatment temperature.
T : Ω → R is the location-dependent desired upper
temperature bound, which describes the fact that heating
the ROI above 43 ◦C reduces the beneficial hyperthermia-
induced effects, and that the region Ω \ S should not
be heated above 40 ◦C to avoid sensitization of healthy
tissue. To translate these objectives to the state of (3),
let us denote the states corresponding to points within
R by zk = Hxk ∈ R

nz , where nz < nx and H ∈
{0, 1}nz×nx is a matrix with exactly one 1 in each row
(and at most one 1 per column). Also, let zr ∈ R

nz

and x ∈ R
nx denote the voxel-wise temperature elevation

reference and upper bound corresponding to the values
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Fig. 4. Schematic cross-section of the temperature ob-
jectives corresponding to R and S. The maximum
violation ǫ is shown for some overheated temperature
distribution T1 such that T1 ≤ T + ǫ.

of Tr and T , respectively. The maximum violation of the
upper temperature bound can then be described by the
slack variable ǫk = ǫ(xk) = ‖max{xk − x, 0nx

}‖∞ ∈ R≥0,
where 0nx

denotes a zero-vector of length nx and the
maximum operator is used element-wise.

The optimization problem is then given by

min
δk,uk

N
∑

i=0

(zi|k − zr)
⊤Q(zi|k − zr) + fǫǫi|k, (17a)

subject to

xi+1|k = Axi|k +Bui|k, ∀ i ∈ N[0,N−1], (17b)

x0|k = x̂k, (17c)

xi|k ≤ x+ 1nx
ǫi|k, ∀ i ∈ N[0,N ], (17d)

0 ≤ ǫi|k, ∀ i ∈ N[0,N ], (17e)

0nu
≤ ui|k ≤ 1nu

u, ∀ i ∈ N[0,N−1], (17f)

INqnu
ui|k ≤ uΣδi|k, ∀ i ∈ N[0,N−1], (17g)

INqnu
ui|k ≤ uΣS

⊤
τ δi−τ |k,

{

∀ τ ∈ N[1,s],

∀ i ∈ N[0,N−1].
(17h)

The cost function (17a) over a horizon N = 8, where uk =
(u0|k, . . . , uN−1|k) and δk = (δ0|k, . . . , δN−1|k) denote the
predicted input and activation signal sequences starting at
time k, contains a tracking term to steer the ROI states zk
towards zr, and a cost on ǫi|k to incorporate the desired
upper temperature bound as a soft constraint. The weights
are chosen as

Q =
1

nz

Inz
, fǫ = 10, (17i)

which are normalized with respect to the number of
weighted variables for more intuitive tuning. The relative
weighting by fǫ exceeds that of Q, since overheating is
detrimental to treatment quality and hence its prevention
is prioritized. The equality constraints (17b) capture the
system dynamics in (15), with the initial condition given
by (17c) determined by the observer (16). The inequality
(17d) describes the upper bound in the form of a soft
constraint, for which the slack variable ǫi|k is restricted
to be nonnegative by (17e). The power constraints on
the individual sonication points are given by (17f), which
in addition to the nonnegativity constraint (6) describe
an upper power limit of u = 15 W per sonication point
for safety. Finally, the inequalities (17g)-(17h) incorporate
the mode and setup time constraints (9), where in (17h)
δi−τ |k = δk+i−τ for i < τ , as determined by the system’s
actuator path prior to the optimization at time k.
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Fig. 5. The mean (solid) and maximum/minimum
(dashed) temperature inside the ROI R of the plant
(black) and as estimated by the observer (gray).

Let (δ̃∗k,u
∗
k) denote the pair of optimal activation signal

and control input sequences found by solving (17) at time
k given x̂k. As previously discussed, the mode and setup
time constraints (17g)-(17h) ensure that the optimized
input sequence u∗

k corresponds to a physically realizable

transducer trajectory, but that δ̃∗k may not. Therefore, we

feed the solution (δ̃∗k,u
∗
k) to the admissibility assurance

(14), from which we obtain an admissible sequence δ∗k
that also satisfies (17g)-(17h). Now, note that the pair
(δ∗k,u

∗
k) also minimizes (17), since u∗

k is unaltered and
(17a) contains no explicit cost on δk, and hence is an
optimal admissible solution for the MI-MPC setup.

5. PERFORMANCE ANALYSIS

A simulation study has been performed to validate the
temperature control performance of the MI-MPC for MR-
HIFU hyperthermia. We initialize the plant, observer, and
controller states at zero, corresponding to the monitored
tissue to be at the blood temperature Tb = 37 ◦C before
treatment. The temperature evolution of the voxels within
the ROI of the plant (gray) and the observer/controller
(black) are visualized in Fig. 5 using their mean (solid)
and maximum/minimum values (dashed). It can be seen
that after approximately 105 s the entire ROI is heated to
41 ◦C, which is the temperature above which the beneficial
hyperthermia-related effects are adequately triggered. Fur-
thermore, no overheating is observed, and the average ROI
temperature converges to the optimum Tr = 42 ◦C. Using
Matlab R2017b and Gurobi 8.1.1 on a laptop with Intel
Core i7 @ 2.60 GHz CPU and 8 GB RAM, the computation
times varied between 2.5 s and 5.5 s in steady state,
with worst-case values around 11 s during heat-up. This
indicates that real-time feasibility can likely be achieved,
but may require dedicated hard- and software, or reducing
the complexity of the MPC (e.g., by choosing a shorter
horizon, or reducing the state and/or input dimensions).

In Fig. 6, the total acoustic input power per cell is shown,
together with the desired-mode indicator σk. First, note
that σk, which is directly related to δk, corresponds to a
physically realizable transducer path, verifying that the
proposed MI-MPC setup generates only admissible acti-
vation signal sequences. Regarding the input power, the
controller initially requests maximum power for fast heat-
up. Moreover, in this period it often heats a certain cell
for several consecutive samples, thereby reducing actuator
downtime, also contributing to achieving a short heat-
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Fig. 6. The total acoustic power per cell, and the desired-
mode indicator σk (red line).

up phase. For tk > 110 s, however, each cell is only
heated for one sample before continuing to the next cell, as
this allows for maintaining an as homogeneous as possible
temperature distribution throughout the ROI.

6. CONCLUSION

In this paper, an MI-MPC setup for large-area MR-HIFU
hyperthermia is presented, which simultaneously optimizes
the desired heating profile to be generated by the trans-
ducer, as well as the range-extending mechanical displace-
ment of the transducer itself within a predefined discrete
set of positions. For the latter, the proposed control design
is able to explicitly take into account the point-to-point
travel time of the transducer. Our modeling approach
allows for including the transducer switching and travel
times using intuitive specification, based on which the
mixed-integer component of the controller follows system-
atically in a manner that directly yields a compact MIP.
In a simulation study, the proposed controller is shown to
adequately heat a large target area, thereby enabling the
treatment of larger tumors. Valuable directions for future
research include optimizing the treatment cell locations
for control performance, improving the controller’s robust-
ness against model uncertainty, and reducing computation
time.
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