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Abstract: This paper is concerned with guaranteed parameter estimation for discrete-time
nonlinear systems subject to bounded uncertainties. The proposed approach is based on
polytopic set parameterizations. Similar to other estimation and filtering approaches, the
presented algorithm is based on two operations, propagation of the polytopic uncertainty
through the dynamics and an update operation using the measurement. Both the propagation
and the update steps are based on set-operations that use a parameterized lifted outer
approximations of the polytopes. The performance of the approach is illustrated by applying
it to the double integrator system, where the presented polytopic parameterization approach
leads to accurate and rigorous parameter estimates.

Keywords: Parameter and state estimation, Bounded error identification, Nonlinear system
identification.

1. INTRODUCTION

Industry strives to tackle the uncertainty present in the
day-to-day operations to avoid losses and to improve pro-
duction performance. The uncertainty stems from mis-
matched models (so-called process uncertainties) and from
the inaccuracies of sensors (noises in the measurement
output). The principle of robustness is used in control
theory for establishing insensitivity to disturbance varia-
tion. The robustness can be reached by guaranteeing that
the implemented controller steers the plant to obey the
production and safety constraints. One of the ways to
approach the problem is by an identification procedure
that infers the values of state variables of the plant and
disturbances from the available measurement outputs. A
well-founded identification process under a robust control
strategy will avoid constraint violation and, at the same
time, will enhance the performance of the closed-loop
system (Nagy and Braatz, 2003).

There are two general approaches to identification, a prob-
abilistic and a deterministic approach. In the probabilistic
approach, one requires strong assumptions on the statisti-
cal distributions of measurement noises and disturbances.
This is the case for methods such as the Kalman Filter,
also known as the optimal linear quadratic estimator.
Deterministic approaches, usually formulated as set-based
estimation (SSE) problems in the context of bounded-
error estimation, do not require any consideration about
the probability distribution of the measurement noise as
well as in the process uncertainties (Blanchini and Mi-
ani, 2008). Algorithms based on different set representa-
tions (or parameterizations) have been proposed. Exam-
ples include ellipsoids (Bertsekas and Rhodes, 1971; Merhy

et al., 2019), parallelotopes (Chisci et al., 1996; Valero and
Paulen, 2019), and zonotopes (Combastel, 2003; Althoff
et al., 2010), as well as combinations of these—e.g., ellip-
soids and zonotopes (Chabane et al., 2014).

When deciding which set parameterization to use, it is im-
portant to manage the complexity of the set-representation
while maintaining an acceptable level of accuracy. Both
parallelotopes and ellipsoids have a fixed complexity for a
given dimension while the complexity of zonotopes can be
arbitrary. In terms of accuracy, the aforementioned param-
eterizations can be conservative for some of the operations
involved in typical set-based estimation algorithms. For
example, in the context of linear systems, these operations
are: (1) affine transformations, (2) Minkowski sums, and
(3) intersections. Parallelotopes and ellipsoids are closed
under (1), but not under (2) and (3); while zonotopes are
closed under affine transformations as well as Minkowski
sums—albeit at moderate increase in complexity of the
set—but not under intersections.

Convex polytopes have also been proposed in the context
of set-based estimation (Kuntzevich and Lychak, 1992;
Kaibel and Pfetsch, 2003). Indeed, polytopes are closed
under (1), (2), and (3). However, this comes (in general)
at the cost of an increase in the complexity of the resulting
set. For example, the (Minkowski) sum of two polytopes
has an exponential complexity in the number of its hy-
perplanes. Recently, Scott et al. (2016) introduced a novel
parameterization for general convex polytopes, called con-
strained zonotopes. This parameterization combines the
characteristics of polytopes with zonotopes to provide ef-
ficient set operations and algorithms for polytopic state
estimation (Rego et al., 2020).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 11428



In this paper, we present an alternative method to state
estimation using convex polyhedra. Our approach is based
on a lifted representation for convex polyhedra, as intro-
duced in Houska (2011). These lifted representations can
be interpreted as parametric set-valued functions, defined
over a suitable parameter domain—in this case matrices
of fixed size with non-negative entries—and whose image
is a convex polyhedron of fixed complexity in the number
of facets. Lifted representations are tight in the sense that
by taking their intersection over the parameter domain one
can represent arbitrarily complex polyhedra. Moreover, a
lifted polyhedral representation for a given parameter can
be used to conservatively approximate a given polyhedron
with one of reduced complexity. It is this characteristic
that is used in order to formulate the set-based estimation
problem as a nonlinear optimization problem, where one
searches over the optimization problem over the set of pa-
rameters of a lifted representation of a polyhedron contain-
ing the states that are consistent with the measurements,
in order to minimize some performance criterion.

The organization of the paper is as follows. The next
section presents the notation and basic definitions needed.
Section 3 introduces polytopic set operations. Section 4
presents the set-based state estimation. Also the NLP
problem to perform the SSE is stated. Section 5 illustrates
the case study of a double integrator.

1.1 Notation

Throughout this paper we use the following notation

P(G, h) = {x ∈ Rn | Gx ≤ h} ⊂ Rn, (1)

to denote polyhedra with shape matrix G ∈ Rm×n and size
h ∈ Rm. Recall that bounded polyhedra is called polytope.
For two given sets X,Y ⊆ Rn we use the notation

X ⊕ Y = {x+ y | x ∈ X, y ∈ Y }, (2)

X 	 Y = {x− y | x ∈ X, y ∈ Y }, (3)

to denote their Minkowski sum and difference.

2. STATE ESTIMATION FOR UNCERTAIN SYSTEMS

This section introduces uncertain nonlinear systems and
an associated set-membership state estimation problem.

2.1 Uncertain Nonlinear Discrete-Time Systems

This paper is concerned with nonlinear discrete-time sys-
tems of the form

xk+1 = f(xk, wk) (4)

yk = Cxk + vk , (5)

where xk ∈ Rn denotes the state of the system and
yk ∈ Rny a measurable output at time k ∈ N. Here, the
initial value x0 ∈ X0 is unknown, but we assume that
the compact set X0 ⊆ Rn is given. Similarly, the process
noise sequence w and the measurement noise sequence v
are assumed to be unknown but bounded,

∀k ∈ N, wk ∈W and vk ∈ V , (6)

for given compact sets W ⊆ Rnw and V ⊆ Rnv . Through-
out this paper the right-hand side function f of the
discrete-time system and the output function are assumed
to be continuous.

Remark 1. In order to keep the technical developments in
this paper as readable as possible, we do not distinguish
explicity between states and parameters. Here, we recall
that parameters can be regarded as constant states, which
satisfy the trivial recursion pk+1 = pk. In this sense, it
is sufficient to analyze nonlinear systems of the form (4),
although the structure of the function f needs to be ex-
ploited by numerical methods, if trivial constant recursions
for parameters are stacked. Additionally, it is mentioned
here that the developments in this paper can also be
generalized for nonlinear output function, yk = h(xk, vk).
Such nonlinearities can be reformulated, too, by regarding
yk as a (trivial) auxiliary state, stacking h to f , and v to
w. In this sense, we may assume without loss of generality
that the output function is linear.

2.2 Set-Membership Estimation

One of the main goals of this paper is to compute bounds
on the set of system trajectories that are consistent with
the measured outputs. In order to formulate this goal in
mathematical terms, we use the notation

Hk = { x ∈ Rn | Cx− yk ∈ V } (7)

to denote the set of states that are consistent with the
current measurement. By using this notation, the recursion
for the set of consistent states takes the form

Xk = F (Xk−1,W) ∩Hk (8)

with F (Xk−1,W) =

{
f(xk−1, w)

∣∣∣∣ xk−1 ∈ Xk−1

w ∈W

}
(9)

for all k ≥ 1. Notice that an accurate computation of the
exact set recursion (8) is in high dimensional state-spaces
typically impossible, because high dimensional sets are
difficult store and propagate through nonlinear functions.
Therefore, the focus of this paper is on the construction of
outer approximations of the sets Xk.

2.3 Decomposition of Linear and Nonlinear Dependencies

In order to develop practical methods for propagating
enclosures of the set sequence X in (8), it is helpful
to introduce a decomposition of the right-hand side into
linear and nonlinear parts, such that

f(q + z︸ ︷︷ ︸
x

, w) = f(q, 0) +A(q)z +B(q)w + η(q, z, w) (10)

for all x, z ∈ Rnx and all w ∈W. Here, the matrices A(q) ∈
Rnx×nx and B(q) ∈ Rnx×nw may, in the most general case,
depend on x. Notice that such a decomposition is always
possible (even if f is not-differentiable), as long as we
define the (continuous) function ηf as the gap between the
nonlinear model and its linear surrogate. For the special
case that f and h are differentiable, we can set

A =
∂f

∂x
(x, 0) and B =

∂f

∂w
(x, 0) .

Next, our system can be written in the form

qk+1 = f(qk, 0) (11)

zk+1 = A(qk)zk + ωk (12)

with ωk = B(qk)wk + ηf (qk, zk, wk). Notice that this
decomposition has the advantage that the discrete-time
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recursion for the uncertainty affected state z is linear. The
nonlinear terms can now be bounded as

Ωk(qk, Zk) ⊇
{
B(qk)wk + ηf (qk, zk, wk)

∣∣∣∣ zk ∈ Zkwk ∈W

}
,

(13)

i.e., such that ωk ∈ Ωk(qk, Zk). The set-valued function Ωk
is called a nonlinearity bounder, which can be constructed
in dependence on the set Zk in which the current state zk
is currently known to be. Notice that this construction is
such that Xk = {qk} ⊕ Zk, where the sets Zk satisfy the
recursions

Zk = [A(qk−1)Zk−1 ⊕ Ωk−1(qk−1, Zk−1)] ∩ [Hk 	 {qk}]
(14)

The following sections focus on the construction of outer
approximations of the sets Zk.

Remark 2. Notice that details on how to construct non-
linearity bounders Ωk can be found in (Villanueva et al.,
2015) in a slightly different context, but the corresponding
methods can be applied for state estimation problems, too.

3. POLYTOPIC SET-ARITHMETICS

This section briefly reviews computational methods from
the field of polytopic set arithmetic. The related set
operations will later be used to implement a polytopic
guaranteed state estimation algorithm. Here, we first re-
call that polytopes are closed under intersection, linear
transformations as well as Minkowski sums (see Blanchini
and Miani (2008)). This means that, the set operations
in (14) can, at least in principle, be implemented by using
polytopes. However, because these operations also increase
the complexity of the resulting polytopes, one needs to
implement facet reduction operations in order to not run
out of memory and to keep the computational time within
reasonable bounds. The following proposition summarizes
practical procedures for implementing such facet-reduction
steps.

Proposition 3. Let P1(G1, h1) and P2(G2, h2) be poly-
topes with given pairs (G1, h1) ∈ Rm×n × Rm as well as
(G2, h2) ∈ Rp×n × Rp. Then the following relations hold.

(a) The intersection of the polytopes is given by

P1(G1, h1) ∩ P2(G2, h2) = P3

((
G1

G2

)
,

(
h1

h2

))
(b) If A ∈ Rn×n be an invertible matrix, then

AP1(G1, h1) = P3

(
G1A

−1, h1

)
.

(c) If Λ ∈ R`×m denotes any non-negative matrix, Λ ≥ 0,
then the inclusion

P1(G1, h1) ⊆ P3(ΛG1,Λh1) .

holds.
(d) The Minkowski sum of two polytopes can be bounded

by the polytopic enclosure

P1(G1, h1)⊕ P2(G2, h2) ⊆ P3(MG1,Mh1 +Nh2) .

This inclusion holds for any non-negative matrices

M ∈ R`×m+ N ∈ R`×p+ that satisfy MG1 = NG2.

Proof. A complete proof of the first two statements of this
proposition can be found in (Blanchini and Miani, 2008),
as well as (Kolmanovsky and Gilbert, 1998) and (Kerrigan,

2001). Moreover, a proof of Statement (c) can be found
in (Houska, 2011). Finally, the last statement of this
proposition is obtained as a consequence of (c) and the
properties of the Minkowski sum and support functions. In
order to prove this property, it assumes that the resulting
facet matrix is known, G. Thus, the constant vector is
obtained by the maximization of x1, x2 in front of every
row of the facet matrix (c). This maximization problem
can be formulated as,

max
x1,x2

[c c]ᵀ
[
x1

x2

]
(15)

s.t. G1x1 ≤ h1

G2x2 ≤ h2

The Lagrangian (L(x1, x2,Λ1,Λ2)) of this problem is given
by,

= [c c]ᵀ
[
x1

x2

]
+ Λᵀ

1(G1x1 − h1) + Λᵀ
2(G2x2 − h2) (16)

After ordering in a proper way,

= Λᵀ
1G1x1 + Λᵀ

2G2x2 + [c c]ᵀ
[
x1

x2

]
− Λᵀ

1h1 − Λᵀ
2h2

(17)

= [Λ
ᵀ
1G1 Λᵀ

2G2]

[
x1

x2

]
+ [c c]ᵀ

[
x1

x2

]
︸ ︷︷ ︸−Λᵀ

1h1 − Λᵀ
2h2 (18)

Now, applying the conjugate function definition into the
under-brace part.

max
Λ1,Λ2

−Λᵀ
1h1 − Λᵀ

2h2 (19)

s.t. Λᵀ
1G1 = Λᵀ

2G2

Λ1 ≥ 0, Λ2 ≥ 0

Finally, it is possible to write dual optimization problem

min
Λ1,Λ2

Λᵀ
1h1 + Λᵀ

2h2 (20)

s.t. Λᵀ
1G1 = Λᵀ

2G2

Λ1 ≥ 0, Λ2 ≥ 0

Remark 4. It is obvious that this conditions holds for
every row of G what it will demonstrate our postulate.
It is important to notice that these are necessary but do
not sufficient condition to compute the Minkowski sum.
However, it is still possible to compute the Minkowski sum
using good guess for G.

The following uses the statements of the above proposition
to construct guaranteed parameter estimation methods for
nonlinear dynamic systems.

4. GUARANTEED STATE ESTIMATION FOR
NONLINEAR SYSTEMS USING POLYTOPES

Guaranteed state estimation procedures can typically be
divided into two steps: a propagation and an update
step (Bertsekas and Rhodes, 1971). This is in analogy to
Kalman filters, but instead of propagating mean values
and variances, rigorous bounds on the states are consid-
ered, recalling that the recursion of the sets Zk is given
by (14). In order to be able to construct polytopic outer
approximations of these sets, the following assumption is
introduced.
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Assumption 5. The nonlinearity and noise bounding func-
tions Ω as well as the measurement noise sets and the ini-
tial state constraint set are bounded by known polytopes,

Ω(qk,P(G, h)) ⊆ P(Gω(G, h), hω(G, h)) (21)

V ⊆ P(Gv, hv) (22)

X0 ⊆ {q0} ⊕ P(G0, h0) (23)

with given parametric matrix-vector pairs

(Gω(G, h), hω(G, h)) ∈ Rp×nw × Rmw ,

(Gv, hv) ∈ Rq×nv × Rmv , and (G0, h0) ∈ R`×n × R`. At
this point, it needs to be mentioned that Gω and hω are,
in the most general case, functions of the shape parameters
G and h of the input polytope, as the nonlinearity bounds
depend on the current state bounds.

Next, the main idea is to use the polytopic arithmetic rules
from Proposition (3) to recursively construct polytopic
outer approximations of the form

P(Gk, hk) ⊇ Zk ,
where the propagation and update step take the form

P
(
Ĝk+1, ĥk+1

)
⊇ A(qk)P(Gk, hk)

⊕ P(Gω(Gk, hk), hω(Gk, hk)) (24)

P (Gk+1, hk+1) ⊇ P
(
Ĝk+1, ĥk+1

)
∩ [Hk+1 	 {qk+1}] .

(25)

The following theorem outlines a method for implementing
the above propagation and update steps such that a
recursive application yields polytopic enclosures of the
sets Zk.

Theorem 6. Let Assumption 5 hold, let the matrix A(qk)
be invertible, and let (Gk, hk) ∈ R`×n × R` be such
that Zk ⊆ P(Gk, hk). If there exist non-negative matrices

Mk ∈ Rm×`
+ , Nk ∈ Rm×p

+ , Λk ∈ R`×(m+q)
+ and pairs

(Gk+1, hk+1) ∈ R`×n × R`, which satisfy

Gk+1 = Λk

(
MkGkA(qk)−1

GvC

)
, (26)

hk+1 = Λk

(
Mkhk +Nkhω(Gk, hk)

hv +Gv(Cqk+1 − yk+1)

)
(27)

NkGω(Gk, hk) = MkGkA(qk)−1 , (28)

then we have P(Gk, hk) ⊇ Zk for all k ∈ N.

Proof. Because we assume that the current inclusion
P(Gk, hk) ⊇ Zk holds in the k-th recursion step, we can
bound the result of the Minkowski sum in (24). Here, we
apply the second and the last statement of Proposition (a)
to find that (24) holds if

∃Mk ∈ Rm×`
+ , Nk ∈ Rm×p

+ :
Ĝk+1 = MkGkA(qk)−1,

ĥk+1 = Mkhk +Nkhω(Gk, hk),

MkGkA(qk)−1 = NkGω(Gk, hk)

(29)

Next, we recall that the incoming measurement at time
k + 1 satisfies

yk+1 − Cqk+1 − Czk+1 ∈ V ⊆ P(Gν , hν) .

By writing out the definition of the latter polytope and
resorting terms, we find that this inclusion implies that

Hk+1 	 {qk+1} ⊆ P(GνC, hν +Gν(Cqk+1 − yk+1)) .

Notice that this representation of the set Hk+1 	 {qk+1}
allows us to combine the first and the third statement of
Propositions 3 to show that (25) holds if

∃Λ ∈ R`×(m+q)
+ : Gk+1 = Λ

(
Ĝk+1

GνC

)
,

and hk+1 = Λ

(
ĥk+1

hν +Gν(Cqk+1 − yk+1)

)
.

(30)

Next, the statement of the theorem follows by substitut-
ing (29) in (30). 2

In order to apply the above theorem for constructing
enclosures one needs to select consistent non-negative
matrices Mk, Nk, and Λk. In order to develop strategies for
implementing such a selection, we introduce the shorthand
notation

Gk(Gk, hk) =(Gk+1, hk+1)

∣∣∣∣∣∣∣
∃Mk ∈ Rm×`

+ , Nk ∈ Rm×p
+ ,

Λk ∈ R`×(m+q)
+ :

Equations (26)–(28) hold

 (31)

for the set of enclosure parameters that satisfy the con-
ditions from Theorem 6. One way to do implement the
enclosure selection is then obtained by computing a mini-
mizer of

(Gk+1, hk+1) = argmin
G,h,a,b

∑̀
j=1

‖a− bj‖22

s.t.


∀j ∈ {1, . . . , `},
Gjbj = hj

Ga ≤ h
(G, h) ∈ Gk

(32)

such that the sum of the distances of the auxiliary point
a ∈ P(Gk+1, hk+1) to the facets of P(Gk+1, hk+1) is
minimal.

Remark 7. It can be shown that the statements from
Proposition (a) are tight in the sense that the over-
approximation error of the enclosures of the Minkowski
sum and facet reduction can be made arbitrarily small
if ` is sufficiently large (see Blanchini and Miani (2008)
and Houska (2011)). Moreover, if f is twice continuously
differentiable, one can construct nonlinearity bounders Ω
that contract as

diam (P(Gω(G, h), hω(G, h))) ≤ (33)

O(diam(W)) + O(diam(P(G, h))2) , (34)

which is a consequence of Taylor’s theorem (Villanueva
et al., 2015). By combining these two known result, it turns
out that the over-estimation error of the enclosures that
are generated by a recursive application of (32) can be
bounded by a term of order

o
(
`−1
)

+ O(diam(W)) + O(diam(P(G0, h0))) .

Thus, the approximation error of the presented procedure
can be shown to be small if the diameter of the uncertainty
sets is sufficiently small while the number of facets, `,
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is sufficiently large. This statement also implies that the
proposed set-based estimator is stable for large ` and small
uncertainty sets for k →∞ under mild assumptions on the
observabilty of the original nonlinear system (see Ljung
(1999) and Villanueva et al. (2015) for details).

5. CASE STUDY

The double integrator system is studied in the context
of bounded-error (set-membership) SSE using presented
state-estimation algorithm. The process is given as in (4)
with

A :=

(
1 1
0 1

)
, B :=

(
0
1

)
, C := (1 0) , E :=

(
1 0
0 1

)
,

(35)

where the matrix E depicts the relation between the uncer-
tainties ω and the states, the states x1 and x2 represent the
position and the velocity of an object, respectively. Both
states are subject to bounded uncertainties ±1. The input
u depicts object’s acceleration at time k. It is determined
by a discrete LQR controller with Q = I and R = 1,
saturated at the control bounds u ∈ [−1, 1]. The initial
state vector is x0 := (20, 10)ᵀ. The measurement matrix
C := [1 0] depicts the measurement of the position at a
sampling rate of 1 time unit and the uniformly distributed
measurement error is bounded in ±1. For the simulations,
the initial polytopic set P0 is selected such that it includes
the true state. The initial polytope is represented as

P0 =

 1 0
0 1
−1 0
0 −1

x ≤

 32
11
−15
−6

 . (36)

5.1 Implementation Details

The proposed algorithm is implemented in Matlab using
BARON as a global solver and fmincon, IPOPT (Wächter
and Biegler, 2006) interfaced through OPTI toolbox (Cur-
rie and Wilson, 2012) and YALMIP (Löfberg, 2004). Re-
sults were graphing using MPT toolbox (Herceg et al.,
2013). We use the global solver to identify a feasible point
of (32). Local solvers are used afterwards to improve this
solution. The process and measurement noises are simu-
lated as random numbers with uniform distributions.

5.2 Results

Figure 1 shows the reachable set obtained in each iter-
ation. As can be seen, the initial polytope (i.e., a box)
contains the initial state, (20, 10)ᵀ. At the first time step,
the polytope is considerably reduced due to the difference
between the size of the initial polytope and magnitude
of the measurement noise. Our computational experience
shows that it is not always possible to find the global
solution. This gives rise to the non-uniform sizes of the
obtained polytopes and certain over-approximations. Our
future work will involve a development of sophisticated ini-
tialization strategies to obtain consistent state estimation
bounds.

Figure 2 shows the true states against the bounds (ex-
tremal vertices of the polytopic estimates) and the point-
prediction of the states (the Chebyshev center of the

Fig. 1. Polytopic estimates found for 50 time steps.

0 5 10 15 20 25 30 35 40 45 50

k

-40

-20

0

20

40

60

80

x 1

Real State xr

Chebyshev Center
Bounds

0 5 10 15 20 25 30 35 40 45 50

k

-15

-10

-5

0

5

10

15

x 2

Real State x2

Chebyshev Center
Bounds

Fig. 2. Evolution of states, their bounds and a Chebyshev
center of the bounding polytope.

polytope). We can notice a favorable evolution of the
point-prediction towards the true state values. We can
also see that despite a large process noise, the estimation
procedure is able to maintain the estimation bounds within
almost constant range. On some occasions there are jumps
occurring in the bounds. These jumps are explained by the
inability to identify the global solution of the problem (32).
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6. CONCLUSIONS

A new method of set-membership set-based state estima-
tion using polytopes is proposed. The estimation method
solves only a single NLP to propagate, update, and reduce
the polytope in every iteration. The approach was tested
using the double integrator. It was demonstrated that the
obtained estimates are consistent and valid. The compu-
tational complexity of the proposed approach is consid-
erable and good initialization procedures are needed. The
future work will focus on developing a sophisticated tuning
method, as well as, testing the method against other set-
membership estimation algorithms such as constrained
zonotopes.
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