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Abstract: Transformer Vibration Technique is considered an effective method to monitor 

structural elements of transformers, in particular, to detect loose or deformed windings. As it is 

well known, vibrations vary with the sensor location on the transformer tank, which makes the 

number and the placement of sensors critical aspects for fault detection. In this paper, we 

investigate this issue by analyzing vibration spectra collected from various sensors installed on the 

tank of a typical oil filled power transformer operating under two limit cases, namely absence or 

presence of clamping looseness on windings. Support Vector Machines (SVM) are employed and 

an extensive analysis is performed to understand the informativeness of data corresponding to 

various sensors so as to figure out the appropriate number of sensors and their best location. This 

way fault detection is eventually achieved with a reduced and optimized number of sensors, 

resulting in a significant saving of time and costs. 
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1. INTRODUCTION 

A proper clamping pressure in transformers’ windings is 

essential to withstand high internal electromagnetic forces 

that arise during external short-circuit events. A transformer 

with loose or deformed windings is heavily exposed to 

permanent damage in presence of external short [1]. 

Recently, there has been a growing interest toward the 

application of monitoring techniques and devices for early 

warning on transformers’ faults, in view of a more targeted 

and efficient asset management. Moreover, significant 

benefits on predictive maintenance of transformers have been 

obtained by the Industry 4.0 paradigm, where embedded 

sensors and devices play a key role as effective data sources 

for predictive analysis. In this framework, techniques based 

on the vibration of the transformer tank in steady-state have 

proved to be a promising tool to diagnose windings faults, 

[1,2]. Specifically, these approaches are based on the 

acquisitions of vibration fingerprints of the transformer tank 

before and during its service. These fingerprints are collected 

by means of sensors, like accelerometers, mounted in 

different positions of the tank. Various data analysis 

methodologies can be then exploited to perform fault 

diagnosis based on these collected vibration data. In [1] a 

model with electrical current, voltage, and temperature as 

inputs is reported to identify winding deformation. The 

malfunctioning is detected by comparing the measured 

100Hz vibration signal with the vibration magnitude 

estimated by the model. To construct a model, the geometry 

of the transformer and its parameters are required though. 

When the parameters of the transformer are uncertain or 

unknown one must resort to different routes, akin to the 

black-box paradigm. For example, in [3], various indicators, 

like total harmonic distortions, the sum of harmonic 

amplitudes and ratio of main harmonics, are used to classify 

transformers into new, used, and anomalous. 

The aim of this paper is to investigate the feasibility of a 

machine learning classification technique to predict the 

looseness of windings by vibration spectra. Surprisingly, the 

usage of machine learning for condition monitoring of power 

transformers seems to be a quite unexplored research 

direction. To the best of our knowledge, the only contribution 

in the same vein is [4], where artificial neural networks are 

considered.  

In this paper, we investigate the usage of Support Vector 

Machines (SVM), [5,6,7], on vibration spectra experimentally 

recorded from the tank of a typical distribution transformer, 

subject to tightening or loosening clamping of its windings 

pack. As it is well known, vibrations vary with the sensor 

location on the transformer tank, which makes the number and 

the placement of sensors critical aspects for fault detection. In 

particular, the goal is to eventually obtain a classifier for the 

tight vs. loose condition that requires the final user to use the 

smallest possible number of sensors and that is resilient to 

misplacement of sensors as it often happens in real 

application. The main contribution of this paper is to propose 

an analysis of the informativeness of the data corresponding to 

the various sensors locations so as to figure out which is the 

minimal number of sensors and their best location for the 

training of the robust SVM classifier. This way fault detection 

is eventually achieved with a reduced and optimized number 

of sensors, resulting in a significant saving of time and costs. 

The effectiveness of the proposed approach is carried out by 

means of numerous tests. All the results reported in the 

present paper have been obtained by using a set of real data 

obtained from laboratory experiments. 

The paper is organized as follows. In Section 2, after a 

preliminary description of the experimental layout to collect 

vibration data and to reproduce the fault on transformer’s 

windings, the fault detection problem is introduced. The 

proposed SVM model and analysis is explained in Section 3, 
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while the experimental results obtained by applying SVM to 

vibration spectra are discussed in Section 4. Some conclusions 

are drawn in Section 5. 

 

2. DATA ACQUISITION FRAMEWORK 
 

2.1 Test transformer 

 

A new oil filled three-phase transformer (42kV/580V, 

750kVA, cooling with circulation of both oil and air natural 

(ONAN) cooling) was used as a test transformer (Figure 1) for 

collecting vibrations. It was tested under two tight 

(corresponding to no fault) and loose (fault) clamping. The 

last one has been simulated by loosening the winding 

clamping rods, which compress the windings at the top of the 

structure (see the inset of Figure 1). Therefore, the fault 

condition is represented by the transformer with the three 

phases simultaneously loosened at the same time. 

Vibration measurements were carried out on the load 

transformer either under fault and no-fault conditions.  

Actually, unlike no load operation, where tank vibrations are 

driven by magnetostrictive forces in core sheets, during load 

operation, the vibrations of the transformer are mainly 

generated by the windings, due to the presence of high 

electro-dynamic forces [1]. Therefore, any looseness on 

windings will be more likely exalted during load tests with 

respect to no-load conditions. 
 

 
 

Fig. 1. The 750kVA test transformer. Insets: a detail of the looseness of 
winding clamping structure (left) and of measurement points (right).  

 

During load tests, the transformer was energized from the 

High Voltage (HV) side to nominal current (10A) with 

secondary shorted. A grid of 22 measurement points was 

defined on the  Low Voltage (LV)  sidewall of the tank 

(Figure 1). Tank’s Vibrations were measured in each point of 

the mesh, at the top and at the bottom of the tank, either under 

tight and loose clamping. 
 

2.2 Vibration Sensing System 

 

The vibration sensing system used for the tight and loose 

tests is based on an optical accelerometer, the Electro Optical 

conversion Unit and a conditioning and recording Unit, as 

previously described in [8]. Due to the dielectric nature of its 

elements this optical accelerometer can be safely installed on 

serviced transformers. The accelerometer’s sensitivity is 

100mV/g and the frequency bandwidth (flat up to 1000Hz) 

has been chosen to detect main frequencies of mechanical 

oscillations of the transformer’s windings and core. The 

Electro-optic Unit (EOU) output signals are recorded as a 

.wav file by means of a digital audio recorder (ZOOM 

Corp.H5-Handy Recorder) with a 24-bit resolution and a 96 

kHz maximum sampling frequency. 

A proprietary software developed under LabView (National 

Instrument) environment, was exploited for the off-line 

processing of the recorded time signals.  

 

2.3 Vibrations data 

 

During the experiment, 22 vibration time-series, one time-

series for each position on the transformer tank, were 

recorded both for tight and loose windings. 

Two minutes acquisition and 44 kHz frequency sampling 

were set as acquisition parameters. Each recorded time 

signals were subdivided in 100 time-subseries, each of which 

was averaged, filtered and Fast Fourier Transformed into the 

frequency domain (which seems to be better suited to reveal 

the information content of vibrations). Only magnitudes were 

considered. A data normalization was then applied by 

enforcing the value corresponding to each harmonic to be in 

the [0,1] range. Apart from fostering numerical stability, 

normalization has also motivations related to the structure of 

vibration in transformers. The vibration inside transformer can 

be transmitted through the liquid (insulating oil) inside the 

tank and also through some metal joints inside the 

transformer. Therefore, the possible similar patterns inside the 

tank can have different magnitudes in the outer body of the 

tank due to the different passed route. The aim of 

normalization is achieving meaningful information from 

patterns rather than relying on the magnitude of just one 

specific harmonic, [8]. Eventually, to better focus on the real 

information content of data, we eliminated frequencies which, 

provably from physical considerations, carry very little 

information (i.e. harmonics having very small magnitude or 

showing no significant differences for tight and loose 

conditions). Accordingly, our spectra were defined over the 

frequencies 50Hz, 100Hz, 150Hz, …, 500Hz, see also [8]. 

Thus, altogether, our dataset consists of approximately 22 ∙
2 ∙ 100 = 4400 pairs (x, y) where x is a normalized spectrum 

(which can be represented as a vector of real numbers as we 

consider magnitudes only) and 𝑦 is a label which can be 

either “tight” or “loose”. 𝑥 is called the feature vector. The 

dataset is balanced since half of the pairs are labelled “tight” 

and half are “loose”. Moreover, the dataset can be 

decomposed in 22 balanced sub-datasets, one for each sensor 

position in the considered grid. 

Figure 2 shows two examples of averaged vibration spectra 

recorded in the same point of the tank. These two spectra 

(Fig. 2) were recorded at different times, after repositioning 

the sensor approximately in the same point of the tank, that 

is, with a tolerance less than 5cm. Though similar spectra 

should be expected, their comparison evidenced relevant 

harmonic differences (i.e. at 200Hz, 300Hz, and 400Hz). 

Figure 3 shows load vibration spectra measured in the upper 

part of tank for different sensor positions: left (Fig. 3a) middle 

(Fig. 3b), right (Fig. 3c), respectively. Each figure shows the 
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vibration harmonics recorded under tight (solid) and loose 

(striped) windings, respectively. 

 

 
 

 
Fig. 2. Magnitude of load vibration spectra measured in the same position at 

the top of the tank at two different times: (a) t_1 and b) t_1b, respectively. 

Tight windings (blue solid) vs. loose ones (blue striped). 
 

A comparative analysis of tight and loose spectra among these 

three positions (Figure 3) evidenced a different harmonics 

contents with a different magnitude of the fundamental 

harmonic (100Hz) depending on the sensor position.  

 
 

 
 

 
 

 

Fig. 3. Magnitude of load vibration spectra measured at the top of the tank: 
left side (a) middle (b) and right side (c), respectively. Tight windings (blue 

solid) vs. loose ones (blue striped). 
 

Moreover, spectra corresponding to the top of the tank (Fig.3) 

and the bottom (Fig. 4) present an opposite mutual ratio 

between the 100 Hz harmonic magnitude in tight and loose 

conditions. 

This visual inspection reveals that detection of the tight vs. 

loose condition based on the assessment of 100 Hz harmonic 

magnitude as suggested by physical considerations is not 

possible without any further knowledge on the transformer. 

Moreover, due to the complexity of the vibration data 

obtained from all tank positions, extracting quantitative 

information on the fault of the transformer from simple 

classification rules based on vibration spectra seems 

challenging. This motivates the usage of more sophisticated 

black-box tools like the SVM discussed in the next section. 

 

 
 

 
 

 
 

Fig. 4. Magnitude of load vibration spectra measured at the bottom of the  
tank: left side (a) middle (b) and right side (c), respectively. Tight windings 

(blue solid) vs. loose ones (blue striped). 

 

3. FAULT DETECTION VIA SVM 

 

The Support Vector Machines (SVM, [5,6,7]) is a supervised 

learning method whose goal is to learn a mapping (called 

classifier) from the feature vector 𝑥 to the label 𝑦. The 

classifier thus is a natural tool to predict the value of the label 

given the feature vector for a new observation. The classifier 

is learnt based on a training dataset {(x1, y1), (x2, y2), …, 
 (x𝑁 , y𝑁)}, where 𝑁 is the number of  so-called training 

examples. SVM is based on separating hyperplanes (linear 

classifiers) that are selected so as to increase the margin 

between points corresponding to distinct labels as much as 

possible (possibly by tolerating that few data examples are 

misclassified as indicated by a user-chosen misclassification 

regret parameter 𝜌). This way, the classifier capability of 

separating (aka correctly classifying) other, unseen, 

observations is fostered, [9]. Before finding the separation 

hyperplane, however, SVM maps data to a higher dimensional 

feature space so as to augment the separation of the data 
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points belonging to distinct classes. This is done by specifying 

a kernel k(x, x′) , which automatically defines a (possibly 

infinite-dimensional) transformation through the Mercer 

relation k(x, x′) = 〈ϕ(x), ϕ(x′)〉. Typically, Gaussian kernels 

are used, k(x, x′) = exp(− ‖x − x′‖2 2σ2⁄ ), which enhance 

the separation of classes. See [9,10,11,12]  for further details. 

The training of the classifier involves also the selection of the 

so called hyperparameters (𝜌 and the kernel k(x, x′)) so as to 

improve the classifier as much as possible, [9,11]. To avoid 

overfitting, [13,14], k-fold Cross  Validation is used, [15]. 

That is the training dataset is randomly split  into k subsets 

and repeatedly k-1 subsets are used for training while the 

remaining dataset is used to validate a given choice of the 

hyperparameters (in our problem, k is selected equal to 10). 

Once the hyperparameters are chosen, the final classifier can 

be learnt over the whole training dataset by re-running SVM 

for the last time. The final classifier can be used to predict the 

labels from new measured features and hence to predict 

whether we are in a tight winding (no fault) or loose winding 

(fault) condition. 

The goal of this paper is to check the potentiality of SVM to 

produce a tool for the diagnosis of transformers to be sold 

along with the transformer itself to the final user. In this 

respect, the following observations arise: 

1. The producer cannot in general perform an extensive data 

acquisition campaign as the one that we performed for the 

analysis presented in this paper. The reason is that acquiring 

data from many different sensor positions is time-consuming 

and expensive. It is thus safe to assume that the classifier is 

trained based on measurements obtained from a limited 

number of sensor positions and the less the number of 

positions the better; 

2. Also the final user, who aims at detecting whether the 

transformer is faulty or not, will use a limited number of 

sensor positions (for the same reasons as in point 1) and 

moreover it must be considered that he/she could place the 

sensors in positions other than those that are used when the 

classifier is trained. Indeed, keeping memory of the exact 

position seems unreasonable (loose winding detection 

becomes relevant when dealing with aged transformers that 

have operated for years) and errors may always happen. 

In order to account for 1 and 2 above, the analysis cannot be 

limited to the training of an SVM classifier from the available 

dataset. We instead proceed as follows. 

The dataset is partitioned in many different ways according to 

the sensor positions corresponding to the available data, and 

repeated experiments are performed where the classifier is 

trained based on data corresponding to certain sensor positions 

and then its fault prediction capabilities are tested against new 

data referring to other positions. In this way, provided that 

enough combinations are considered, it is possible then to 

obtain an indication of the safer positions for performing 

testing for various classifiers and, more ambitiously, to 

determine which is the least number of sensors and which are 

the best sensor positions to be used in the training phase so as 

to obtain a classifier whose prediction capabilities are robust 

enough with respect to the sensor positions used during 

testing. In other words, we obtain useful indication of how to 

use SVM so as to obtain a procedure that is simultaneously 

feasible and reliable in practice according to the points 1 and 2 

above. The results of the analysis here proposed over the data 

described in Section 2 are presented in the next section. 

4. EXPERIMENTAL RESULTS 

The experimental result has been divided into 4 main 

sections. In Section 4.1, the reliability and limiting aspects of 

the trained classifier on each sensor position will be discussed 

in details and it will be clarified why this type of classifier is 

not practical. In Section 4.2, the capability of SVM for more 

comprehensive classifier will be assessed. In this step the 

classifier will be extended for all upper and bottom part of 

transformer. In Section 4.3, by using the classifier proposed 

in Section 4.2, the robustness of the model will be analysed 

for different positions. Finally, by exploiting information 

obtained in previous sections, the least number of sensors for 

fault detection will be discussed in section 4.4. It will be 

shown that this set of sensors is sufficient for diagnosis of 

transformer. 

The reliability of the method in each step is expressed by the 

following parameters: accuracy, sensitivity and specificity, 

[16]. The accuracy is the ratio of truly detected data (that is 

true positive, i.e. loose, and true negative, i.e. tight, correctly 

identified data) to all data; sensitivity is the ratio of the truly 

positive detected to all positive data; specificity is the ratio of 

the correctly negative data identified to all negative data. 

4.1. Training and testing classifier for each position 

Initially, data referring to each position are split into training 

and test data (respectively, 75% and 25% of the data). The 

capability of the SVM classifier trained from data referring to 

one single position is first assessed via test data referring to 

the same sensor position. This procedure has been 

implemented for each sensor position and the accuracy of the 

SVM classifiers for corresponding test data is always 100%. 

Figure 5 shows an example of the separation of the two 

classes for sensor position 41. 

However, the model built from one sensor position is not in 

general capable to predict data coming from different sensor 

positions. Consequently, by repeating this experiment, there 

is no guarantee that the proposed models are able to predict 

the fault of the system due to possible misplacements of the 

exact location of the sensor.  

4.2. Extension of classifier to all positions on the top and 

bottom 

To solve this problem, it is needed to have a more 

comprehensive model, which will be able to detect possible 

faults while positions of the sensors have not been restricted 

to very small specific areas. Therefore, the next step is to 

build the classifier by collecting training data coming from all 

sensor positions of the upper part of transformer and 

subsequently assessing its reliability for the remaining 25% 

of test data, again randomly chosen from all upper part sensor 

positions (Figure. 6). 

The accuracy, specificity, and sensitivity of this classification 

for the model trained from all sensors in the upper part of the 

tank are all 100%.   The same approach has been followed for 

data referring to bottom part taken from 11 sensors (Fig. 7). 

The accuracy, sensitivity and specificity of classification for 
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test data referring to sensors at the bottom part are 

respectively: 99.8%, 99.6% and 100%. 

The accuracy achieved by the obtained classifiers indicate 

that the selection of the 10-dimensional input feature space 

and the usage of SVM with Gaussian kernels was 

appropriate. Moreover, since the two classifiers obtained in 

this Section 4.2 exploit data coming from sensors in different 

positions, it is expected that they show a better robustness 

with respect to a misplacement of sensors in the test phase 

than classifiers trained over data collected from a single 

sensor (Section 4.1). The next section aims at assessing this 

robustness property. 

3  

Fig. 5. Scatter Plot projected on two features (100Hz and 300Hz) derived 

from position 41, test and training data referring to same position, 41. 

4.3. Testing classifier against new data from excluded 

positions 

At each step all data referring to one specific sensor will be 

kept as test data. Then, remaining data referring to other 

sensors referring to upper part or bottom part positions will 

be considered as training ones. For instance, all data sets 

referring to position 41 will be kept as test data while the 

remaining data related to other sensor positions located in the 

upper part of transformer (i.e. data referring to the other 10 

sensors) are used to train the SVM classifier. In this situation, 

position 41 can be interpreted as totally unobserved 

vibrations for the classifier and the reliability of the trained 

classifier indicates its robustness against this unobserved 

position (Fig. 8). This procedure has been implemented for 

every position and Table 1 illustrates the validity of the 

model for totally unseen data coming from the excluded 

sensor in the upper part of transformer. 

 

Fig. 6. Scatter Plot projected on two features (100Hz and 300Hz) derived 
from all upper part positions 

 
Fig. 7. Scatter Plot projected on two features (100Hz and 300Hz) derived 

from all bottom part positions 

 

 
Fig. 8. Scatter Plot projected on two features (100Hz and 300Hz) for 

classification of data referring to excluded sensor position 41 

 

From Table 1, indications about the safer sensor positions 

(i.e. enhancing more robustness) for the training of the 

classifier emerge. While the reliability of classifiers for 

unseen sensor positions is high for most positions on the 

upper part of transformer, there are few positions (e.g. 55 and 

63) which are not predictable by the classifiers obtained from 

data collected from the other positions. This indicates that 

sensor positions 55 and 63 must be used to enforce 

robustness with respect to the sensor position used during the 

test. 
 

Table 1. Reliability of classifiers on test data referring to 

excluded positions in upper part of transformer, expressed via 

Accuracy, Specificity and Sensitivity 
 

Position Accuracy (%)  Specificity (%) Sensitivity (%)  

41 99 100 98 

43 95.5 91 100 

45 89.9 100 85 

49 100 100 100 

51 100 100 100 

53 100 100 100 

55 68.5 37 100 

57 96.5 100 93 

59 99.5 99 100 

61 88.9 100 77.8 

63 50 0 100 
 

A similar experiment with the dataset referring to the bottom 

part of the transformer reveals that in the bottom only two 

positions (60 and 64) can be correctly predicted by the 

classifiers trained based on data referring to sensors in the 

other positions in the bottom part. This fact indicates that 
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models obtained from data collected from the bottom of the 

transformer are more sensitive to the sensor position used in 

the test phase. In other words, the SVM classifier trained at 

the upper part of transformer is more robust with respect to 

sensor misplacements rather than models trained at the 

bottom part. Hence, data referring to upper part of 

transformer is respectively safer to be used. It is perhaps 

worth mentioning that another experiment reveals also that 

merging training data from upper and bottom parts do not 

increase the accuracy of the prediction for neither bottom nor 

upper part. 

4.4. Least number of required sensors 

The experimental results in Table 1 on the robustness of the 

trained SVM by vibration data belonging to upper part can be 

used to reduce the number of sensors used for training. 

Specifically, one can progressively add sensor positions, 

starting from those leading to highest decreases of accuracy 

when removed from the data set. The procedure is halted 

when the classifier trained from data coming from the 

selected set of sensors achieves a high level of reliability also 

for data referring to the other sensor positions on the upper 

part of transformer not used for training. 

 
Table 2. Reliability of classifiers trained by least number of 

sensors on test data referring to excluded positions in upper part 

of transformer, expressed via Accuracy, Specificity and 

Sensitivity. 
Position Accuracy (%) Specificity (%) Sensitivity (%) 

41 100 100 100 

45 90.6 86 100 

51 100 100 100 

53 100 100 100 

57 90.5 100 81 

59 100 100 100 

61 87.9 100 75.8 
 

 
 

In our experiment, the least number of sensors which has this 

capability of classifying with high reliability unseen data 

from any position in the upper part of transformer is 4 and 

consists of positions 43, 49, 55, and 63. The reliability of the 

classifier trained from data referring to these positions against 

test data referring to all the other positions are reported in 

Table 2. Based on Table 2, it is possible to claim that the 

selected sensor positions are enough to obtain a classifier that 

is robust with respect to any possible misplacement in the 

positioning of the sensor at the upper part of transformer 

during the test phase. 
 
 

5. CONCLUSIONS 

In this paper, we have considered the problem of detecting 

malfunctioning in electrical transformers. To this purpose, we 

have resorted to the Support Vector Machine classification 

technique by using vibration data measured with sensors 

located in various positions on the transformer tank. The 

obtained result shows the high reliability of SVM when 

applied to consistent dataset (i.e. taken always from the same 

position on the tank) and moreover we also devised robust 

classifiers that allows one to detect the fault even though the 

test data are collected from a position on the tank different 

from that corresponding to the data used to train the classifier. 

This robustness property is significant in two respects. First, it 

shows that misplacements of sensors location, which is quite 

likely, have a limited impact on the detection of fault. Second, 

it reveals that fault detection can be achieved with a reduced 

number of sensors, resulting in a significant saving of time 

and costs. 
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