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Abstract: This paper considers an inverted pendulum with velocity input to demonstrate the validity of
a new method for estimating unknown disturbances such as nonlinear friction and damping. With only
one run of a given swing-up strategy, the input and output data of the system are collected. They are
the basis for a Gaussian process modelling that is used to estimate the unknown disturbance term. The
learned Gaussian process model can be used subsequently to predict this disturbance and serve for an
online disturbance compensation. Simulation results and a comparison with a classical observer-based
disturbance compensation indicate the benefits of the proposed approach.
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1. INTRODUCTION

There exists a huge variety of mechanical systems such as
flexible robots or manipulators, which are characterised by non-
linearities or under-actuation, which increase the difficulty to
control these systems. Especially in the presence of unknown
disturbances, the control task becomes challenging. In the past
few years, increasing demands on new techniques for underac-
tuated and nonlinear systems with unknown disturbances have
been reported, see e.g. Huang (2019).

An inverted pendulum (IP) driven by a moving carriage has a
simple structure with one control input, which is usually the
force generated by an electric motor. The measured variables
are typically the angle of the pendulum and the position of the
carriage, where the pendulum lacks of a drive and represents
the under-actuated system part. Regarding the equations of
motions of the pendulum, several terms depending on cosine
and sine functions of the pendulum angle render it nonlinear.
Especially during the swing-up process – with a wide range of
the pendulum angle and high angular velocities – the control
and observer design becomes challenging. Thus, the inverted
pendulum has become a benchmark system for nonlinear un-
deractuated systems as also shown in Tian (2018). The results
presented in the given contribution can be transferred to more
complex robotic systems with similar characteristics.

A large variety of modelling approaches and balancing control
laws have already been developed for the IP system, see e.g.
Huang (2020) and Yang (2018). For modelling, first principle
models are frequently used. However, an accurate and reliable
first principle model is often not achievable due to nonlinear
friction characteristics or damping effects, which are difficult
to model. Static and dynamic friction models are known in
the literature but still face certain shortcomings and require
additional experiments for an appropriate parametrisation.

As for robot and manipulator control, various approaches have
been proposed in the last decades like computed-torque control,
see Pekarovskiy (2018), as a special case of feedback linearisa-
tion, where the nonlinear system is transformed into an equiva-
lent linear system through a change of variables and a suitable
control input. When an exact system model is available, this
type of control law is able to compensate for the nonlinear robot
dynamics to enable an accurate tracking control. Nevertheless,
the success of this approach always strongly depends on the
model precision.

Other approaches to feedback control of nonlinear under-
actuated systems include the extended linearisation method
for systems that can be described in a quasi-linear form with
state and parameter-dependent matrices. For this class of sys-
tems, the gain matrix of the state feedback controllers may be
determined by an eigenvalue placement as reported in Rugh
(1986) and Rauh (2017) or by state-dependent Riccati equa-
tions (SDREs). However, there is still an important problem to
deal with which is caused by unknown disturbances affecting
the system behaviour. In fact, the disturbance present in case of
the IP benchmark system is not measurable. Therefore, it has
to be estimated in order to allow for the design of a disturbance
compensation. Observer-based estimation involves the design
of a combined state and disturbance observer.

On the other hand, when tackling problems by data-driven
approaches, Bayesian modelling leads to generative models
optimized to fit measurement data under explicit assumptions
w.r.t. measurement uncertainty. Gaussian processes (GPs) are
highlighted as an important class of Bayesian nonparamet-
ric models. However, GP-related, data-driven control methods
have remained so far, with notable exceptions as presented
in Ringkowsky (2019), Zonghai (2014) and Beckers (2017),
largely unexploited by the general control engineering commu-
nity.
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Fig. 1. Photo of the inverted pendulum test rig.

Fig. 2. Mechanical model of the inverted pendulum.

Whereas directly measurable quantities are often modelled by
GPs as presented in Chowdhary (2013), Ko (2009) and Deisen-
roth (2015), in this paper the focus is on modelling of unknown
friction and damping characteristics that are not directly ac-
cessible by measurements. The main idea is to employ a state
and disturbance observer in a learning phase to reconstruct the
variable of interest, determine a GP representation and to use
this GP model subsequently for an online compensation.

The remainder of the paper is structured as follows: In Sect. 2,
the mathematical model of an inverted pendulum with a ve-
locity input is derived. As pointed out before, this model is
not the standard one. Sect. 3 is devoted to the control design
using extended linearisation. The observer-based compensation
of external disturbances of Sect. 4 is compared to the distur-
bance estimation based on a Gaussian process modelling as dis-
cussed in Sect. 5. Corresponding simulation results are shown
and a comparative analysis between these two approaches is
performed in Sect. 6. Finally, in Sect. 7, the main findings and
outcomes of this paper are discussed briefly.

2. SYSTEM DYNAMICS OF AN INVERTED PENDULUM
WITH VELOCITY INPUT

In the following, a nonlinear model for an inverted pendulum
with an underlying velocity control of the carriage is presented.
The corresponding test rig at the Chair of Mechatronics, Uni-
versity of Rostock, is depicted in Fig. 1.

The carriage is driven by a DC servo motor via a toothed belt.
The horizontal position x(t) of the carriage can be derived from
the rotor angle measurement, accessible at the control unit at
the current converter. The pendulum consists of a rod (length a)
with negligible mass and an end mass (mass m) at the tip of the
rod. The pendulum angle w.r.t. the upright position, which is
measured by an optical encoder, is denoted by α(t), see Fig. 2.
The equation of motion for the pendulum follows directly from
a balance of angular momentum – in a form that considers an
accelerated rotary joint

ma2
α̈(t) = macos(α(t))ẍ(t)+mgasin(α(t))− τ(t) , (1)

where g stands for the gravitational acceleration, whereas τ(t)
is an unknown term accounting for damping and nonlinear
friction. In the simulation, this torque is represented by

τ(t) = bα̇(t)+mR0 tanh
[

α̇(t)
ε

]
, ε << 1. (2)

Here, mR0 characterises the amplitude of the nonlinear friction
term, whereas ε defines its steepness at zero angular velocity.
The motion of the carriage is characterized by a first-order lag
behaviour of an underlying velocity control loop

T1ẍ(t)+ ẋ(t) = u(t) , (3)
where T1 represents the time constant. The controlled output is
the horizontal position of the end mass

y(t) = x(t)−asin(α(t)) . (4)
By choosing the state vector x(t) = [α(t) α̇(t) x(t) ẋ(t)]T , the
nonlinear state-space representation becomes

ẋ(t) =


α̇(t)

g
a sin(α(t))+ 1

aT1
[u(t)− ẋ(t)]cos(α(t))+ τR(t)

ẋ(t)
1
T1
[u(t)− ẋ(t)]

 ,

(5)
with the unknown acceleration τR(t) = − τ(t)

ma2 that is propor-
tional to the torque τ(t).

3. CONTROL DESIGN USING EXTENDED
LINEARISATION

For the control design, the nonlinear dynamic system model is
reformulated and rewritten in a quasi-linear state-space repre-
sentationα̇(t)

α̈(t)
ẋ(t)
ẍ(t)

=


0 1 0 0

g
a si(α(t)) 0 0 − cos(α(t))

aT1
0 0 0 1
0 0 0 − 1

T1


︸ ︷︷ ︸

A(α)

·

α(t)
α̇(t)
x(t)
ẋ(t)


︸ ︷︷ ︸

x(t)

(6)

+


0

cos(α(t))
aT1
0
1
T1


︸ ︷︷ ︸

b(α)

·u(t)+

0
1
0
0


︸︷︷︸

e

·τR(t) (7)

with the function si(α) = sin(α)/α , where si(0) = 1 holds. In
a similar manner, the output equation is written in quasi-linear
form. This results in

y(t) = [−a si(α(t)) 0 1 0]︸ ︷︷ ︸
cT (α)

·x(t) (8)

It becomes obvious that the system matrix and the input as well
as output vector depend on the state variable α(t)

ẋ(t) = A(α)x(t)+b(α)u(t)+ e τR(t) (9)

y(t) = cT (α)x(t) (10)
Note that this state-dependent formulation is still exact and does
not involve any approximations. In the range of |α| < π/2,
the system point-wise fulfils Kalman’s controllability criterion,
which guarantees a successful control design in the frame-
work of extended linearisation. Here, a full rank of the state-
dependent controllability matrix

QS =
[

b Ab A2b A3b
]

(11)
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is obtained according to
detQS(α) 6= 0 : cos(α)si(α) 6= 0 . (12)

3.1 Eigenvalue Assignment Using Extended Linearisation

Based on the state-dependent state-space representation, an
eigenvalue assignment is performed. In the case of single-
input single-output systems, a symbolic computation of a state-
dependent gain vector kT (x) is possible by a comparison of the
characteristic equation

p(s) = det
(
sI−A(α)+b(α)kT (α)

)
(13)

with a desired characteristic polynomial of the closed-loop
system, for example, by specifying a fourfold eigenvalue sR

pR (s) = (s− sR)
4 . (14)

The control gain vector
kT = [kR1 kR2 kR3 kR4] (15)

is not constant but depends on the angle α , with

kR1 =
T1

(
a2sR

4 +6si(α)g a sR
2 +(si(α))2 g2

)
g si(α)cos(α)

,

kR2 =−4
aT1 sR

(
a s2

R +g si(α)
)

g si(α)cos(α)
,

kR3 =−
s4

RT1 a
g si(α)

, kR4 =−
−4s3

RT1 a+g si(α)

g si(α)
. (16)

In the admissible range of |α|< π/2, which can be kept during
control operation by a corresponding trajectory planning, any
singularities occur.

The stability of the time-varying system can be shown employ-
ing a quadratic Lyapunov function

V (x) = xT P x (17)
with a constant matrix P = I. A sufficient condition for asymp-
totic stability is the negative definiteness of the matrix

AR +AT
R < 0 , (18)

where AR = A− b kT denotes the closed-loop system ma-
trix. Alternatively, methods based on linear matrix inequalities
(LMIs) could be employed to assess the closed-loop stability.

3.2 Feedforward Control Design Using Extended Linearisation

For feedforward control design, the horizontal position of the
center of gravity (CoG) of the pendulum is chosen as the
controlled output. The corresponding output equation results in

y(t) = [−a si(α(t)) 0 1 0 ] x(t) = cT (α(t)) x(t) . (19)
Then, the command transfer function becomes

Y (s)
UFF (s)

= cT (sI−A+bkT )−1 b =

(
b0 +b1 · sb+b2 · s2

)
N (s)

.

(20)
It becomes obvious that the numerator is given by a second-
order polynomial in s with two transfer zeros. The chosen
output, hence, is a non-flat output variable, which renders the
feedforward control design more involved and demands for an
alternative solution towards an appropriate feedforward control
action uFF . The main idea consists in modifying the numerator
of the command transfer function by means of a polynomial
ansatz in the Laplace domain

UFF (s) =
[
kV 0 + kV 1 · s+ kV 2 · s2 + kV 3 · s3]Yd (s) . (21)

As the desired trajectory yKd(t) as well as its first three
time derivatives are provided by a trajectory planning module,

this feedforward action is realizable. The parameter-dependent
feedforward gains kV j = kV j(α) follow from a comparison of
the corresponding coefficients in the numerator as well as the
denominator polynomials of

Y (s)
Yd (s)

=

(
b0 +b1 · s+b2 · s2

)[
kV 0 + . . .+ kV 3 · s3

]
N (s)

=
bV 0 (kV j)+bV 1 (kV j) · s+ . . .+bV 5 (kV j) · s5

a0 +a1 · s+a2 · s2 +a3 · s3 + s4 (22)

according to

ai = bVi (kV j) , i = 0, . . . ,n = 3 . (23)

In the given case, the feedforward gains become

kV 0 = kR3, kV 1 = kR4 +1,

kV 2 =−
si(α)cos(α)kR3 a−g si(α)T1 + cos(α)kR1

g si(α)
,

kV 3 =−
cos(α)(si(α)kR4 a+a si(α)+ kR2)

g si(α)
. (24)

Obviously— caused by the higher numerator degree in (22) –
perfect tracking is not achievable and remaining dynamics must
be accepted. Nevertheless, this feedforward control is easily im-
plementable and significantly improves the tracking behaviour.
The gain-scheduling is performed using the measured angle
α(t) in this work; alternatively, also desired values correspond-
ing to the chosen trajectory could be employed instead.

Moreover, it allows for an analysis of the feasibility of desired
state and output trajectories. If such constraints are violated, a
proper time scaling of the desired trajectory could be applied to
render it feasible.

4. OBSERVER-BASED COMPENSATION OF EXTERNAL
DISTURBANCES

Disturbance behaviour and tracking accuracy in view of non-
linear friction and model uncertainty can be improved signif-
icantly by the introduction of a compensating control action
using an appropriate estimator.

4.1 Design of a Combined State and Disturbance Observer
Using Extended Linearisation

As only the carriage position x(t) and the pendulum angle
α(t) are measurable, a combined state and disturbance observer
is designed. By extending the state vector by the disturbance
τR(t), the measurement equation becomes

y(t) =
[

x(t)
α(t)

]
=

[
1 0 0 0 0
0 0 1 0 0

]
︸ ︷︷ ︸

C

·


α(t)
α̇(t)
x(t)
ẋ(t)
τR(t)


︸ ︷︷ ︸

xO

. (25)

As disturbance model for the disturbance τR(t), a single inte-
grator is appropriate: τ̇R(t) = 0. The ansatz for a combined state
and disturbance observer is given by the following state-space
representation
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
˙̂α(t)
¨̂α(t)
˙̂x(t)
¨̂x(t)
˙̂τR(t)

=


0 1 0 0 0

g
a si(α(t)) 0 0 − cos(α(t))

aT1
1

0 0 0 1 0
0 0 0 − 1

T1
0

0 0 0 0 0


︸ ︷︷ ︸

AO

·


α̂(t)
˙̂α(t)
x̂(t)
˙̂x(t)

τ̂R(t)


︸ ︷︷ ︸

x̂O

+


0

cos(α(t))
aT1
0
1
T1
0


︸ ︷︷ ︸

bO

·u(t)+


h11 0
h21 0
0 h32
0 h42

h51 0


︸ ︷︷ ︸

HO

·
[

x(t)− x̂(t)
α(t)− α̂(t)

]
(26)

and yields an estimate of the disturbance τ̂R(t). The input
variable is given by the desired carriage velocity u(t) provided
by the overall control law. Resulting from the choice for the
observer gain matrix HO above, the corresponding gains can
be calculated in symbolic form. This becomes possible by a
comparison of the characteristic equation

p(s) = det(sI−AO (α)+HO (α)C) (27)
with a desired characteristic polynomial of the observer, e.g.,
by specifying a five-fold real eigenvalue sO < 0

pO (s) = (s− s0)
5 . (28)

The observer gains depend on the angle α(t) and result in

h11 = 3sO, h21 =
3a s2

O +g si(α)

a

h32 =
2sO T1−1

T1
, h42 =

T 2
1 s2

O−2sO T1 +1
T 2

1
, h51 = s3

O . (29)

The stability of the the closed-loop observer system matrix

AO,cl =



−3sO 1 0 0 0

−3s2
O 0 0 − cos(α)

a T1
1

0 0 − 2sO T1−1
T1

1 0

0 0 −T 2
1 s2

O−2sO T1+1
T 2

1
− 1

T1
0

−s3
O 0 0 0 0


, (30)

where only the (2,4)-element depends on α , has been investi-
gated by Lyapunov methods by determining a joint Lyapunov
function

V (x) = xT PO x , (31)
with a constant matrix P0 > 0, for the given range of α . Note
that this observer is applicable also during the envisaged swing-
up control.

4.2 Model-Based Disturbance Compensation

The compensation is derived from the command transfer func-
tion

Gb(s) = cT (sI−A+bkT )−1 b (32)
as well as the disturbance transfer function

Ge(s) = cT (sI−A+bkT )−1 e (33)
to the controlled output. For disturbance compensation, the
following design condition must be fulfilled in the Laplace
domain up to linear terms in s

Gb(s) · (kS0 + kS1 · s)+Ge(s) = 0. (34)

This leads to the following compensation gains

kS0 =−
a(si(α)a kR3 + kR1)

g si(α)
, (35)

kS1 =−
a(si(α)a kR4 +a si(α)+ kR2)

g si(α)
. (36)

Disturbance compensation is performed by introducing the
estimated force τ̂R(t) into the dynamic compensation law

uDC(t) = kS0τ̂R(t)+ kS1 ˙̂τR(t). (37)
The necessary time derivative of the disturbance can be ob-
tained approximately by a low-pass-filtered differentiation of
τ̂R(t).

5. DISTURBANCE ESTIMATION THROUGH GAUSSIAN
PROCESS MODELLING

An alternative to the observer-based estimation of the distur-
bance term as presented in Sect. 4 is given by a data-based
approach. In this section, hence, some general ideas regarding
data-driven modelling based on Gaussian Processes (GP) and
the estimation of the disturbance using this GP modelling are
presented.

5.1 Gaussian Process Regression

In a formal way, a GP can be defined as a collection of random
variables (RV) with joint Gaussian distributions for any finite
subset of RVs. The GP is, hence, fully described by a mean
function and covariance or kernel function K(·, ·). The task
consists in an approximation of a nonlinear mapping of a
system

y = f (z)+ ε (38)
from the input vector z in the input space Rnz to a scalar output
y in the output space R, where white additive Gaussian noise
ε ∼N (0,σ2) characterises the observation noise. Considering
an a-posteriori probability distribution that is derived from the
training data set, the mean value corresponds to the estimate
itself, whereas the variance represents an uncertainty measure
of the estimate. The training data set consists of l training points
and is defined as Z= [z1, . . . ,zl ]

T ∈Rl×nz . Then, the output data
is a normal distribution

y∼N (0,K +σ
2
ε I) , (39)

where the l× l covariance matrix can be constructed using the
kernel function [K ]i j = K(Zi,Z j), i, j = 1, . . . , l and the second
term increases the noise variance on the main diagonal.

GP may be classified as an essential kernel machine learning
method describing the relationship between input and output
data by a kernel function K(·, ·). In general, the kernel function,
i.e. covariance function, can be any function – provided that
it generates a positive definite covariance matrix. The common
choice, however, of the kernel function is the Gaussian function,
which is defined as

K(Zi,Z j) = σ
2
f · exp

(
−1

2
(Zi−Z j)

T
Λ
−1(Zi−Z j)

)
, (40)

where Λ = diag(λ1, . . . ,λl) denotes the characteristic length
scale and σ f is the signal standard deviation. These hyper-
parameters – the length scales λi and the variance σ2

f – should
be learned. For the GP, once the hyper-parameters have been
learned, the mean and the variance of an output estimate (or
prediction) is computed through the Gaussian joint probability
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distribution function of the training data Z and the prediction
data z∗ as follows

µGP = K(Z,z∗)T (K +σ2
ε I)−1y,

σ2
GP = K(z∗,z∗)−K(Z,z∗)T (K +σ2

ε I)−1K(Z,z∗).
(41)

Therefore, the mean µGP can be used as an estimate for the
corresponding output and the variance σ2

GP as an uncertainty
measure of the output.

5.2 Energy-Based Swing-Up Control

The learning of the GP model takes place during an energy-
based swing-up control of the pendulum from the stable equi-
librium at α(0) = −π, α̇(0) = 0. The design follows the ideas
presented in Zhong (2001). For this purpose, the total mechan-
ical energy of the pendulum subsystem is considered

E(α(t), α̇(t)) =
m a2

2
α̇

2(t)+m g a cos(α(t)) . (42)

The time derivative results in
Ė(α(t), α̇(t)) = m g a cos(α(t)) α̇(t) υ(t) , (43)

where υ(t) = ẍ(t) denotes the carriage acceleration. With the
energy Eup = m g a in the upper pendulum position and the
error Ẽ(α, α̇) = E(α, α̇)− Eup, an energy-based control law
can be stated that brings the pendulum into the upright position

υ(t) =−k̃ · Ẽ(t) · [m g a cos(α(t)) α̇(t)]2 , (44)
with a positive constant k̃ > 0. The physical control input
follows from

u(t) = T1υ(t)+ ẋ(t) . (45)
If a predefined band around the upright position is attained, the
control is switched to the gain-scheduled tracking control law
described in Sect. 3.

6. SIMULATION RESULTS

In the presented simulation study, the main freedom in the de-
sign of the GP model is the definition of both type and number
of inputs characterizing the model structure. For the modelling
of the unmeasurable disturbance τR(t) with GP regression, an
observer-based approach is employed in this work. The state
and disturbance observer provides estimates for the angular
velocity ˙̂α(t) of the pendulum as well as the corresponding
disturbance τ̂R(t). These estimates serve as inputs of a GP
regression as described above.

For the training phase, the swing-up control according to Sub-
sect. 5.2 is activated, and the GP regression is performed. To
obtain realistic results, the measurements involve additional
white Gaussian noise with a standard deviation of σnoise = 1e−6.
The carriage position and the pendulum angle during the swing-
up phase are illustrated by Fig. 3.

After the GP has been trained, the previously used observer-
based disturbance compensation is deactivated and now sub-
stituted by an online prediction of the trained GP disturbance
model.

Fig. 4 shows the simulated damping and friction term τR(α̇),
which is considered as unknown, and the learned GP regression
model. Obviously, the characteristic w.r.t. the angular velocity
of the pendulum is well reconstructed and may be used for a
subsequent disturbance compensation. Fig. 5 depicts the time
behaviour of the simulated damping and friction term, the es-
timated disturbance of the observer as well as the predictions

Fig. 3. Energy-based swing-up motion of the inverted pendu-
lum: carriage position x(t) and pendulum angle α(t).

Fig. 4. Simulated damping and friction term τR(t) in compari-
son with the learned GP regression model.

Fig. 5. Comparison of the simulated damping and friction term,
the estimated disturbance of the observer and predictions
from the learned GP regression model over time.

form the learned GP regression model. It can be seen that the
estimate of the observer τR,O(t) is quite noisy, whereas both
the simulated term τR(t) and the GP predictions τR,GP(t) are
significantly smoother. After the successful learning of a GP
regression model, the desired trajectory shown in Fig. 6 should
be tracked accurately. For this purpose, a disturbance compen-
sation is beneficial. The simulated values depicted here corre-
spond to the GP-based disturbance compensation. Fig. 7 shows
the benefits of a disturbance compensation using the learned
GP model instead of a classical observer-based disturbance
compensation. The tracking errors w.r.t. the desired trajectory
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Fig. 6. Comparison of desired and simulated values for hor-
izontal position y(t) of the pendulum center of gravity
according to (19) as the controlled output.

Fig. 7. Tracking errors w.r.t. a desired trajectory in sidewards
direction: comparison of an observer-based disturbance
compensation and a compensation using the GP regression
model.

in sidewards direction indicate a reduction of the maximum
tracking error by approx. 40 % that could be achieved.

7. CONCLUSIONS

In this paper, a nonlinear observer-based tracking control for an
inverted pendulum with an underlying velocity control is pre-
sented. The fourth-order system model consists of the pendu-
lum dynamics and the dynamics of the carriage motion, which
is covered by a first-order lag behaviour for the carriage velocity
and the kinematic relationship between position and velocity.
The system model is characterized, moreover, by a nonlinear
disturbance torque in the rotary joint of the pendulum which
is compensated by GP regression techniques. The GP regres-
sion is performed using the estimated angular velocity and the
estimate for the disturbance term provided from the observer
during a swing-up control. Afterwards, the learned GP model
is used for a disturbance compensation to improve the tracking
of a desired trajectory in sidewards direction. The nonlinear
control design is performed with extended linearisation tech-
niques and involve a combination of dynamic feedforward con-
trol and feedback control. Stability of the closed-loop control
loop as well as of the observer dynamics has been investigated

by Lyapunov methods. Simulation results show clearly that
the disturbance compensation using the GP regression model
outperforms the observer-based disturbance compensation.
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