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Abstract: This paper addresses the problem of target localization with a single or multiple
mobile trackers using range measurements from the trackers to the target. We consider three
scenarios: i) the target is fixed, ii) the target’s velocity vector is unknown but constant, and
iii) the target’s acceleration vector is unknown but constant. The main contributions of the
paper are twofold: i) we derive a set of necessary and sufficient conditions on the motion of
the trackers under which the target’s state, that might include the target’s position, velocity
and acceleration vectors is globally observable, and ii) we show how the conditions derived lend
themselves to an intuitive geometric interpretation that yields valuable guidelines to plan the
tracker’s motion. Numerical simulations are included to confirm the conditions derived.
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1. INTRODUCTION

The problems of range-based navigation and target local-
ization have been studied extensively in recent years. In
what follows, by range-based navigation we mean the prob-
lem of having a vehicle estimate its own state (position,
possibly velocity and acceleration) using measurements
of the distances of the vehicle to a single or multiple
known beacons Bayat et al. [2016]. Target localization
(or tracking), on the other hand, is defined for one or
multiple trackers as the problem of tracking the state of
a fixed or moving target using range measurements from
the tracker(s) to the target, Crasta et al. [2018]. The two
problems are dual and impose the same fundamental issues
on observability analysis. Namely, for the case of target
tracking, to find under what conditions of the relative mo-
tion of the tracker(s) with respect to the target is the state
of the latter observable. This problem is challenging due to
the fact that range measurements are nonlinear function
of the target’s position, thus making the observability of
the resulting system hard to analyze.
One of the earliest results on the observability of target
localization can be found in Song [1999], where the authors
conclude that: “the tracker maneuver should include a
nonzero jerk motion to track a target with a constant
acceleration vector while a nonzero acceleration motion
is required to track a target with a constant velocity
vector”. Although this conclusion sounds logical it can
be shown that even those conditions are satisfied, the
target might not be localizable (trackable). To illustrate
this, we consider a target starting at an initial position
pT(t0) and moving along a straight line with velocity
vector uT, as shown in Fig 1.1. We also consider a tracker
that can be started anywhere and moves with a velocity
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vector α(t)uT, with α̈(t) 6= 0 for all t, so that it satisfies
the conditions stated above. Note that with this velocity
vector, the tracker will move along a straight line parallel
to the trajectory of the target. With this motion of the
tracker, as shown in the figure, there exists a virtual target
moving with the same velocity vector uT reflected about
the tracker’s trajectory, such that the ranges from the
tracker to the true target and its mirror image are the
same. This, obviously, makes it impossible to distinguish
the target and its mirror image and brings attention to
the need to study the problem of target observability in a
rigorous setting.
Because of the nonlinearity of the map from linear po-

Target’s trajectory

Virtual target’s trajectory

Tracker’s trajectory
Same range

Fig. 1.1. A counterexample: the target is not localizable if
the tracker moves parallel to the target.

sitions to ranges, the range-based observability problem
must be addressed in a nonlinear system setting. This can
be done by resorting to the tools of differential algebraic
geometry described inHermann and Krener [1977], where
a sufficient condition for local observability of a nonlinear
system is given in terms of an observability rank condition.
In this context, the local observability for an AUV modeled
by an integrator is studied in Arrichiello et al. [2013]. This
work was extended in Palma et al. [2017] for an AUV
modeled as a double integrator system.
Another approach to study local observability of a given
nonlinear system involves the use of the Fisher information
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matrix (FIM) to measure the amount of information that
the range measurements carry about the target’s motion.
With this approach, the observability problem is converted
into that of finding conditions on the tracker’s trajectory so
as to guarantee that the FIM is non-singular, thus ensuring
that the target state is at least locally observable. See for
example Crasta et al. [2018], Masmitja et al. [2018], Ristic
et al. [2002], Song [1999] and the references therein for
related work in the area.
Other interesting results were reported in Batista et al.
[2011], where the authors considered the problem of local-
izing a source (fixed-target) using single range to a tracker.
The underlying idea behind the work was to transform the
original nonlinear system into a higher dimensional linear
time varying (LTV) system via an appropriate state aug-
mentation. Conditions on the tracker’s motion to localize
the target were then derived for the LTV system, which
were proved to be sufficient for the original nonlinear sys-
tem. Work along the same lines is reported in Indiveri et al.
[2016] where a different state argumentation is proposed
to avoid the singularity that might happen in Batista et al.
[2011], Palma et al. [2017] when the range is closed to zero.
Motivated by the above considerations, this paper ad-
dresses the observability problem of range-based target
localization with one or two trackers. We analyze three
scenarios where: i) the target is fixed, ii) the target’s is
unknown but constant, iii) and the target’s acceleration
vector is unknown but constant. The key contributions of
the paper are the following.

(i) We propose a novel approach to derive conditions on
the motion of the tracker(s) under which the target’s
state is globally observable. The method adopted
uses simple mathematical tools to characterize the
linear independence of a set of functions of time.
The results in this paper extends those in Batista
et al. [2011], where only the case of a single tracker
and a fixed target is considered. For this case, our
method yields conditions identical to the ones Batista
et al. [2011]. However, the method adopted is much
simpler.

(ii) We also propose the results for the case where the
target is localized with two trackers. With two range
measurements the trackers´motion required for ob-
servability is less demanding than in the case of a
single tracker.

(iii) We also show how the observability conditions de-
rived lend themselves to intuitive geometric inter-
pretations that yield valuable guidelines to plan the
trackers´ motions.

The paper is organized as follows. The problem of interest
is formulated in Section II. Section III summarizes the
main tools for observability analysis used in the paper.
Section IV derives the condition for the motion of single
tracker to localize a single target. Section V extends the
results in Section IV for the case of two trackers-single
target. Illustrative simulations are presented in Section VI.
Section VII contains the main conclusions.

2. PROBLEM FORMULATION

For the sake of simplicity and transparency in the notation,
in this section we start by formulating the problem of
range-based target localization for a single tracker-single
target pair.

2.1 System Model

Consider a tracker that attempts to localize an unknown
fixed or moving target. In what follows, {I} = {xI , yI , zI}
denotes an inertial frame and {B} = {xB, yB, zB} denotes
a body frame attached to the tracker. In what follows we
described the tracker and target models adopted.
Track’s model: We consider the cases where the tracker’s
motion is described by the equations

ṗ(t) = RIB(η(t))v(t) + vc(t),

v̇c(t) = 0,
(1)

where p = [px, py, pz]T ∈ R3 is the inertial position vector
of the tracker expressed in {I}; RBI (η) ∈ R3×3 is the
rotation matrix from {B} to {I}, parameterized by a

vector η , [φ, θ, ψ]T of Euler angles: denoted roll (φ),
pitch (θ) and yaw (ψ); v is the tracker’s velocity vector
expressed in the body frame {B}; and vc is an unknown
external disturbance vector assumed to be constant in the
inertial frame, e.g. wind velocity vector in air or ocean
current velocity vector in the marine environment.
Targets’ model: We consider three practical scenarios for
the motion of the target.
Scenario A: Target is fixed.
Let pT = [xT, yT, zT]T ∈ R3 be the position vector of the
target in the inertial frame {I}. The target’s model is given
by

ṗT(t) = 0. (2)

The target state is defined as xT , pT ∈ R3.
Scenario B: Target moving with unknown velocity vector.
In this case, we assume that the target’s velocity vector
changes slowly but is unknown. An approximate target
model is given by

ṗT(t) = uT(t) + vc(t),

u̇T(t) = 0.
(3)

Because v̇c(t) = 0 the model (3) is equivalent to ṗT(t) =

vT(t) and v̇T(t) = 0, where vT(t) , uT(t) + vc(t) is
unknown. However, later we will show that by splitting
vT as in (3), the analysis will be more convenient. In

this scenario, the target’s state vector is defined as xT ,
[pT

T ,u
T
T ]T ∈ R6.

Scenario C: Target moving with unknown acceleration
vector.
We now consider the most challenging cases where target’s
acceleration vector is unknown. The target model is given
by

ṗT(t) = uT(t) + vc(t),

u̇T(t) = aT(t),

ȧT(t) = 0.
(4)

The model in (3) is equivalent to: ṗT(t) = vT(t), v̇T(t) =

aT(t), and ȧT(t) = 0 where, vT(t) , uT(t) + vc(t). In (4),

the target’s state vector is defined as xT , [pT
T ,u

T
T ,a

T
T ]T ∈

R9.
Range measurement model: We assume that the tracker is
equipped with a sensor unit capable of measuring its range
to the target according to the model

r(t) = ‖p(t)− pT(t)‖. (5)

2.2 Problem Statements

Problem 1 [Single tracker-single target localization].
Consider a tracker moving in the presence of an unknown
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external constant disturbance described by (1), the target’s
model given in (2)–(4) depending on different scenarios
considered, and the range measurement model given by
(5). Assume further that the measurements of the tracker’s
position, velocity, and Euler angles are available. Derive
conditions for the tracker’s motion (either in terms of
its input profile v(t) or its trajectory p(t)) under which
the target’s state is completely observable, i.e. the initial
target’s state xT(t0) is uniquely determined.
The dual problem of the target localization problem de-
fined above is the navigation problem. That is, given all in-
formation of a single or multiple fixed or moving beacon(s),
find conditions on the trajectory of the vehicle under
which its position (and possibly velocity and acceleration)
vectors can be determined. In the literature, this is also
referred as the positioning problem. Since the navigation
and target localization are dual, we only propose the solu-
tion for the later. The former can be obtained analogously.

3. TOOLS FOR OBSERVABILITY ANALYSIS

To solve Problem 1, we consider the extended dynamical
system consisting of the tracker’s model (1), the target’s
model (2)–(4) that depends on the target model adopted,
and the range measurement model (5) in the following
form:

ẋ(t) = f(x(t),u(t)),

y(t) = h(x(t)),
(6)

where, x , [pT,vT
c ,x

T
T ] is the state vector, u =

[ux, uy, uz]T , RIB(η)v ∈ R3 is the input vector, and
y = [pT, r]T ∈ R4 is the output vector. Notice that the
dimension of x depends on the dimension of xT, which in
turn depends on the target model adopted, and the maps
f(·) and h(·) can be obtained directly from equation (1)–
(5). We use the following definition of observability for the
system (6) that is an extension of the Definition 5-5 in
Chen [1984] as follows.

Definition 1. (Observability). The dynamical system de-
scribed by (6) is said to be (completely state) observable
at t0 if there exists a finite time tf > t0 such that for
any initial state x(t0), the knowledge of the input u[t0,tf ]

and the output y[t0,tf ] suffices to determine the initial state
x(t0). Otherwise, the system is said to be unobservable at
t0.

In the state vector x of system (6), p is known because
it is a part of the measurement vector y. In addition, the
disturbance vc is observable with any tracker’s trajectory.
This can be verified by considering the sub-system given
by (1) with the state z , [pT,vT

c ]T, the input u, and the
output p. The sub-system (1) is linear and can be rewritten
as

ż =

[
03 I3
03 03

]
z +

[
I3
03

]
u, p = [I3 03]z. (7)

where I3 ∈ R3×3 is the identity matrix. Using the linear
observability rank condition, it is easy to check that the
system (7) is observable. Hence, the disturbance vc can be
determined with the knowledge of the tracker’s position p
and its input u. Therefore, system (6) is completely state
observable if and only if the target state xT is observable.
Because the system (6) is nonlinear, its state observability
depends on the system input u. The purpose of this paper
is to derive the set of conditions on the tracker’s motion

under which the state x of system (6) or equivalently, the
target’s state is observable, i.e. the initial target’s state
xT(t0) is uniquely determined. The essential tool to derive
the conditions is linear independence of functions over a
compact interval of time is stated as follows.

Lemma 1. Let fi(t), for i = 1, 2, ..., n be 1× p vector real-
valued continuous functions of t defined on the interval
[t0, tf ]. Let F = [f1, ..., fn] be the n × p matrix with fi as
its ith row. Define

W (t0, tf ) ,
∫ tf
t0
F (t)FT(t)dt.

Then, W (t0, tf ) is non-singular if and only if the f1, f2, ..., fn
are linear independent on [t0, tf ].

Proof. See the proof of Theorem 5-1 in Chen [1984]. For
the definition of linear independence of functions, we refer
the reader to section 5-2 in Chen [1984].

4. SINGLE TRACKER-SINGLE TARGET

In this section, we will derive a set of conditions on
the motion of the tracker (either on its input u(t) or
on its trajectory p(t)) under which the target’s state is
observable, i.e. the initial state of target xT(t0) is uniquely
determined. For the sake of convenience, let

q(t0) , p(t0)− pT(t0). (8)

Because p(t0) is known, pT(t0) is uniquely determined if
and only if q(t0) is uniquely determined. Furthermore,
from (1) we obtain

p(t) = p(t0) + λ(t) + (t− t0)vc(t0), (9)

where

λ(t) = [λx(t), λy(t), λz(t)]T ,
∫ t

t0
u(τ)dτ . (10)

We start by considering the simplest case when the target
is fixed in the inertial frame {I}.

4.1 Target is fixed

From (2), it follows that pT(t) = pT(t0) for all t ≥ t0.
Inserting the above equality and (9) in (5) yields

r2(t) = ‖p(t)− pT(t)‖2

= ‖p(t0) + λ(t) + (t− t0)vc(t0)− pT(t0)‖2.
(11)

Furthermore, inserting (8) in (11), we obtain

r2(t) =‖q(t0)‖2 + ‖λ(t)‖2 + 2λT(t)q(t0)

+2(t− t0)λT(t)vc(t0) + 2(t− t0)qT(t0)vc(t0)

+(t− t0)2‖vc(t0)‖2.
(12)

Notice that ‖q(t0)‖2 = r2(t0). Let yA(t) , r2(t)− r2(t0)−
‖λ(t)‖2, from which equation (12) can be rewritten as

yA(t) = CA(t)zA(t0), (13)

where zA(t0) , [qT(t0),vT
c (t0),qT(t0)vc(t0), ‖vc(t0)‖2]T

and

CA(t) , [2λT(t) 2(t− t0)λT(t) 2(t− t0) (t− t0)2]. (14)

Notice that yA(t) is known because r(t) and λ(t) are known
for all t ≥ t0. Matrix C(t), which carries the information
about the tracker’s input trajectory u(t) in the interval
[t0, t] is also known. Because zA(t0) contains q(t0), it is
clearly that knowing a solution for zA(t0) is sufficient to
determine q(t0), which from (8) it is also sufficient to
determine pT(t0). The following results states sufficient
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condition on the tracker’s motion under which pT(t0) is
uniquely determined.

Theorem 1. Consider the target localization problem de-
fined in Problem 1, where the target is fixed. Let S1 and
S2 be two sets of functions defined by

S1 , {λx(t), λy(t), λz(t), (t− t0)λx(t), (t− t0)λy(t),

(t− t0)λz(t), t− t0, (t− t0)2}.
(15)

S2 , {px(t)− px(t0), py(t)− py(t0), pz(t)− pz(t0),

(t− t0)(px(t)− px(t0)), (t− t0)(py(t)− py(t0)),

(t− t0)(pz(t)− pz(t0)), t− t0, (t− t0)2}.
(16)

Then, the initial target’s state xT(t0) , pT(t0) is uniquely
determined if either the set of functions in S1 or in S2 are
linear independent on the interval [t0, tf ], where tf > t0.

Proof. We first prove the result for the condition stated
with the set S1. Multiplying both sides of (13) by CT(t)
and integrating from t0 to tf , we obtain∫ tf

t0
CA(τ)yA(τ)dτ =

(∫ tf
t0
CT

A (τ)CA(τ)dτ
)

z(t0). (17)

Let W (t0, tf ) ,
∫ tf
t0
CT

A (τ)CA(τ)dτ . If W (t0, tf ) is non-

singular, z(t0) = W−1(t0, tf )
∫ tf
t0
CA(τ)yA(τ)dτ is a unique

solution of (17). Using Lemma 1, W (t0, tf ) is non-singular
if and only if the columns of matrix CA(t) are linear
independent on [t0, tf ]. From (10), (14), and noticing that
by multiplying the columns of matrix CA(t) with any con-
stant, linear independence of the columns is still preserved,
we conclude that zA(t0) is uniquely determined if and
only if the set of functions in S1 are linear independent
on [t0, tf ]. Consequently, as explained earlier, this is a
sufficient condition to determine pT(t0).
We now prove the same result for the condition stated with
the functions in S2. From (9), we obtain

λ(t) = p(t)− p(t0)− (t− t0)vc(t0). (18)

Substituting (18) in (15) and using the definition of linear
independence of functions (see Section 5-2 in Chen [1984])
it can be easily checked that the set of functions in S1 are
linear independent if and only if the set of functions in
S2 are also linear independent. Hence, we conclude that
pT(t0) is uniquely determined if the set of functions in
S2 are linear independent on [t0, tf ]. This completes the
proof. �
It is interesting to observe that the condition stated in
Theorem 1 for the set S2 is identical to the one given in
Theorem 3 in Batista et al. [2011]. However, it can be seen
above that the method used to derive the condition is much
simpler in our paper. In Batista et al. [2011], to obtain
the conditions in Theorem 1, the authors make use of a
“Lyapunov state transformation and state augmentation”
to transform the original nonlinear system to a LTV
system. The authors then derive a condition for the LTV
that later can be proved to be a sufficient condition for
the original nonlinear system as well. Another advantage
of our method is that it avoids the singularity that might
happen in Batista et al. [2011] when the tracker is close to
the target, i.e. when y(t) = 0 for some t ∈ [t, tf ].
We now consider a special case of Theorem 1 where the
external disturbance is negligible, i.e. vc(t) ≡ 0.

Corollary 1. Consider the target localization problem in
Theorem 1. Assume further that the disturbance vc is
negligible (vc(t) ≡ 0). Let S

′

1 and S
′

2 be two sets of
functions defined by

S
′

1 , {λx(t), λy(t), λz(t)}. (19)

S
′

2 , {px(t)− px(t0), py(t)− py(t0), pz(t)− pz(t0)}. (20)

Then, the initial target’s state xT(t0) , pT(t0) is uniquely

determined if and only if either the set of functions in S
′

1 or

in S
′

2 are linear independent on the interval [t0, tf ], where
tf > t0.

Proof: We first show the result for S
′

1. Substituting vc = 0

in (12), we obtain yA(t) = 2λT(t)q(t0). Using Lemma
1 we conclude that q(t0) is uniquely determined if and

only if the columns of matrix λT(t) ∈ R1×3 (that are the

functions in the set S
′

1) are linear independent on [t0, tf ].
Recall from (8) that q(t0) = p(t0)− pT(t0) where p(t0) is

known, hence the linear independence of functions in S
′

1 is
necessary and sufficient to determine pT(t0). Furthermore,

substituting vc = 0 in (9), we obtain that S
′

2 ≡ S
′

1. �
We now discuss the geometrical intuition behind the
condition given in the corollary. The above necessary and
sufficient condition implies that the target’s position can
not be determined if the tracker moves along any straight
line, since this violates the linear independence condition
of the functions in S

′

2. This is not surprising and can be
explained intuitively from a geometrical standpoint. In
fact, if the tracker moves along a straight line, then there
exists an reflected image (in 2D) or a set of reflected images
(in 3D) of the target about that line such that the ranges
from tracker to the target and to its reflected image are
the same, thus making it impossible to distinguish the true
target and its reflected images. See a trajectory in Fig.4.1
(solid-black) as an illustration for the case of 2D.
In practice, it is common to use an under-actuated vehicle
as the tracker to localize the target. In 2D, xI−yI plane for
example, the motion of the robot can be simply rewritten
from (1) as

ṗx = v cos(ψ) , ux, ṗy = v sin(ψ) , uy. (21)

For this type of tracker, the condition in Corollary 1
implies that it is sufficient to localize the target if the
tracker moves with non zero speed (v 6= 0) and changes
its heading (ψ) at least one time in the interval (t0, tf )
(see the red curve in Fig.4.1 as an example of this type

of trajectory where ψ̇(t) 6= 0 for all t ∈ [t0, tf ]). This can
be extended to 3D analogously, it is sufficient to localize
the target that the tracker move with non-zero speed and
change at least any two Euler angles at any different times
in the interval (t0, tf ).

Target

Target’s image

Exciting 
trajectory Non-exciting 

trajectory

Fig. 4.1. Localization of a fixed target using single tracker
under vc = 0.

4.2 Target moving with unknown velocity vector

From (3), we obtain
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pT(t) = pT(t0) + (t− t0)uT(t0) + (t− t0)vc(t0). (22)

Substituting (9) and (22) in (5) yields

r2(t) = ‖p(t0) + λ(t)− (t− t0)uT(t0)− pT(t0)‖2. (23)

Extending (23) similarly to the case for a fixed target we
obtain

yC(t) = CC(t)zC(t0), (24)

where zC(t0) , [qT(t0),uT
T (t0),qT(t0)uT(t0), ‖uT(t0)‖2]T,

yC(t) , yA(t), and C(t) is given by

CC(t) , [2λT(t) − 2(t− t0)λT(t) − 2(t− t0) (t− t0)2].
(25)

Recall from (8) that q(t0) = p(t0)−pT(t0), where p(t0) is
known. Hence, the condition that will enable to determine
zC(t0) is sufficient to determine the initial position vector
pT(t0) and the initial velocity vector uT(t0) of the target.
We obtain the following result.

Theorem 2. Consider the target localization problem de-
fined in Problem 1, where the target moving with un-
known velocity vector given by model (3). Then, the initial

state of the target xT(t0) , [pT
T (t0),uT

T (t0)]T is uniquely
determined at t0 if either the set of functions in S1 or
in S2 defined in (15) and (16), respectively are linear
independent on the interval [t0, tf ], where tf > t0.

Proof: From (24) and using Lemma 1 in similar way to
the proof of Theorem 1 we conclude that zC(t0) is uniquely
determined on the interval [t0, tf ] if and only if the columns
of matrix CC(t) are linear independent on [t0, tf ]. It can
be easily seen that the columns of CC(t) are linear in-
dependent if and only if the columns of CA(t) are linear
independent. This condition, as shown in Theorem 1, is
equivalent to having the set of functions in S1 or in S2

linearly independent on [t0, tf ]. This completes the proof.
�
We now discuss several types of trajectory that satisfy the
condition given in Theorem 2. In 2D, it can be checked (us-
ing either the definition of linear independence of functions
or their Wronskian (Theorem 5-2, Chen [1984])) that every
“cycloid-type” trajectory for the tracker given in the form
p(t) = [px(t), py(t)]T = [rx sin(ωt) + cxt, ry cos(ωt) + cyt]

T

with rx, ry, ω 6= 0 satisfies the condition in the theorem.
See Fig. 4.2 as a graphical presentation of several trajec-
tories given by the above formula. Similarly, in 3D, every
“helix-type” trajectories of the form p(t) = [rx sin(ω1t) +
cxt, ry cos(ω1t) + cyt, rz sin(ω2t) + czt]

T with ω1 6= ω2 6= 0
satisfies the condition in the theorem. However, “pure
helix” trajectories (obtained with rz = 0) do not satisfy
the condition. Thus, we can not conclude if they guarantee
that the target’s states (both the position and velocity
vector) are observable or not as the condition given is
sufficient. From a system identification point of view, this
can be explained that the full state of the target may not
be “completely” observable. That is, if c2 = 0 or ω2 = 0
then the relative velocity vector between the tracker and
the target ũ(t) = u(t) − uT(t) = [?, ?, c1 − c], where c
is the third component of uT and constant. Because the
third component of the relative vector ũ does not change
over time, this information may not be “sufficient” to
identify the third component of the target’s velocity vector
uT, hence the full target’s state might not be completely
observable with the “pure helix” trajectories.

Fig. 4.2. Illustration of several “cycloid-type” trajectories.

4.3 Target moving with unknown acceleration vector

From (4), we obtain

pT(t) = pT(t0) + (t− t0)uT(t0)

+ 0.5(t− t0)2aT(t0) + (t− t0)vc(t0).
(26)

Inserting (8), (9) and (26) in (5) yields

r2(t) = ||q(t0) + λ(t)− (t− t0)uT(t0)

− 0.5(t− t0)2aT(t0)||2
(27)

Extending equation (27) similarly to the previous cases,
we obtain

yD(t) = CD(t)zD(t0), (28)

where yD(t) , yA(t),

zD(t0) ,

[qT(t0),uT
T (t0),aT

T (t0),qT(t0)uT(t0),

‖uT(t0)‖2 − qT(t0)aT
T (t0),uT

T (t0)aT
T (t0), ‖aT(t0)‖2]T,

(29)
and CD(t) is given by

CD(t) ,[2λT(t) − 2(t− t0)λT(t) − (t− t0)2λT(t)

−2(t− t0) (t− t0)2 2(t− t0)3 0.25(t− t0)4].
(30)

At this stage, we obtain the following result.

Theorem 3. Consider the target localization problem de-
fined in Problem 1, where the target is moving with an
unknown acceleration vector given by model (4). Let S3

and S4 be two sets of functions defined by

S3 , S1∪{(t− t0)3, (t− t0)4, (t− t0)2λx(t),

(t− t0)2λy(t), (t− t0)2λz(t)},
(31)

S4 , S2 ∪ {(t− t0)3, (t− t0)4, (t− t0)2(px(t)− px(t0)),

(t− t0)2(py(t)− py(t0)), (t− t0)2(pz(t)− pz(t0))}.
(32)

Then, the initial target’s state

xT(t0) , [pT
T (t0),uT

T (t0),aT
T (t0)]T

is uniquely determined at t0 if either the set of functions in
S3 or in S4 are linear independent on the interval [t0, tf ],
where tf > t0..

Proof: The proof for the set S3 is similar to the proof for
the set S1 in Theorem 1. Similarly substituting (18) in (31)
and noticing that vc(t0) is constant, it can be shown that
the functions in S3 are linear independent if the functions
in so S4 also are. �
Clearly, Theorem 2 is a special case of Theorem 3 when
the target velocity vector is constant, i.e. aT(t) ≡ 0. Note
also that the “cycloid-type” trajectories for 2D and the
“helix-type” trajectories for 3D discussed in Section 4.2
satisfy the condition in Theorem 3 as well.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14825



5. TWO TRACKERS- SINGLE TARGET

We now consider the cases when the target is localized
using two trackers. Assume that the two trackers have
the same kinematics model given by (1) and each tracker
can measure range itself to the target. For the sake of
consistency, we keep using the notation in the previous
section with an extra subscript i; i ∈ {1, 2} to index the
trackers. Specifically, for each tracker i, pi denotes its
position vector; ui , RIB(ηi) denote its velocity vector
respect to wind (in air) or fluid (in water) expressed in
the inertial frame; qi = pi − pT is the relative position
vector from the tracker to the target; and ri is the range
measurement from the tracker to the target. We now derive
the conditions for the motion of the trackers under which
the target’s state is observable.

5.1 Target is fixed

We start by considering the simplest case where the target
is fixed. Let di(t) , pi(t0) + λi(t). From (11) we obtain

r2i (t) =‖di(t)‖2 + (t− t0)2‖vc(t0)‖2 + ‖pT(t0)‖2

+ 2(t− t0)dT
i (t)vc(t0)− 2dT

i (t)pT(t0)

− 2(t− t0)vT
c (t0)pT(t0)

(33)

for all i = {1, 2}. Subtracting r21(t)− r22(t) yields

r21(t)− r22(t) =‖d1(t)‖2 − ‖d2(t)‖2

−2(d1(t)− d2(t))TpT(t0)

−2(t− t0)(d1(t)− d2(t))Tvc(t0).

(34)

Let ȳA(t) , (r21(t) − r22(t) − ‖d1(t)‖2 + ‖d2(t)‖2)/2, and
z̄A(t0) = [pT

T (t0),vT
c (t0)]T. Equation (34) can be rewritten

as
ȳA(t) = C̄A(t)z̄A(t0), (35)

where

C̄A(t) , [dT
2 (t)− dT

1 (t) (t− t0)(dT
2 (t)− dT

1 (t))], (36)

Recall that di(t) = pi(t0)+λi(t). Thus, from (9) it follows
that di(t) = pi(t) − (t − t0)vc(t0) for all i ∈ {1, 2}.
Substituting this in (36), C̄A(t) can be rewritten as

C̄A(t) , [pT
2 (t)− pT

1 (t) (t− t0)(pT
2 (t)− pT

1 (t)]. (37)

The main result for this case is stated next.

Theorem 4. Consider the target localization problem de-
fined in Problem 1, where the target is fixed and two
trackers are used. Then, the initial target’s state xT(t0) ,
pT(t0) is uniquely determined if the columns of C̄A(t) given
in (37) are linear independent on [t0, tf ], where tf > t0.

Proof: The proof can be done similarly to that of Theorem
1. �
We now consider a special case of Theorem 4 where the
external disturbance is neglected, i.e. vc(t) ≡ 0.

Corollary 2. Consider the set-up stated in Theorem 4.
Assume further that the disturbance vc is negligible, i.e.
vc(t) ≡ 0. Then, the initial target’s state xT(t0) , pT(t0)
is uniquely determined at t0 if and only if the columns of
matrix

D(t) , [pT
2 (t)− pT

1 (t)] ∈ R1×3 (38)

are linear independent on [t0, tf ], where tf > t0 .

Proof: Substituting vc = 0 in (34), we obtain ȳA(t) =

[dT
2 (t)−dT

1 (t)]pT(t0) = [pT
2 (t)−pT

1 (t)]pT(t0) , D(t)pT(t0).

Following Lemma 1 and the methodology adopted in The-
orem 1 we conclude that the solution for pT(t0) is uniquely
determined if and only if the columns of matrix D(t) are
linearly independent on [t0, tf ] for any tf > t0. �
We now discuss geometrical intuition behind the condition
stated in the corollary. For the sake of clarity, we consider
the case where one of the trackers is stationary. Without
loss of generality, fix tracker 2, i.e. p2(t) = p2(t0) for all
t ≥ t0. This makes D(t) = [p2(t0) − p1(t)]T. Hence, for
2D, the necessary and sufficient condition for the columns
of D(t) to be independent on [t0, tf ] implies that the
trajectory of tracker 1 must not move along the line that
connects two points p1(t0) and p2(t0). This is illustrated
in Fig. 5.1 where it can be seen that the ranges from the
trackers to the target and the target’s reflected image via
the line are the same, making it impossible to distinguish
the true target and its reflected image. However, if tracker
1 does not go along with that line (the red line in the figure
for example) then the position of target can be uniquely
determined.

Target’s image

Target

Exciting 
trajectory

Non-exciting 
trajectory

Fig. 5.1. Localization of a fixed target using two trackers
under vc = 0.

5.2 Target moving with unknown velocity vector

Recall again that di(t) , pi(t0) + λi(t). From (23), for
each i ∈ {1, 2} we have

r2i (t) =‖di(t)− (t− t0)uT(t0)− pT(t0)‖2

=‖di(t)‖2 − 2(t− t0)dT
i (t)uT(t0)− 2dT

i (t)pT(t0)

+ δC(t),
(39)

where,

δC(t) , (t−t0)2‖uT(t0)‖2+‖pT(t0)‖2+2(t−t0)uT
T (t0)pT(t0).

(40)
Thus, subtracting r22(t) from r21(t) yields

r21(t)− r22(t) =‖d1(t)‖2 − ‖d2(t)‖2

−2(d1(t)− d2(t))TpT(t0)

−2(t− t0)(d1(t)− d2(t))TuT(t0).

(41)

Recall that for this scenario xT(t0) = [pT
T (t0),uT

T (t0)]T is
the vector of the initial target’s state. Equation (41) can
be rewritten as

ȳC(t) = C̄C(t)xT(t0), (42)

where, ȳC(t) = ȳA(t), C̄C(t) = C̄A(t) and C̄A(t) is given by
(37). We obtain the following result.

Theorem 5. Consider the target localization problem de-
fined in Problem 1, where the target is moving with
unknown velocity vector given by model (3) and is localized

by two trackers. Then, the initial target’s state xT(t0) ,
[pT

T (t0),uT
T (t0)]T is uniquely determined at t0 if and only
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if the columns of matrix C̄C(t) are linear independent on
[t0, tf ], where tf > t0.

Proof: From (42), using Lemma 1 and the methodology
adopted in the proof of Theorem 1, we conclude that xT(t0)
is uniquely determined if and only if the columns of matrix
C̄(t) are linear independent on [t0, tf ], where tf > t0. �

5.3 Target moving with unknown acceleration vector

Recall that di(t) , pi(t0) + λi(t). From (27) we obtain

r2i (t) =||di(t0)− (t− t0)uT(t0)

− 0.5(t− t0)2aT(t0)− pT(t0)||2

=‖di(t)‖2 − 2(t− t0)dT
i (t)uT(t0)− 2dT

i (t)pT(t0)

−(t− t0)2dT
i (t)aT(t0) + δD(t)

(43)
for all i ∈ {1, 2} where

δD(t) , δC(t) + (t− t0)2 ((t− t0)uT(t0) + pT(t0))
T

aT(t0).

Subtracting r22(t) from r21(t) yields

r21(t)− r22(t) =‖d1(t)‖2 − ‖d2(t)‖2

−2(d1(t)− d2(t))TpT(t0)

−2(t− t0)(d1(t)− d2(t))TuT(t0)

−(t− t0)2(d1(t)− d2(t))TaT(t0).

(44)

Recall that xT(t0) = [pT
T (t0),uT

T (t0),aT
T (t0)]T is the vector

of the initial target’s state. Recall also that d1(t)−d2(t) =
p1(t)− p2(t). Then, equation (44) can be rewritten as

ȳD(t) = C̄D(t)xT(t0), (45)

where, ȳD(t) = ȳA(t), and C̄D(t) is given by

C̄D(t) , [pT
2 (t)− pT

1 (t) (t− t0)(pT
2 (t)− pT

1 (t))

0.5(t− t0)2(pT
2 (t)− pT

1 (t))].
(46)

We obtain the following result.

Theorem 6. Consider the target localization problem de-
fined in Problem 1, where the target moving with un-
known acceleration vector given by model (4) and is lo-
calized by two trackers. Then, the initial target’s state
xT(t0) , [pT

T (t0),uT
T (t0),aT

T (t0)]T is uniquely determined
at t0 if and only if the columns of matrix C̄D(t) are linear
independent on [t0, tf ], where tf > t0.

Proof: The proof follows from equation (45) and Lemma
1.

6. ILLUSTRATIVE EXAMPLES

In this section, we present simulation results for the most
challenging scenario, i.e. localizing a target moving with
unknown acceleration vector (scenario D). The simulation
setup is given in Table 1. Two simulations are made. In the
first one, the target is localized using only a single range
from tracker 1 to the target. In the second simulation, the
target is localized using two ranges from both tracker 1
and tracker 2 to the target. In both simulations tracker
1 move along the same trajectory defined by its velocity
vector u1(t). In the second simulation, tracker 2 is fixed
in the inertial frame with a known position. It can be
checked that with the parameters set-up in the table, the
motions of the trackers satisfy the observability conditions
in Theorem 3 and Theorem 6. Thus, the target’s state will

be observable.
We assume that the measurement of tracker1’s position

and ranges from the two trackers to the target are dis-
turbed by Gaussian noises with zero means and covariance
of 0.5I3 (m) for p1 and standard deviations of 0.1(m) for
r1 and r2. To estimate the disturbance vc and the target’s
state xT, an EKF is set up to estimate the state of system
(6) where, x = [p1,vc,xT]T and xT = [pT

T ,u
T
T ,a

T
T ]. With

a single range measurement from tracker 1, the output
vector of system (6) is y = [pT

1 , r1]T ∈ R4. Whereas, with
the second range from tracker 2, y = [pT

1 , r1, r2]T ∈ R5.
The covariance matrices for the process noise was cho-
sen as Q = diag(10I3, 0.1I3, 10I3, 0.1I3, 0.01I3]) while the
covariance matrix for measurement noises were chosen
as R = diag(10I3, 100) for the case of a singe tracker
and, R = diag(10I3, 100I2) for the case of two track-
ers. The initial guess of the state x and its covari-
ance is set as x̂(0) = [p̂T(0), v̂T

c (0), p̂T
T(0), ûT

T(0), âT
T(0)]T

=[03,03, 50, -70, 35,03, 0.08, -0.15, 0.09]T and

P̂ (0) = diag(10I3, 0.5I3, 100I3, 0.1I3, 0.01I3), respectively.
The simulation results are plotted in Fig. 6.1 and Fig.6.2.
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-100
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-200 100500-50

Tracker 1
True target
p̂T using Tracker 1
p̂T using two trackers
Tracker 2
p̂T(0)

Fig. 6.1. Trajectories of the trackers, target and the tar-
get’s estimates.

It can be observed in Fig. 6.1 that even though it was
initialized considerably far from the true target, the EKF
estimates converge to the true target trajectory. This ob-
servation is enforced in Fig.6.2 where it shows that all
estimation errors of disturbance vc, target’s position pT,
target velocity uT and acceleration aT converge asymptot-
ically to zero. This implies that with the trajectory of the
trackers, both the target’s state and the disturbance are
fully observable. Note also that with measurement of the

Table 1. Simulation Setup

Parameters

Initial position: pT(0) = [-0, -20, -5] (m)

Target Initial velocity uT(0) = [0.5, 0.5, -0.2] (m/s)

Initial acceleration aT(0) = [-0.02, -0.05, -0.01] (m/s2)

p1(0) = [0, 0, 0] (m),

Trackers u1(t) = [25 cos(0.5t), -25 sin(0.5t), 0.5 sin(t)] m/s

Agent 2 is fixed with p2(t) = p2(0) = [50, 50, -50] (m)

Disturbance vc = [0.2, -0.3, 0.2] m/s
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second range from tracker 2, it is easy to see that with
the second range from tracker 2, the convergence of the
estimation errors are faster.
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a) External disturbance estimation error: vc − v̂c
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b) Target’s position estimation error: pT − p̂T
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c)Target’s velocity estimation error: uT − ûT
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d) Target’s acceleration estimation error: aT − âT

Fig. 6.2. Estimation errors with EKF. Left is with a single
tracker (tracker 1) while Right is for two trackers
(tracker 1 and 2).

7. CONCLUSIONS

We proposed a novel approach to study the observability
problem of range-based navigation and target localization
using one or two trackers. The approach uses simple tools
to characterize the linear independence of a set of functions
that was shown to be very efficient to derive conditions on

the motion of tracker(s) to ensure global observability of
the target state. We also gave geometry interpretation of
the conditions derived that can be used as guidelines to
plan the motion of trackers.
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