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Abstract: Achieving smooth urban traffic flow requires reduction of sharp acceleration/deceleration and 

accordingly unnecessary stop-and-go driving behavior on urban arterials. Traffic signals at intersections, 

and induced queues, introduce stops along with increasing travel times, stress and emission. In this paper, 

an independent reinforcement learning-based approach is developed to propose smooth traffic flow for 

connected vehicles enabling them to skip a full stop at queues and red lights at urban intersections. Two 

reward functions, i.e., a fuzzy reward engine and an emission-based reward system, are proposed for the 

developed Q-learning scheme. Another contribution of this work is that the necessary information for the 

learning algorithm is estimated based on the vehicle trajectories, and hence, the system is independent. The 

proposed approach is tested in a mixed-traffic condition, i.e., with connected and ordinary vehicles, via a 

realistic traffic simulation with promising results in terms of flow efficiency and emission reduction. 
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1. INTRODUCTION 

In the last decades, vehicle fuel consumption and relevant 

greenhouse gas (GHG) emissions have been a major concern 

of our society. It is assumed that around 60% of global oil 

consumption is consumed by the transportation sector 

(Jollands et al., 2010). The European Union roadmap is to 

attain the reduction of greenhouse gas emissions by 80%-95% 

until 2050 (compared to 1990 levels). Decreasing the Carbon 

Dioxide (CO2) emissions caused by internal combustion 

engine vehicles could substantially help reach this goal. A 

great deal of these CO2 emissions can be reduced by more 

slow-and-go motions rather than stop-and-go motions caused 

by signalized intersections (Eckhoff, Halmos and German, 

2013). 

One important approach in the field of Intelligent 

Transportation Systems (ITS) which improves traffic flow 

efficiency is referred to as Green Light Optimal Speed 

Advisory (GLOSA) (van Leersum, 1985), which attempts to 

coordinate vehicles crossing a traffic signal with a known and 

usually fixed signal plan. Its goal is to provide the optimal 

speed advisory for every vehicle to be arrived at the 

intersection during the green phase, for example, via 

Connected Vehicle (CV) technology, which provides Vehicle-

to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) 

communications. Another similar strategy is called eco-

driving. With increasing awareness of the relationship between 

speed trajectory and fuel consumption, eco-driving typically 

consists of changing driving behavior by accelerating slowly, 

driving smoothly, and reducing high speeds. The major 

objective of eco-driving is providing real-time driving advice 

to individual vehicles in order to reduce fuel consumption and 

CO2 emission levels while this may increase vehicle travel 

time in some cases (Yang, Rakha and Ala, 2017). 

In an ideal case where the Signal Phase and Timing 

Information (SPaT) is available, such approaches can propose 

optimal speed advisory for timely arrival at the green phase or 

fuel savings. In practice, even with new developments in V2I 

technology, direct access to the signal timing information and 

real-time state of the traffic lights may be accessible only for 

signals on main corridors or a small-scale network, whereas 

collecting such information for large areas (e.g. region or 

nationwide) directly from controllers can be very challenging. 

Thus, this fact increases the need for SPaT estimation instead 

(Hao et al., 2012). 

1.1 Literature review 

Over the years, more research efforts have been directed to the 

developments of eco-driving strategies and GLOSA systems 

to improve the energy efficiency for traveling along signalized 

intersections in urban areas. With the assumption of 

availability of SPaT information via V2I communication, 

methodologies to enhance traffic flow efficiency while 

approaching a signalized intersection are developed  (Barth et 

al., 2011; Rakha and Kamalanathsharma, 2011). Asadi and 

Vahidi (2011) proposed the use of upcoming traffic signal 

information within the vehicle’s adaptive cruise control 

system to reduce idle time at stoplights and fuel consumption. 
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Performance comparison of a conventional single-segment 

GLOSA with a multi-segment approach is carried out in 

(Seredynski, Dorronsoro and Khadraoui, 2013). In (Eckhoff, 

Halmos and German, 2013), potentials and limitations of the 

GLOSA systems in a realistic, large scale simulation study are 

investigated. A multi-stage optimal control formulation is 

proposed (He, Liu and Liu, 2015) to obtain the optimal vehicle 

trajectory on signalized arterials, where both vehicle queue and 

traffic light status are considered. In (Yang, Rakha and Ala, 

2017), an Eco-CACC (Cooperative Adaptive Cruise Control) 

algorithm is developed that computes the fuel-optimum 

vehicle trajectory through a signalized intersection by ensuring 

that the vehicle arrives at the intersection stop bar just as the 

last queued vehicle is discharged. A partially automated 

vehicle system with an eco-approach and departure feature 

(called the GlidePath Prototype), is developed in (Altan et al., 

2017). A modified GLOSA algorithm that considers the 

formed intersection queues and queue discharge headways for 

each vehicle position is considered in (Njobelo et al., 2018). A 

consensus and optimal speed advisory model (SAM) for CV 

platoon at an isolated signalized intersection in the presence of 

a mixed traffic scenario is proposed (Yu et al., 2019).  

In recent years, increasing amounts of attention have been paid 

to the development of fuzzy systems (Bogenberger, 

Vukanovic and Keller, 2002) and reinforcement learning 

approaches in the area of intelligent transportation systems 

such as  providing speed limit control in a stochastic traffic 

environment (Zhu and Ukkusuri, 2014), optimizing traffic 

flow in highways, (Walraven, Spaan and Bakker, 2016), 

maximizing the probability of arriving on time (Cao et al., 

2017), and real-time estimation of lane-based queue lengths 

(Lee et al., 2019). In a very recent work, a reinforcement 

learning-based car following model in order to obtain an 

appropriate driving behavior to improve travel efficiency at 

signalized intersections is proposed (Zhou, Yu and Qu, 2019). 

However, it is assumed that all vehicles are connected and 

automated, and thus, no queue is formed and all produced 

actions can be implemented. In case of a mixed-traffic 

condition, ordinary vehicles may prevent connected vehicles 

from speeding up or changing their lanes which consequently 

effect the implementation of the proposed trajectories. 

Overall and to the best knowledge of the authors, current eco-

driving and GLOSA systems rely on the deterministic 

information of the signal timing and, in some cases, queue 

information. Although, through current V2X technology, 

having access to such information is theoretically possible, in 

practical applications, due to many traffic control operators 

worldwide, different database structures, etc., this might not be 

indeed straightforward. Hence, it might be of great importance 

for car manufacturers such as BMW or navigation systems 

such as Google Maps to have an independent system which 

provides, on one hand, a real-time estimation of traffic 

conditions and SPaT information, and on the other hand, 

suggests optimal trajectories or route recommendations.  

1.2 Outline 

The goal of this present work is to develop an independent 

trajectory advisory system that provides trajectories for 

connected vehicles traveling in urban arterials, based on the 

estimated SPaT and queue information. Compared to other 

similar works where a deterministic optimal solution is 

derived, in this paper, a Q-learning approach is developed 

since only real-time estimates of needed information are 

utilized. In the first step, based on connected vehicle data, the 

necessary traffic states are estimated. The estimated signal 

timings and queue tail locations provide global information for 

states in the Q-learning scheme. Based on such information 

and the speed of any individual vehicle, the Q-learning agent 

provides a set of actions that determine the desired trajectory 

of the vehicle. At the time each vehicle leaves the intersection, 

its experienced trajectory is evaluated by means of the 

proposed reward functions. A fuzzy reward engine is 

developed which evaluates the vehicle trajectory and, based on 

its average speed and maximum acceleration, assigns high 

rewards to the fastest and smoothest trajectories. Trajectories 

encountering low speed and rapid acceleration/deceleration 

are given lowest rewards. Another reward system is proposed 

that takes the amount of CO2 emissions produced by vehicles 

into account as a reward criterion. Since emissions are directly 

related to the acceleration/deceleration patterns and the idling 

period, less produced emissions by vehicles during their 

journey indicate best eco-driving strategies which are highly 

rewarded, and vice versa. 

In summary, at each sampling time, the reinforcement learning 

agent receives global states, i.e., queue tail location and SPaT 

information of a signalized link, and local states, i.e., vehicles’ 

location and speed, and then proposes advisory trajectories for 

connected vehicles as a new action. Finally, when a vehicle 

passes the upcoming intersection, the set of state-action-pairs 

are evaluated via reward engines and the given reward is used 

for updating the Q-values.     

The rest of this paper is organized as follows. In the next 

section, the proposed approach along with the related theories 

are presented. A realistic simulation is carried out in Section 3 

where associated results and related discussion are presented. 

Finally, main conclusions and future works are outlined in 

Section 4. 

2. PROPOSED APPROACH 

A sketch of the proposed approach is illustrated in  Fig. 1. It is 

assumed that some percentage of vehicles are connected, and 

hence, they can send their location and speed information and 

receive the proposed actions. Speed and location information 

of all connected vehicles are stored and treated in a proxy 

server where, mainly, a map matching algorithm maps the 

vehicles to their corresponding signalized link. The map-

matched data are then sent to the state estimator. The estimator 

comprised of two main agents, i.e., the link agent and the node 

agent. The link agent, which corresponds to a signalized link, 

receives the information of all connected vehicles traveling in 

that link and estimates the queue information including queue 

tail location, the number of vehicles in the queue and the 

corresponding link outflow. This obtained information of all 

links approaching an intersection is then conveyed to a node 

agent that corresponds to one intersection. The node agent 

estimates the SPaT information of the given intersection. Each 
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signalized link has one learning agent which constructs the 

state space based on global states, i.e., queue tail and SPaT 

information, and local states, i.e., location and speed of every 

connected vehicle, and then suggests an action such as the new 

acceleration or target speed for each connected vehicle. As 

soon as each vehicle leaves that link at the intersection, its 

trajectory is evaluated, and a reward is assigned for the 

proposed action which is used for updating the Q-values of the 

learning agent. The complete procedure is explained in detail 

in the following sub-sections. 

2.1 State estimation 

The first step of the estimation procedure in the link agent is 

identifying the queue tail location. To this end, at every time 

step, the measurements from connected vehicles are 

appropriately treated. Then, based on a velocity threshold, 

connected vehicles are clustered to the group of (virtually) 

stopped or the group of moving vehicles. The distance of the 

farthest connected vehicle from the stop bar in the group of 

stopped vehicle is, in fact, the criterion for queue estimation. 

This first rough queue tail estimate, 𝐿𝑞, is calculated as in (1) 

and is compensated afterwards to reduce the error caused by 

low penetration rates since in a low penetration rate of 

connected vehicles, there may be farther, non-connected, 

vehicles queuing behind the last connected vehicle as 

explained in (Rostami Shahrbabaki et al., 2018). 

𝐿𝑞 = max
𝑖

(𝑑𝑖) (1) 

where 𝑖 ∈ 𝐼 = {𝑛|𝑣𝑛 ≤ 𝑣𝑚𝑖𝑛} for 𝑛 = 1, … , 𝑁. 𝑣𝑚𝑖𝑛 is the speed 

threshold that designates vehicles to either stopped or moving 

groups, 𝑁 is the number of connected vehicles, and 𝑑𝑖 and 𝑣𝑖 

are the distance of the ith-connected vehicle measured from the 

downstream end of the link and its corresponding speed, 

respectively. 

The number of vehicles in the queue, 𝑁̂(𝑘), and link outflow, 

𝑞̂(𝑘), are then estimated via (2)-(3). 

𝑁̂(𝑘) =  
𝜆𝐴𝐿̂𝑞(𝑘)

𝐿𝑣(𝑣(𝑘)+𝐴)
 (2) 

where 𝐿̂𝑞(𝑘) is the estimate of the queue tail after 

compensation of the queue tail dislocation error, 𝜆 is the 

number of lanes, 𝐿𝑣 is the average headway of queuing 

vehicles, 𝐴 is the queue wave speed, and 𝑣(𝑘) is the average 

speed of connected vehicles inside the queue. 

𝑞̂(𝑘) = 𝑁̂(𝑘)𝑣(𝑘) (3) 

For a given intersection in the urban network, all achieved 

estimates for the signalized links approaching that intersection 

are passed to the node agent, which takes the following steps 

to estimate the SPaT information which are extensively 

described in (Rostami-Shahrbabaki et al., 2020): 

 Outflow enhancement via connected vehicles data 

crossing the intersection. 

 Cycle time estimation based on autocorrelation of 

each outflow signal. 

 Phase order estimation based on cross-correlation 

analysis of all approaching links’ outflows. 

 Outflow quantization. 

 Green and red time estimation of the traffic signal 

based on pulse width clustering of the quantized 

outflow.  

Finally, the queue tail estimation and SPaT information are 

conveyed to the reinforcement learning agent to construct the 

global states of the environment. 

2.2 Reinforcement learning 

This subsection briefly introduces the basics of reinforcement 

learning (RL) and describes the parameter settings used in this 

study. 

Commonly known, the Markov Decision Process (MDP) 

describes dynamic and discrete decision processes within a 

stochastic environment in a formal manner. 

 

 

 

Fig. 1. Schematic of the proposed independent trajectory advisory system 
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The MDP framework serves as basis for reinforcement 

learning (Sutton, Barto and Williams, 1992) and if the existing 

environment is fully observable, the environment state 

completely characterizes the decision process. Equally to the 

MDP, a Reinforcement Learning (RL) algorithm considers 

discrete states and provides actions as output. Further detailed, 

the RL process is denoted by a tuple (𝑆, 𝐴, 𝑅, 𝑇, 𝛾) where 𝑆 =
[𝑠0, 𝑠1, … , 𝑠𝑛] denotes a set of 𝑛 discrete states and 𝐴 =
[𝑎0, 𝑎1, … , 𝑎𝑚] denotes a set of 𝑚 discrete action outputs. The 

RL algorithm often called learner or agent requires a reward 

mechanism denoted by the matrix 𝑅 which contains all reward 

values for each state-action-pair tuple (𝑠𝑖 , 𝑎𝑗). During the 

learning phase the agent tries to maximize the accumulated 

probabilistic reward for a range of learning epochs containing 

a quantity of iteration steps 𝑘. Further, the accumulated scalar 

reward is denoted by 𝑟𝑘(𝑠𝑖 , 𝑎𝑗) = ∑ ∑ 𝑅𝑘(𝑠𝑖 , 𝑎𝑖)𝑚
𝑖=0

𝑛
𝑖=0  for 

each iteration 𝑘. Finally, the agent tries to learn a policy 𝜋, i.e. 

the decision or in other words the state-action sequence that 

maximizes the agent’s reward over time/iterations 𝑘. 

Usually, the agent requires a notion of how the stochastic 

environment behaves, i.e. denoted by the transition matrix 𝑇 

which contains the transition probabilities. The transition 

matrix describes how likely it is to change from one state to 

the other and usually is formally described by 𝑇𝑛×𝑚: 𝑆 × 𝐴 ×
𝑆 → [0,1]. For completely deterministic environments the 

transition probabilities are set to 1. In order to model the 

uncertainty of future and current reward updates, the RL 

process introduces a discount factor 𝛾 with respect to 0 ≤ 𝛾 <
1. 

 

Fig. 2. Q-learning process flow chart 

However, in the case of Q-learning (Watkins and Dayan, 

1992), the agent learns to act optimally in a Markovian 

environment model by interacting with the environment. This 

is possible by storing the experience of the interacting agent in 

the matrix 𝑄. The 𝑄 matrix thereby contains a set of scalar Q-

values which again bootstrap the expected discounted reward 

for all executed actions 𝑎 for each observed environment state 

𝑠. Finally, the agent must learn to estimate the Q-values that 

result in the optimal policy 𝜋, where the Q-values ideally may 

converge while learning. The learning process ultimately can 

be summarized as follows. During the sequence of learning 

epochs and iterations the agent: 

 observes the current state 𝑠𝑛
𝑘 

 selects and executes an action 𝑎𝑛
𝑘 

 observes the subsequent state 𝑠𝑛
𝑘+1 

 receives an immediate reward 𝑟𝑘  for selecting an 

action and, 

 updates the experience stored in 𝑄𝑘, where the 

individual q-values are influenced by the learning rate 

𝛼𝑘. The q-values are updated by the following 

equation. 

𝑄𝑘+1(𝑠𝑖 , 𝑎𝑗) ← (1 − 𝛼𝑘) ⋅  𝑄𝑘(𝑠𝑖 , 𝑎𝑗) + 𝛼𝑘 ⋅ {𝑅𝑘(𝑠𝑖 , 𝑎𝑗) +

𝛾 max
ak+1

[𝑄𝑘(𝑠𝑘+1, 𝑎𝑘+1)] − 𝑄𝑘(𝑠𝑘 , 𝑎𝑘)}.  (4) 

The process finally can be visualized via Fig. 2, where k is the 

quantity Fig. 2. Q-learning process flow chart. 

2.3 Reward functions 

As stated in the previous section, each state-action-pair used in 

the Q-learning framework must be evaluated. Two reward 

functions are defined which receive trajectories of each 

connected vehicle as an input argument and generate a reward 

value which is used in the next step for updating Q-values as 

depicted in Fig. 1 and Fig. 2. 

 

 

Fig. 3. Input membership functions of fuzzy reward engine 
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A mamdani fuzzy reward engine is designed with two inputs, 

i.e., average speed and maximum absolute 

acceleration/deceleration of the connected vehicles. Defined 

membership functions for each input of the fuzzy reward 

engine are shown in Fig. 3. Based on these membership 

functions, comprehensive rules as given in Table 1 are 

developed in order to assign higher rewards for the fastest and 

smoothest trajectories. The given reward decreases with lower 

average speed and sharper acceleration and/or deceleration 

rates. Output membership functions for the proposed rewards 

are shown in Fig. 4 which map the given fuzzy reward to a real 

value. 

Table 1. Set of rules defined for the fuzzy reward engine 

  Mean Speed 

  Zero Low Medium High 

Max. of abs.  

acc./dec. 

Low Low High High VHigh 

Medium Low Low Medium High 

High Low Low Low High 

 

Another reward function is developed that guarantees the eco-

driving behaviour of the vehicles. This rewarding system is 

based on the amount of CO2 emissions of the vehicles. To this 

end, the emission model proposed by Panis et al., (2006) is 

utilized and the amount of CO2 emissions is calculated based 

on (5), over time, for each vehicle trajectory. The trajectories 

with less amount of produced emissions deserve higher 

rewards. 

𝐸(𝑡) = max [𝐸0, 𝑓1 + 𝑓2𝑣(𝑡) + 𝑓3𝑣(𝑡)2 + 𝑓4𝑎(𝑡) +
𝑓5𝑎(𝑡)2 + 𝑓6𝑣(𝑡)𝑎(𝑡)] (5) 

where 𝑣(𝑡) and 𝑎(𝑡) are the instantaneous speed (km/h) and 

acceleration (m/s2) of each vehicle at time 𝑡, 𝐸0 is a lower limit 

of emission (g/s), and 𝑓1 to 𝑓6 are emission constants. 

 

Fig. 4. Output membership functions of fuzzy reward engine 

3. SIMULATION AND RESULTS 

The described approach was implemented and tested using the 

microsimulation platform Aimsun (Barceló and Casas, 2005). 

Without loss of generality and for the sake of simplicity, a set 

of two links, each 500 m long, connected by one node is 

assumed. The node is assumed to be controlled by a fixed-time 

traffic signal with a cycle time of 90 seconds, and a green time 

of 45 seconds in each cycle. The signal timing is assumed to 

be unknown for the analysis and is estimated as explained in 

Section 2.1. 

The learning agent is implemented using the Python 

programming language and the interface between the 

intersection control and the traffic model within the simulation 

is realized by using the Aimsun Application Programming 

Interface (API). For each connected vehicle, the link agent 

proposes a speed for approaching the intersection that is based 

on the Q-learning strategy. To this end, a five-dimensional sate 

vector (𝑑, 𝑣, 𝑙, 𝑝, 𝑠, 𝑣) of the state of an approaching vehicle 

along with the global states is constructed, where 𝑑 is the 

distance of the vehicle to the intersection, 𝑣 is the current 

velocity of the vehicle, 𝑙 is the estimated queue length, 𝑝 is the 

current signal phase, and 𝑠 is the number of seconds since the 

signal change. When the vehicle is at a distance of 

approximately 500 meters to the intersection, the state vector 

is passed to the Q-learning strategy. The action, i.e. the new 

desired speed for the vehicle, is chosen such that 

 𝑛𝑒𝑤_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑠𝑝𝑒𝑒𝑑 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑  𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑠𝑝𝑒𝑒𝑑) for 

all speed values between 10 km/h and the maximum allowed 

speed (50 km/h). In case this value is not unique, a random 

desired speed all speeds 𝑠𝑝𝑒𝑒𝑑∗ with 𝑠𝑝𝑒𝑒𝑑∗  =
 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑  𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑠𝑝𝑒𝑒𝑑) is chosen. This speed is 

passed as the desired speed of the vehicle. Other than that, 

default driving behaviour implemented by Aimsun is not 

changed. This means that the vehicle accelerates or decelerates 

(respecting maximum acceleration and deceleration values) 

until the new desired speed is reached. Safety headways to 

vehicles in front are respected and if vehicles approach a red 

light they decelerate in front of the traffic signal (eventually 

reaching to a full stop, if necessary). Instead of updating the 

Q-values immediately, rewards for the algorithm can only be 

calculated after the vehicle has passed the traffic signal. The 

Q-value of the respective state-action-pair is then updated 

using the reward functions described in the previous section. 

Non-connected vehicles move using the default driving 

behaviour implemented by Aimsun, their desired speed lies 

between 0.9 and 1.3 times the speed limit. A traffic demand of 

600 veh/h with 25% rate of connected vehicles is considered. 

As explained in Section 2.3, two different reward functions are 

used for training the model. In the first approach, vehicle 

trajectories are rewarded based on the developed fuzzy reward 

engine. In the second approach, produced emissions are 

evaluated as in (5). Received moving average fuzzy rewards 

and emission-based rewards for connected vehicles are shown 

in Fig. 5 and Fig. 6, respectively. There is a chattering 

behaviour at the early stage of learning in both accumulated 

rewards which is mainly due to the random actions induced by 

the exploration nature of Q-learning. Both rewards progress 

over time, i.e., incrementally for fuzzy rewards and 

decrementally for emission rewards, which reveals the fact that 

vehicles are learning how to adjust their speed to achieve better 

trajectories and hence receive better rewards. 
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The trajectories of connected vehicles vs ordinary vehicles are 

plotted in Fig. 7. It is evident that connected vehicles have 

learned how to adjust their speed in order to avoid full stop at 

the stop bar and also to continue with their speed in case the 

can catch current green signal phase. 

 

Fig. 5. Average fuzzy rewards  

 

Fig. 6. Average emission rewards 

 

Fig. 7. Trajectories of connected vs ordinary vehicles 

The presented algorithm allows for a number of possible 

extensions, e.g. consideration of several consecutive 

intersections, evaluation in oversaturated traffic conditions, 

and application of adaptive traffic signal timing which are 

parts of authors’ future work.  

4. CONCLUSIONS 

In this paper, a Q-learning approach for proposing appropriate 

trajectories for connected vehicles when approaching a 

signalized intersection was introduced. It focuses on reducing 

emissions and providing smooth trajectories with low 

acceleration and deceleration rates. The core of the approach 

is SPaT estimation together with a learning agent and two 

reward functions. The approach was described, implemented, 

and tested. Proposed trajectories were evaluated along with 

resulting emissions and the rewards defined by the fuzzy 

reward engine. 

The simulation results indicated that, over time, the connected 

vehicles learned how to adjust their speed in order to catch the 

current or next green time without experiencing the queue 

during the red signal phase. Accumulation of rewards, 

measured via both functions, is also an indicator of learning 

process implemented by proposed methodology. 

In order to further improve the quality of conclusions, a 

sensitivity analysis will be conducted that evaluates the effect 

of considered vehicle parameters, percentage of connected 

vehicles, signal programs, and section length. 
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