

Selecting Test Cases for Mechatronic Products with a Variant and Version
Management Approach based on a Consistent Toolchain

K. Land*, B. Vogel-Heuser*, A. Gallasch**,
M. Sagerer***, D. Förster****, G. Strobl*



* Institute of Automation and Information Systems, Garching near Munich,
85425 Germany (e-mail: {kathrin.land, vogel-heuser, georg.strobl}@tum.de)

** Software Factory GmbH, 85748 Garching near Munich,
85425 Germany (e-mail: gallasch@sf.com)

*** Hirschmann Automation and Control GmbH, Neckartenzlingen,
72654 Germany, (e-mail: michael.sagerer@belden.com)

****SCHUNK GmbH & Co. KG, Lauffen am Neckar, 74348 Germany
(e-mail: dorothea.foerster@de.schunk.com)

Abstract: The number of variants and versions for mechatronic products increases. The high variability
poses a challenge for test engineers in selecting suitable test cases upon a change. If a requirement or a
feature of a mechatronic product changes, it is not necessary to retest the whole product but only the
changed parts. To identify the product features that are directly or indirectly affected by the change, a
connection of test, requirement, and variant management is necessary. Therefore, an approach to select
test cases based on an occurred change using variant and version knowledge is needed. In this paper, such
an approach and its possible application in a toolchain are introduced. The toolchain is built by
combining established tools developed by the Parametric Technology Corporation (PTC) that are already
used to manage parts of the product life cycle. The resulting PTC Integrity Toolchain and the
applicability of the concept on it were evaluated together with industrial experts with positive results.

Keywords: Logical design, physical design, implementation of embedded computer systems, Product
Variance, Computer-aided testing



1. INTRODUCTION

 Manufacturers in the mechanical engineering industry must
be able to adapt their products to individual customer
requirements (Hinterreiter et al., 2018), also during operation.
It is time-consuming and hardly economically feasible to
thoroughly test the high number of resulting product variants
and versions. Therefore, test engineers have to select a subset
of suitable test cases when making a change. Due to the
increasing complexity of mechatronic systems, adequate test
case selection is very demanding, since dependencies
between subcomponents or different disciplines and thus the
propagation of changes are not clearly recognizable.

A modelling concept for the representation of dependencies
and interfaces of interdisciplinary and cross-disciplinary
modules or features makes changes comprehensible. Product
line engineering is ideal for keeping development costs and
time in check with the resulting variety of variants and
versions. A product line consists of variants that have many
common features, which theoretically enables the reuse of
these features and thus the corresponding testing knowledge
of existing variants. However, a common procedure for a
suitable documentation or handling of the variability, which
is needed for an efficient reuse, is not yet established for aPS
(Vogel-Heuser et al., 2015). There are no standardised tools
available, hence in industry, companies instead (mis)use a

combination of different tools. Even most of the individual
workflows currently used by companies for variant
management lack the connections from variant or version
knowledge to requirements and test management and thus
they lack the systematic consideration of connections and
restrictions between features in test selection. The knowledge
about change propagation is usually only implicit available
(Vogel-Heuser et al., 2015) which leads to the risk that
important test cases are missed and not executed. Given a
transparent representation of the cross-relations in-between
features and the linkage of the features of a variant to
requirements and test cases, changes could be tracked more
easily and thus the test engineer could be supported in the
selection of suitable test cases.

This paper presents an approach and its possible application
to manage variants and versions of mechatronic products and
link them to knowledge from requirement and test
management. The realisation is with a combination of
established PTC Integrity Management tools and the
modelling language SysML. The effects of changes to
requirements can thus be tracked transparently and the test
engineer is supported in selecting the required test cases.

The remainder of this paper is structured as follows: Section
two provides an overview on related work on variant and
version management for mechatronic products and its use for

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7925

test case selection. Section three introduces shortly the
general concept for test case selection based on variant and
version knowledge. Subsequently, the possible realisation is
presented. The concept and its applicability with the
toolchain are evaluated with industrial experts in Section five.
Finally, the paper is concluded in Section six.

2. RELATED WORK ON VARIABILITY MANAGEMENT
AND ITS USAGE FOR TEST CASE SELECTION

Model-based software engineering, for example with the
Systems Modelling Language (SysML), is gaining interest
for the development of complex and interdisciplinary systems
(Barbieri et al., 2014). Product line engineering (PLE) is a
model-based method in software engineering based on
modular artefacts, which can be reused and adapted to
individual customer needs (Vogel-Heuser et al., 2015). The
information on the artefacts, interrelations in-between
different artefacts and existing product variants that consist of
those artefacts reduce the effort needed to maintain existing
product variants and to develop new variants. For the
graphical representation of the artefacts and their
interdependencies, “feature models and tools based on feature
modelling are clearly dominating” (Berger et al., 2013).

2.1 Variability modelling with Feature Models

A feature model (also: 150% model) represents all features
that are equal or different among similar products of a
product line in a tree structure. It visualises the different types
of interdependencies between features (mandatory, optional,
alternative). A feature model that additionally represents
versions is called 175% model (Lity et al., 2018). Feature
models have a simple notation, which makes them easy to
understand and it is possible to apply formalized analysis
(Schröck et al., 2015). In industry, they are also used as
communication base for product manager, software architects
and developers (Hinterreiter et al., 2018) due to its useful
abstraction. Hence, feature models are well suited to link
different management views – requirements, test, variants
and versions – during the product development and life cycle.

As this paper focuses on mechatronic products, not only
software but also the mechanical and the electrical domain
and their interdependencies have to be considered (Bąk et al.,
2016). Feature modelling in the mechatronic domain is hardly
researched (Vogel-Heuser et al. 2015). Feldmann et al.
(2016) propose an approach to model variants and versions
for interdisciplinary product lines (IPL). They split the
feature model view into domain-specific subviews and model
interdependencies separately by “feature interactions”. Due to
the separation, they obtain a clearer view of the variability.
However, the feature interactions become complex and
difficult to track. Kowal (2018) translates the relations to
explicit propositional formulas to make the relations between
the different feature models visible.

Boutkova (2011) presents an alternate approach to model all
features in one model. She proposes a hierarchical view with
different levels of abstraction. As the levels are interlinked,
the abstract view is getting more detailed in lower levels.

Furthermore, Boutkova (2011) links requirements to features
in order to track changes. Therefore, she uses the
management tool IBM Rational Doors. As the views are not
separated as in Feldmann et al (2016), consistency checks for
the whole model can be conducted. However, test cases are
not linked nor selected in these approaches.

Papakonstantinou and Sierla (2013) propose a method for
modelling interdisciplinary systems and their variability with
feature models using the Systems Modelling Language
(SysML). Their approach is based on a package structure,
which resembles a classic digital folder structure. Packages in
SysML can have specific connections to each other as the
ones known from feature models. The packages can contain
requirements, structures, functions or test cases (Haber et al.,
2011). The advantage of this is a hierarchical structure which
minimises redundancies and improves the clarity of the
product line, its features and their interdependencies. A
further advantage is that SysML models are feasible for
model driven development due to their standardisation. In
comparison to other modelling languages, SysML is
especially promising for mechatronic products and the
implementation of programmable logic controllers as parts of
the domain-specific programming language IEC 61131-3 can
be generated from it (Legat, 2018). However, SysML is only
limited suitable for the modelling of product variability. For
this reason, an own modelling language with a suitable
diagram, the Orthogonal Variability Model (OVM), was
explicitly developed that can be connected to SysML model
elements. OVMs represent only the variation points of a
product line and the dependencies between these variation
points. “Exclude”-relationships between features and
variation points visualise which features anticipate which
decisions. Thus, they provide a clearer view than feature
models (Metzger and Pohl, 2014) for the user when creating a
new variant from a product line. In contrast to the classic
feature model, the possible variants are directly visible in the
OVM, but the structure of the variants from features and the
link to requirements and test cases are missing.

2.2 Test Case Selection based on Variants and Versions

In most companies the knowledge needed for efficient testing
is only implicit available and based on the experience of the
test engineers. In order to automatically select test cases
based on changes and variant and version knowledge, variant
and version management must be linked to requirements and
test management. Feature models are particularly suitable for
managing variants and versions with the goal of precise test
case selection due to the formal configuration check methods
and the representation of cross-relationships between the
features. If the interdependencies between the features are
known and visible, changes and their effects are easy to track.
Hence, the test engineer can be supported in selecting the
relevant test cases. Thüm et al. (2014) developed an
algorithm to determine changes between feature models
mathematically, but the interdisciplinary character of
mechatronic systems is not considered and the results are not
used in order to reduce the necessary test suite for new
variants or versions. Lochau et al. (2014) proposed

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7926

"Variability-Aware Product Line Testing", in which the
tested software must be modelled as software product lines.
The IMoTEP tool they developed uses a feature model, a
feature-tagged state diagram test model, and a test coverage
criterion to generate the required test suite. However, this
approach is hardly applicable to IPL and their mechatronic
character. There are already model-based approaches to
linking requirements and test cases, e.g. by modelling the
requirements in OWL (Web Ontology Language). The
approach provides a suitable method to specify mechatronic
systems in a structured way, but is not applicable for
requirements and test case management due to the lack of
support for time dependency and mathematical relationships.
All in all there are hardly approaches available that focus on
test selection for SPL (Engström, 2010), especially for
mechatronic products and with a consistent tool support.
Wang et al. (2013) model a test feature model in parallel to
the original feature model and mapped the elements to select
test cases automatically based on manually selected features.

3. GENERAL TEST CASE SELECTION CONCEPT

Feature models visualise possible different variants of a
product. Each variant consists of several features that can be
described by requirements. The requirements are verified by
test cases (cf. Figure 1). Ideally, the test cases are created or
generated automatically (Sinha et al., 2016) based on the
individual requirements so that a direct connection is already
known. In order to select test cases based on a change in
requirement or in feature combination, all these elements
have to be connected to each other. Upon a change in
requirements, the affected features and corresponding test
cases can be chosen directly due to this linkage.

Figure 2: Connection of model elements
Figure 3 presents an exemplary feature model of a crane (in
SysML). The crane consists of a turning table and can have
two different kinds of grippers – mechanic or pneumatic. The
pneumatic gripper variant requires an air compressor so there
is a dependency between those two feature modules (block).
If one of the blocks changes, the blocks affected by this
change can be determined based on this interrelations. Also,
blocks that are not affected can be determined and so the
amount of test cases to be executed to verify the changed
parts is reduced.

To explain the method, it is assumed that there already exists
a variant with the pneumatic gripper which is already tested.
If a change in requirement occurred for the air compressor, its
test cases, the test cases of the dependent pneumatic gripper
and those of the general gripper are chosen. As the turning
table is independent of the air compressor, it is assumed to be
not affected by the change and thus does not need to be
retested. All necessary test cases are selected based on the

(dependency) links within the feature model. The same
applies if a new variant with the mechanic gripper is created.
As the gripper is independent of the turning table, the change
in gripper type is assumed to not affect it and hence it does
not need to be retested within this new variant.

Figure 3: Excerpt of Feature Model in SysML

4. REALISATION APPROACH WITH PTC INTEGRITY
TOOLS COMBINATION

In order to elaborate a possible application of the approach
proposed, a toolchain was created from existing commercial
PTC Integrity tools. The PTC Integrity tools are used in
industry separately for different management tasks – e.g. for
requirement management, for variant management or as
module library. Figure 4 illustrates how the individual tools
were used in order to realise the concept proposed. The use of
established tools promises higher acceptance in industry. The
triangular symbolizes the rising complexity of the different
management views over time. In the following, the three
tools Integrity Lifecycle Manager, Integrity Modeler and
Integrity Asset Library are presented. Further, Figure 5 shows
as result the combination of the several tools so that a
toolchain that assists the tester or engineer in consistent
management is established. The tools themselves and the
synchronizer were already available. However, several
adaptions for their combination as well as the creation of a
variant library were necessary.

Figure 4: PTC Integrity Tools and Usage for Approach
The Integrity Lifecycle Manager manages the requirements
and test cases of specific product variants. The tool is used to
manage the lifecycle of a variant of a specific customer and
thus provides an overview of which variant and which
version of the product is present at the customer. This
information also facilitates subsequent maintenance and
further development at the customer. The Lifecycle Manager
had to be connected to the Modeler via a synchronizer, which

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7927

Figure 5: Requirement Change Workflow using PTC Integrity Tools Combination

maps the Modeler feature packages (from feature model) to
the data and documents of the Lifecycle Manager (Figure 5).
If there are new requirements or an existing requirement is
modified, the corresponding (requirement) documents are
created or adapted within the Lifecycle Manager.

The synchronizer between the Modeler and the Lifecycle
Manager uses a mapping function to connect requirements
and test cases of the Modeler (cf. Figure 2) to requirements
and test cases in the Lifecycle Manager. The corresponding
mapping function had to be adapted and configurated
manually so that the desired data is synchronized correctly.
The synchronizer was mainly intended for transferring
requirements into the Modeler. Thus, if there is a change that
was not triggered due to a change in requirements, the
requirements cannot be automatically updated. Upon a
changed requirement and the thus new documents, a new
feature version is created with the Integrity Modeler.

The Integrity Modeler can be used to graphically model
software in SysML and manages both, the product line as
150% model and the specific variants as 100% models. The
SysML requirement diagram is used to represent the
relationships between the model elements “blocks”, “test
cases” and “requirements”. The requirement diagram (cf.
Figure 2) is therefore well suited for modelling features, their
requirements and test cases. The combination of features
modelled in SysML as well as their associated requirements
and test cases are summarized as a feature module based on
the package representation proposed, in order to be
particularly clear for industrial applications. A block diagram
(cf. Figure 3) is used for the feature model in which the
feature modules are integrated.

Within the Integrity Modeler, there is a tool called “Variant
Selector”. It is used to generate a 100% model out of the
150% model. Based on the OVM model, the Variant Selector
knows the structure of the model with its including and
excluding dependencies and structures the variant creation
process. If two features are mutually exclusive, the selection
box for the other feature is automatically deactivated when
one feature is selected. In addition, the SysML profile in the
Integrity Modeler must be slightly adapted in order to
successfully implement the developed concept and its
implementation. For example, if one feature inherits from
another, dependencies to other features must be inherited as
well. The Variant Modeler is used to configure the new
variant or version. To avoid redundant variants and versions

in the database, the variant selector checks whether the
variant configuration selected already exists in the variant
library before creating the new variant (100% model). If an
existing variant can be reused, no additional testing is
required. The variant selector is only dependent on the
Modeler and it is proven so that there were no adaptions
necessary to make it work.

The Asset Library is a web-based asset management
application. It contains all historical data and was used as
version management and as a template for further variants.
Since the model shown here contains all versions of each of
the structural elements of the 150% model and can thus track
the product lifecycle, it is also called the 175% model. By the
modular structure of a system from features, the features can
be separated well and can be reused and embedded into the
structures of another model. Thus, the Asset Library saves the
redundant development of existing features and supports
central maintenance. The location of the feature is saved in
the package structure of the SysML model and can be called
up when it is inserted into another model again. An Asset
Library bridge makes it possible for the Modeler to access the
Asset Library databases (Figure 5). If the newly created
variant or version is not yet in the Asset Library, the Library
is updated by the Integrity Modeler. Finally, the data of the
new variant or version is updated within the Lifecycle
Manager. Hereby, all elements that were affected by the
change are marked with a specific state for test case selection.

4.3 Test Case Selection

The method for test case selection is twofold if using this
toolchain, depending on whether it is a change in variant
configuration or requirements. Based on an existing variant, a
new version of that variant or a new variant can be created
using the "Variant Selector" tool integrated in the Modeler. In
this case the user selects an existing variant and the Modeler
displays its configuration. The user then applies his changes
e.g. choosing another feature based on the underlying OVM
or changing the requirement parameter of one of the features.

Alternatively, the requirements of an existing variant could
also be changed or adapted through the Lifecycle Manager.
The lifecycle manager reflects all requirements and test cases
of one of the existing 100% models within the Integrity
Modeler. If a requirement or test case is changed within the
Lifecycle Manager, the corresponding 100% model in the
Integrity Modeler is updated and the changed features and all
affected features are marked for testing.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7928

In both cases, the changes made by the user are marked for
traceability. The marking is done by a status that was added
to each changed element and all elements that are affected by
this change according to the 150% model. The status changes
from "checked" or "released" to "unchecked". This identifies
all feature modules that need to be re-checked because of the
change. Affected feature modules are those that either have a
direct dependency relationship like one feature requiring
another, or that have an indirect dependency relationship
through inheritance, for example. The SysML profile was
further adapted so that feature modules inherit their
dependencies to their underlying instances. By creating a new
variant or version, the 175% model of the asset library is
updated. To test the new variant or version, all test cases that
belong to a feature module that has the status "untested" can
be selected. This is done with specific filter functions that are
provided by the Lifecycle Manager.

5. APPLICABILITY EVALUATION OF TOOLCHAIN
APPROACH

The workflow was evaluated using the model of a
demonstrator production plant of the institute. The plant is
made of various interdisciplinary components that include
mechanical, electrical and software components. The crane
which was partly shown in Figure 3 is part of that plant. The
concept and the toolchain were rated by several industrial
partners iteratively and partly separately as well as in a final
joint meeting in use cases.

As evaluation use case, a new variant based on an existing
variant was designed with the Variant Selector. First, a
requirement parameter of the air compressor (cf. Figure 3)
was changed. After making sure that this variant does not yet
exist by checking the variant library, the resulting variant was
created. As expected, the air compressor feature module and
all dependant feature modules were thereafter marked as
“untested”. After synchronising this information with the
Lifecycle Manager, all test cases that also obtained the
“untested” tag could be selected. However, the user can
change only one requirement parameter in the Variant
Selector. For a comprehensive parameterization of
requirements and test cases this is not sufficient and has to be
added in the future for a better usability. Also the new variant
is saved to the same data storage as the 150% model, which
causes the 150% to be locked for further use until the variant
is moved to another data storage field. This results in a less
efficient procedure. This issue could be solved by adapting
the tools so that the new variant is directly saved elsewhere.

Despite those unsolved issues within the toolchain, the
overall concept was shown to be applicable in an industrial
toolchain. The industrial partners emphasized positively the
workflow using the toolchain to add or change requirements
and to detect and select all corresponding test cases. The
introduction of a status such as "tested" and "untested" for
requirements and blocks improves the clarity and traceability
within the current testing progress in the Modeler and
Lifecycle Manager. Further, relevant test cases are intuitive
to select so that the manual effort (e.g. test case selection
time) of the test engineer and the risk to miss test cases that

cover the change are considered reduced. Also, the clear
differentiation and usage of the three model types (100%,
150% and 175%) and their management within the tool was
considered promising.

The toolchain links data of test, requirement, variant and
version management. This way, it assists in synchronising the
data, which reduces the risk of inconsistencies due to manual
synchronisation. However, the industrial partners noted that a
high level of initial effort is required to adapt their individual
solutions and established tools and structures to the toolchain.
The initial effort can be partially reduced as the Integrity
Modeler offers standardised interfaces to import data or to
connect other tools. Common tools as for example tool IBM
Rational Doors for requirement management or pure::variants
to model variability are supported. However, the actual effort
to import and map the data provided by these tools was not
evaluated in this scope. Also, the synchroniser between
Modeler and Lifecycle Manager (cf. Figure 5) was only beta
version and its main purpose was to enable the transfer of
requirements from the Lifecycle Manager to the Modeler.
Due to that, changes that occur on a test case (e.g. on-site
adaption or aging of test cases) are not considered or traced
back to the influenced features and requirements. This issue
will be subject to future research. Further, the mapping to
transfer the information from the Integrity Modeler back to
the Lifecycle Manager with the synchronizer had to be added
manually, which is time-consuming.

According to the experts, the feature-model-based approach
was convenient due to the easy to understand notation and the
overview of dependencies. The combination of SysML and
OVM enables the modelling of interdisciplinary products and
a separate, constraint view on the variation points. With the
SysML feature model, the variant solution space can be
modelled clearly. The dependencies between features are
further detailed with OVMs. As the features are structured in
packages, the view on the model is clear despite its
complexity. However, a strict hierarchical modelling is
needed to achieve this clearness and thus a good scalability.
This hierarchical modelling is not always obvious for
mechatronic products due to the interrelations and different
modelling approaches (customer view, developer view, tester
view) in industry. As the optimal suitable modelling
approach differs depending on the use-case, a product-
specific choice has to be made within the respective
companies.

6. CONCLUSION AND OUTLOOK

In this paper, test cases were linked to variants and versions
in order to select them based on occurred changes within the
product line. Therefore, the feature modelling approach,
which is widely used for product line engineering in the
software domain was used and enhanced with test
information. For the approach a toolchain made of
established PTC Integrity Tools was build and adapted.
Through the interaction of the modelling languages SysML
and OVM and the Variant Selector of the Modeler, it is
possible to display the entire variant space clearly. With
SysML, the architecture of the model and the variant space

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7929

can be represented in a structured way. However,
dependencies between the feature modules cannot be defined
in more detail. Using the OVM model, dependencies can be
represented in more detail in the PTC Toolchain by including
and excluding conditions and the assignment of feature
modules to variants can be determined. The Variant Selector
provides a structured selection process for feasible variants.

A structure could be created that allows the feature modules
to be combined into product variants through a modular
system. It was then adapted to the modelling language
SysML. This approach serves the hierarchical and modular
implementation in the toolchain. For evaluation, a practical
adaptation of the concept into the toolchain could be
presented. This showed that the developed concept and the
Integrity Toolchain can be used to track the effects of
requirement changes. This possibility represents a basis for
the automation of the selection of affected test cases and the
test coverage estimation of a new variant or version. The
positive feedback from industrial experts confirms the
concept and the approach with the toolchain. The concept has
been successfully applied to the industrial toolchain, but there
are still a number of technical challenges that need to be
resolved before it can be fully implemented for practical use.

The variant selector within the Modeler allows requirement
parameterisation. This is a promising approach to easily adapt
generic test frameworks for automatic test execution.
However, currently only one parameter per requirement is
adaptable, which restricts the flexibility of the requirements.
In future work, this restriction should be lifted. Furthermore,
an advancement of the synchronizer is expected that solves
its issue with the one-sided communication. Also, the
approach would further benefit of an automatic mapping
across the tools instead of the manual mapping. Currently, the
changes that are made to an existing variant to create a new
variant are tracked and marked. Hence, the new variant is
compared to the variant the test engineer selected as basis for
the creation of the new variant. This variant is not necessarily
the one with the least difference to the new variant. Thus for
future improvement of this approach, a newly designed
variant should be compared systematically to all existing
variants to determine the least difference and thus the least
number of test cases required to cover the change.
Furthermore, the applicability to different types of industrial
examples or plants shall be considered in future work.

ACKNOWLEDGMENT

The research results presented in this paper were developed
in the IGF-project 19090 N/1 of the research association
Forschungskuratorium Maschinenbau eV. Thanks to all
participating industrial partners. The project was funded by
the AiF as part of the program for the promotion of industrial
joint research (IGF) by the Federal Ministry for Economic
Affairs and Energy.

REFERENCES

Bąk, K., Diskin, Z., Antkiewicz, M., Czarnecki, K.,
Wąsowski, A. (2016): Clafer: unifying class and feature
modeling. In: Softw Syst Model 15 (3), S. 811–845.

Barbieri, G., Fantuzzi, C. and Borsari, R. (2014). A model-
based design methodology for the development of
mechatronic systems. Mechatronics 24(7), p. 833–843.

Berger, T., Rublack, R., Nair, D., Atlee, J., et al. (2013). A
survey of variability modeling in industrial practice.
VAMOS, pp- 7-14.

Boutkova, E. (2011). Experience with variability
management in requirement specifications. SPLC, pp.
303–312.

Engström, E. (2010). Regression Test Selection and Product
Line System Testing. ICST 2010, pp. 512 - 515.

Feldmann, S. and Vogel-Heuser, B. (2016). Interdisciplinary
product lines to support the engineering in the machine
manufacturing domain. International Journal of
Production Research, 55(13), 3701–3714.

Haber, A., Rendel, H., Rumpe, B., Schaefer, I. and van der
Linden, F. (2011). Hierarchical Variability Modeling for
Software Architectures. SPLC, pp. 150-159.

Hinterreiter, D., Prähofer, H., Linsbauer, L., Grünbacher, P.,
Reisinger, F. and Egyed, A. (2018). Feature-Oriented
Evolution of Automation Software Systems in Industrial
Software Ecosystems. IEEE ETFA, pp. 107-114.

Kowal, M. (2018). Interdisciplinary Variability Modeling and
Performance Analysis for Long-Living Software
Systems. Dissertation. DOI: 10.24355/dbbs.084-
201802071247

Legat, C. (2018). Automated orchestration planning of field
level software functions in the domain of machine and
plant automation. Dissertation. Göttingen: sierke.

Lity, S., Nahrendorf, S., Thüm, T., Seidl, C. and Schaefer, I.
(2018). 175% Modeling for Product-Line Evolution of
Domain Artifacts. VAMOS, pp. 27–34.

Lochau, M., Bürdek, J., Lity, S., Hagner, M., Legat, C.,
Goltz, U. and Schürr, A. (2014). Applying Model-based
Software Product Line Testing Approaches to the
Automation Engineering Domain. at-
Automatisierungstechnik, 62(11), pp. 771-780.

Metzger, A. and Pohl, K. (2014). Software product line
engineering and variability management: achievements
and challenges. ACM FOSE, pp. 70-84.

Papakonstantinou, N. and Sierla, S. (2013) Generating an
Object Oriented IEC 61131-3 software product line
architecture from SysML. IEEE ETFA, pp. 1–8.

Schröck, S., Fay, A. and Jäger, T. (2015). Systematic
interdisciplinary reuse within the engineering of
automated plants. IEEE SysCon, pp. 508-515.

Sinha, R., Pang, C., Martínez, G., et al. (2016). Automatic
test case generation from requirements for industrial
cyber-physical systems. at - Automatisierungstechnik,
64(3), pp. 216-230.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G.
and Leich, T. (2014). FeatureIDE: An Extensible
Framework for Feature-Oriented Software Development.
Science of Computer Programming, 79(0), pp. 70–85.

Vogel-Heuser, B.; Fay, A.; Schaefer, I.; Tichy, M. (2015)
Evolution of software in automated production systems -
Challenges and Research Directions. JSS, 110, pp. 54-84.

Wang, S., Gotlieb, A., Ali, S., Liaaen, M. (2013). Automated
Test Case Selection Using Feature Model: An Industrial
Case Study. MODELS, vol. 8107 pp. 237-253.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7930

