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Abstract: Disassembly lot sizing problem is one of the important operational problems in
disassembly systems. It can be defined as the problem of determining the disassembly quantity
and timing of the used-products to fulfill the demand of their parts over a finite planning
horizon. This paper considers the case of multiple product types with parts commonality and
the objective is to minimize the sum of setup, disassembly operation, and inventory holding
costs. High inventory holding cost can be generated: because of disparity between independent
and unbalanced demands, and the disassembly of one unit of used-product generates all the
parts with different ratios. Aggregate formulation (AGG) can be used to model this problem by
considering disposal decisions. Linear-Programming (LP) relaxation of this model doesn’t give
very good lower bound, especially for the large-sized instances. We aim to improve lower bound of
the problem. Facility Location-based formulation (FAL) is developed which can obtain optimal
or near optimal solution by using LP relaxation approach. A two-phase heuristic is proposed
which constructs an initial solution by using LP relaxation approach, and then improves by a
dynamic programming based heuristic. Computational experiments are conducted on randomly
generated test problems which show that the models and methods can give optimal or near-
optimal solutions in very short computational times.
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1. INTRODUCTION

In recent years, disassembly problems in reverse logis-
tics has attained a lot of research interests because of
the growing environmental concerns and legislation obli-
gations such as End-of-Life Vehicles (ELVs) directive
(2000/53/EC). Disassembly aims to decrease environmen-
tal impacts of End-Of-Life (EOL) products by separating
dangerous or valuable materials and parts. Although, there
is an important challenge to provide economic balance in
disassembly systems, because of several costs related to
disassembly process. This motivated some researchers to
provide more effective and appropriate models to increase
opportunities for cost savings and make disassembly sys-
tems more profitable (Tafti et al. (2019b); Ji et al. (2016)).

Among various decision problems considered in the liter-
ature, this paper considers disassembly lot sizing problem
which is the problem of determining the disassembly quan-
tity and timing of the EOL products to satisfy the demand
of their parts over a finite planning horizon. The research
done on disassembly lot sizing can be classified according
to the number of EOL product, parts commonality, num-
ber of level on the EOL product structure and capacity
limitation. Here, parts commonality indicate that different
EOL products share the same parts.
? We thank the departmental council of Aube(CD10), along with
the European Union (FEDER) for supporting the research

Tafti et al. (2019b) mention that due to yields (number of
parts obtained after disassembly one unit of EOL product)
and multiple demand sources of parts, unnecessary surplus
inventories of parts can be accumulated during planning
horizon. These surplus inventories can be led to the sig-
nificant inventory holding cost. Lost sales and external
purchasing decisions can be considered to handle the issue
of surplus inventory accumulation (Hrouga et al. (2016),
Ji et al. (2016)). Disposal decisions are considered for the
single product disassembly lot sizing to handle surplus in-
ventory and make disassembly systems more profitable. In
this paper, we aim to develop the models and methods for
the Multi-Product with Parts Commonality Disassembly
Lot Sizing Problem with Disposal (MP-DLSPD).

Disassembly lot sizing problem is somewhat similar to
ordinary lot sizing problem. However, it has specific char-
acteristics that make it challenging for planning decisions:
a) The EOL product diverges into multiple independent
demand sources of parts; b) The disassembly of one unit of
EOL product simultaneously generates all the parts with
different ratios (Tafti et al. (2019a); Kim and Xirouchakis
(2010); Kim et al. (2006)). The proposed models and
methods in the literature of ordinary lot sing problem
cannot be directly applied; hence, the new planning models
and algorithms should be developed.
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Limited number of the researches are studied disassembly
scheduling problem. Kim et al. (2007) review the existing
researches on the disassembly problem with its general-
izations and classify the disassembly scheduling problem.
Gupta and Taleb (1994) consider the basic case, i.e. single
product type without parts commonality, and propose
a reverse version of Material Requirement Planning (R-
MRP). They extend this work by including parts com-
monality for disassembly of multiple product types (Taleb
et al. (1997)). Lee and Xirouchakis (2004) introduce a
heuristic algorithm that improves the solutions obtained
by the algorithm of Gupta and Taleb with the objective
of minimizing various costs related to disassembly pro-
cesses. An Integer-Programming (IP) model can be used
to formulate disassembly scheduling problem as in Lee
et al. (2002). They consider the case of single product
with capacity constraints with various cost factors in the
objective function. Some researches consider setup and
inventory cost together in the objective function so that
lot sizing decisions should be considered. In this case, a
lot sizing heuristic study considering related disassembly
operations costs is addressed to improve the solutions of
R-MRP algorithm (Barba-Gutiérrez et al. (2008)). Kim
et al. (2006) propose a Mixed-Integer Programming (MIP)
model for the problem with parts commonality. A multi-
product problem with a Linear-Programming (LP) re-
laxation based heuristic that gives the good solutions in
reasonable times is considered in Kim et al. (2003). Kim
et al. (2009) address a single product type without parts
commonality suggest a branch and bound algorithm that
incorporates a Lagrangian heuristic. Recently, a capacited
single-item multi-period disassembly scheduling problem
with random parameters which is formulated as a mixed-
integer nonlinear program, is studied in Liu and Zhang
(2018). These researches don’t consider the decisions on
the management of surplus inventory.

Different formulations are proposed and compared in the
ordinary lot sizing problem (Brahimi et al. (2006)). There
are not a lot of works who consider different formulations
for the problem of disassembly lot sizing (with or without
disposal). To the best of authors’ knowledge, there is no
work who considers disposal decisions for multi-product
disassembly lot sizing problem with parts commonality.
Tafti et al. (2019b) consider a single product disassembly
lot sizing problem with disposal decision (DLSPD) and
propose different formulations which consider disposal de-
cisions. They suggest an original algorithm to calculate
the amount of consumed and non-consumed surplus in-
ventory and two heuristics for the DLSPD without parts
commonality. Afterward, they develop a Facility-Location
based (FAL) model for the DLSPD so that it LP relaxation
can improve lower bound (LB) of the problem in a very
short computational time (Tafti et al. (2019a)). In Pour-
Massahian-Tafti et al. (2019), they show that adding valid
inequalities constraints to the AGG model can improve
LB of the problem. Since the existing disassembly lot
sizing models with parts commonality do not consider
disposal decision, we are interested to developed different
formulations which consider disposal decisions.

Motivated by above discussion, in this paper, we study
a multi-product with parts commonality disassembly lot
sizing problem with decisions on the surplus inventory.

The contribution of the research is threefold: First, we
develop two MIP models considering disposal decisions
for the MP-DLSPD with parts commonality. Second, we
aim to improve the lower bound of the considered problem
by using LP relaxation of the FAL model. Third, A two-
phase heuristic of Kim et al. (2006) is adapted for the
MP-DLSPD with parts commonality. The MIP models
are solved by CPLEX solver to obtain optimal solutions.
The two-phase heuristic constructs an initial solution by
using LP relaxation of the AGG model, and improves the
solutions by changing them and considering cost trade-
offs, iteratively. In the computational results, we report
and compare the performance of the proposed models and
methods.

Next section presents the problem considered in this re-
search with the proposed models are presented. Resolution
methods i.e. exact using CPLEX solver, LP relaxation
approach, and two-phase heuristic to solve the problem
are presented in Section 3. The test results on the new
randomly generated instances are reported in Section 4.
Finally Section 5 concludes this study with a summary
and future works.

2. PROBLEM STATEMENT

A new disassembly lot sizing problem with disposal de-
cisions for the multi-product and two-level disassembly
structure with parts commonality is modeled in this sec-
tion. Figure 1 presents an example of this structure. The
number in parenthesis is the yield of a given part when one
unit of its root item (1 ,2, 3) is disassembled. The first level
represents leaf items, while the second level represents root
items (EOL Products). The parts 6 and 7 can be obtained
by several root items which implies parts commonality.

Fig. 1. Two-level and multi-product with parts common-
ality structure

The assumptions made in this paper are summarized as
follows: a) EOL products can be obtained whenever they
are needed and there is no holding cost for them; b)
backlogging and lost sales are not allowed, and hence
demands should be satisfied on time; c) demand of parts
are given and deterministic; d) the disassembled parts have
the same quality; e) we assume, without loss of generality,
that the stock of the root and leaf items at the beginning
of the planning horizon are zero. f) there is no disposal
cost for the surplus leaf items and they will be dispose of
after disassembly operation. In the models, without loss of
generality, all items are numbered with integer numbers:
1, 2, . . . , ir, il, . . . , N. ir indicates the index for the root
items and the numbers that are ≥ il represent leaf items.
The following notations are used in this paper:
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Index and Parameters

i Index for items (1, 2 . . . ir, il . . . N)
t Index for periods (1, 2 . . . T )
Mit Arbitrary big number considered for root item i in

period t
sit Setup cost of disassembling root item i in period t
pit Disassembly operation cost of root item i in period

t
ail Number of unit of item l obtained by disassembly

of one unit of root item i
hit Inventory holding cost of leaf item i in period t
Higt Cumulative holding cost of leaf item i from period

g to t (g≤t)
dit Demand of leaf item i in period t
Φ(i) Parents of item i
η(i) Children of root item i

Decision variables

Yit 1 if there is a setup in period t for root item i, and
0 otherwise

Xit Disassembly quantity of root item i in period t
Zikjt Quantity of leaf item i disassembled in period j

from root item k to satisfy demand of period t
Eit Disposed quantity of leaf item i in period t
Iit Inventory level of leaf item i at the end of period t

2.1 Aggregate formulation (AGG)

A natural formulation of the problem (MP-DLSPD with
parts commonality) can be represented as follows:

[P1] Min{
ir∑
i=1

T∑
t=1

sit · Yit +

ir∑
i=1

T∑
t=1

pit ·Xit

+

N∑
i=il

T∑
t=1

hit · Iit} (1)

Subject to

Iit = Iit−1 +
∑
k∈Φ(i)

aki ·Xkt − Eit − dit

∀i = il . . . N & t = 1 . . . T (2)

Xit ≤Mit·Yit ∀i = 1, 2 . . . ir & t = 1 . . . T (3)

Xit ≥ 0 & integer ∀i = 1, 2 . . . ir & t = 1 . . . T (4)

Iit, Eit ≥ 0 ∀i = il . . . N & t = 1 . . . T (5)

Yit = 0 or1 ∀i = 1, 2 . . . ir & t = 1 . . . T (6)

Objective function (1) is the sum of setup, disassembly
operation, and inventory holding costs over a T -period
planning horizon. Constraints (2) express the inventory
balance equations for the leaf items. Constraints (3) guar-
antee that a setup cost is performed in period t if any
disassembly operation is done in that period. Constraints
(4-6) impose the non-negativity and binary restrictions on
the variables. Note that equation (7) is used to calculate
the value of Mit in equations (3) which can improve LB of
the problem.

Mit = max
j∈η(i)

{⌈∑T
k=t djk
aij

⌉}
∀i = 1 . . . ir & t = 1 . . . T

(7)

2.2 Facility Location-based formulation (FAL)

The below formulation is called the disaggregate formu-
lation or facility location-based formulation (FAL). This
formulation is commonly used for ordinary lot sizing prob-
lem, because its LP relaxation for the uncapacited problem
provides an optimal solution with integer setup variables
and it has stronger lower bounds for capacited lot sizing
problem (Brahimi et al. (2017)). An additional disassem-
bly variable Zikjt is considered, which corresponds to the
quantity of leaf items i disassembled from root item k
in period j to satisfy demand of period t. The product
disassembly variable Xit cannot however be removed since
each part can be received after a disassembly operation in
a period. In this model, the variables Xit need to be integer
but the variables Zikjt can be set as real. The disaggregate
formulation for the MP-DLSPD with parts commonality
can be represented as follows:

[P2] Min {
ir∑
i=1

T∑
t=1

(sit · Yit + pit ·Xit)+

N∑
i=il

∑
k∈Φ(i)

T∑
t=1

t∑
j=1

Hikt−1 · Zikjt} (8)

Subject to
t∑

j=1

∑
k∈Φ(i)

Zikjt = dit ∀i = il . . . N & t = 1 . . . T (9)

Zikjt ≤ dit · Ykj
∀i = il . . . N & k ∈ Φ(i) & t = 1 . . . T & j ≤ t (10)

aki ·Xkt ≥
T∑
j=t

Ziktj

∀i = il . . . N & k ∈ Φ(i) & t = 1 . . . T (11)

Xit ≥ 0 & integer ∀i = 1, 2 . . . ir & t = 1 . . . T (12)

Zikjt ≥ 0

∀i = il . . . N & k ∈ Φ(i) & t = 1 . . . T & j ≤ t (13)

Yit = 0 or1 ∀i = 1, 2 . . . ir & t = 1 . . . T (14)

Objective function (8) is to minimize the sum of setup, dis-
assembly operation, and inventory holding costs over the
whole T -period horizon. Constraints (9) represent that the
demands of leaf items should be satisfied. Constraints (10)
relate the disassembled quantity of leaf items to the binary
setup variables. Constraints (11) express that the total
quantity of leaf item i obtained by root item k in period
t, after disassembly of product, will be delivered to satisfy
the demand or will be disposed of. Constraints (12-14)
define the domains of decision variables.

3. RESOLUTION METHOD

Three methods for the formulation of the problem are
developed in this section and will be compared in section 4.
The first one is an exact method by using CPLEX solver.
Then, we propose a two-phase heuristic which improves
iteratively the constructed initial solution by LP relaxation
approach. Finally, we apply LP relaxation of the FAl model
in order to improve LB of the problem.
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3.1 Exact

Since the proposed models are MIPs, so they can be
applied to obtain the optimal solution of the generated
problem instances by using CPLEX solver. But, we cannot
guarantee that CPLEX solver will be efficient for all the
problems. We propose a two-phase heuristic with the
advantage that it can be programmed into a code via
simple applications in real industrial cases. It constructs an
initial solution, and then improves the solutions iteratively
by changing them using a dynamic programming based
algorithm with forward-looking check.

3.2 Two-phase heuristic

We adapt the two-phase heuristic method suggested by
Kim et al. (2006) for the MP-DLSPD with parts com-
monality. The heuristic algorithm consists of first phase
in which an initial solution obtained from LP relaxation
of the model P1 is constructed. Then, it is improved by
a forward-looking algorithm based on dynamic program-
ming approach.

Phase 1. Solution construction: the solution obtained
by solving LP relaxation of the model P1 (real values)
using CPLEX solver will be rounded down. The rounded-
down solution is modified so that all the constrains of
the model P1 are satisfied. The balance quantity (BLit)
defined by the equation (15) is used to check the feasibility
of the rounded-down solution.

BLit = Iit − Iit−1 −
∑
r∈Φ(i)

ari ·Xrt + Eit + dit

∀i = il . . . N & t = 1 . . . T (15)

If BLit 6= 0, the corresponding rounded-down solution
should be modified by increasing or decreasing the decision
variables, while considering cost changes. For the case with
BLit > 0, If Iit ≥ BLit, we calculate new inventory level
by the equation 16. Otherwise, if Eit ≥ BLit, we update
the disposed quantity by the equation (17):

I
′

it = Iit −BLit (16)

E
′

it = Eit −BLit (17)

Where I
′

it and E
′

it are the changed inventory and disposed
quantity of a given leaf item, respectively. If both cases
above result in infeasible solution, we consider the case
of increasing root item r; Xrt, r ∈ Φ(i) so that X

′

rt =
Xrt + ∆r. The amount of ∆r for a root item r ∈ η(i)
is dBLit/arie. Where d∗e represents the smallest integer
value greater than or equal to *. This change can be
resulted in the violation of constraints 2 of child items
k ∈ η(r), k 6= i. The modification of the inventory level of
the child items can be done as follows:

I
′

kt = Ikt + ark ·∆r ∀k ∈ η(r), k 6= i

I
′

it = Iit + (ari ·∆r −BLit) (18)

This increment of disassembly quantity of a given root
item r results in cost increasing. Ar represents the cost
change when increasing the disassembly quantity of root
item r ∈ Φ(i):

Ar =prt ·∆r +
∑

k∈η(r),k 6=i

hkt · ark ·∆r + sr · {1− δ(Xrt)}

+ hit · (ari ·∆r −BLit) (19)

where δ(∗) = 1 if and only if ∗ > 0, and 0 otherwise.
Equation (19) represents the increase in: disassembly op-
eration cost of root item r, inventory holding cost of child
items (6= i), setup cost, and excess inventory holding cost
incurred by item i after satisfying the balance BLit. Then,
we choose the best root item candidate with the minimum
increasing cost . For the case with BLit < 0, we consider
increasing the quantity of disposed Eit as follow:

E
′

it = Eit+ | BLit | (20)

Phase 2. Solution improvement: the solutions are
improved by using dynamic programming based algorithm
which is applied to each root item i.e. by starting from first
root item to the last one. If last setup occurs in period j
(1 ≤ j ≤ t) for a t-period sub-problem of a given root
item r, the change in the current disassembly lot sizing is
as follow:

X
′

ru =

t∑
k=j

Xrk u = j

X
′

ru = 0 u = j + 1, j + 2 . . . t (21)

Where Xru and X
′

ru represent the current and new disas-
sembly lot sizing for a given root item r, respectively. This
change can decrease setup cost, while increasing inventory
holding cost. Note that we don’t consider the change in
the disposed quantity of leaf items (Eiu) in the adapted
two-phase heuristic. This means that when changing the
current disassembly lot sizing using the equations (21), the
disposed quantity will be held to be disposed as the current
disassembly lot sizing. This can be improved in the future
work. B(j, t) represents the decrease in the total cost for
a given root item r when the last setup occurs in period j
for a t-period sub-problem:

B(j, t) = max{0,
t∑

k=j

prk ·Xrk − prj ·X
′

rj}

+

t∑
u=j+1

sru · δ(Xru) (22)

Where δ(∗) =1, if Xru > 0, otherwise, δ(∗) =0. C(j, t)
represents the increase in the total cost as follow:

C(j, t) = max{0, prj ·X
′

rj −
t∑

k=j

prk ·Xrk}

+

t−1∑
u=j

∑
i∈η(i)

hiu · ari · (X
′

rj −
u∑
k=j

Xrk)

+ srj · (1− δ(Xrj)) (23)

Formulation 24 represents recursive cost saving function
for the t-period sub-problem of a given root item r (Where
Fr(0) = 0):

[H] Fr(t) = max
1≤j≤t

{max (0, B(j, t)− C(j, t) + Fr(j − 1))}

(24)

Note that the cost saving function for all root items
given above has a polynomial CPU time bound. It can be
calculated in O(R · T 2): includes calculating B(j, t) and
C(j, t) when a last setup occurs in period j in a t-period
sub-problem. Then, the best cost saving and last setup can
be calculated in O(R · T ).
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3.3 LP relaxation of the FAL model

Tafti et al. (2019a) propose LP relaxation approach for the
single product DLSPD. They mention that LP relaxation
of the FAL model can obtain optimal or near optimal
solutions and has a very strong lower bounds of the
problem. We adapt their formulation for MP-DLSPD with
parts commonality. LP relaxation of the model P2 is solve
by removing integrality constraints 12 and 13 and using
the CPLEX solver. Its solution quality and computational
time will be compared with other models and methods.

4. COMPUTATIONAL EXPERIMENTS

Computational tests are performed on randomly gener-
ated problem instances and the models and methods are
compared regarding to the percentage deviation from the
optimal solution. The proposed models, methods, and
generated data can be applied in different real industrial
cases. An example can be the ELVs recycling sector, where
EOL vehicles will be disassembled into their parts such
as engines, doors, seats, tyres, etc. The obtained parts are
used to satisfy their demands and the dangerous, unusable,
and excess parts/ materials will be disposed of to the
specialized channels such as recycling, material sources for
the energy recovery.

The tests are done on a laptop with an Intel Core i5-3210M
2.5 GHz and 8 Go RAM on windows 7 and the optimal
solution are obtained by solving the MIP models directly
using CPLEX solver v.12.8.

4.1 New benchmark

The various instances are generated with different problem
sizes and different values of parameters. The Benchmark
of Kim and Xirouchakis (2010) is adapted to obtain an
average of cycle Time Between Orders equal to 2. We gen-
erate 225 problems i.e. 25 problems for each combination
of three levels of number of items (N) (10, 20, 30)and three
levels of number of periods (T)(10, 20, 30). For each levels
of the number of items, 5 different disassembly structure
are randomly generated. The number of leaf items for each
Root item are generated from DU(2, 5), DU(5, 10) and
DU(10,15) for each level of the number of items. In the
generated disassembly structure, the number of root items
are generated from (2, N/5). Also, the number common
leaf items are generated from (1,bN/3c).
For each disassembly structure, 5 problems with different
data are generated for each level of the number of periods.
Table 1 provides the generated parameters. Note that
DU(m1,m2) means the discrete uniform distribution with
a rage of [m1,m2].

4.2 Numerical results

Table 2 summarizes the test results of the proposed MIP
models which shows that both models P1 and P2 can
obtain optimal solution in very short computational times.

Table 3 and 4 show the performance of the LP relaxation of
model P2. It can obtain optimal solutions of the problem
in 46.6% and the overall average of gap is only 0.06%.
LP relaxation of the model P1 is almost faster than LP

relaxation of the model P2 with the overall average CPU of
0.11 but its overall average of gap is 8.94%. The significant
performance of the model P2 is that its LP relaxation can
obtain a very high lower bound of the problem.

Table 1. Generated parameters

Parameter value

items (N) (10, 20, 30)

Period (T ) (10, 20, 30)

Holding cost (hit)
N=10⇒ DU(0.3, 0.5)
N=20⇒ DU(0.1, 0.3)
N=30⇒ DU(0.1, 0.16)

Demand (dit) DU(50, 250)

Yield (ail) DU(1, 4)

Disassembly cost (pit) DU(38, 62)

Setup cost (sit) DU(2500, 3500)

Table 2. CPU (s) of P1 & P2

N T
P1 P2

Mean (Min, Max) Mean (Min, Max)

10 10 0.18(0.15, 0.23) 0.19(0.15, 0.27)
20 0.29(0.21, 0.73) 0.30(0.21, 0.76)
30 0.66(0.27, 1.89) 0.67(0.28, 1.88)

20 10 0.23(0.19, 0.23) 0.23(0.20, 0.28)
20 0.57(0.34, 0.83) 0.50(0.33, 0.77)
30 1.25(0.66, 2.60) 0.94(0.54, 1.91)

30 10 0.32(0.22, 0.51) 0.29(0.20, 0.46)
20 0.82(0.46, 1.36) 0.65(0.35, 1.22)
30 2.07(0.94, 5.18) 1.38(0.62, 2.63)

Avg. 0.71(0.38, 1.51) 0.57(0.32, 1.13)

Table 3. Gap (%) of LP Relaxation of P1 & P2

N T
LP-R of P1 LP-R of P2

Mean (Min, Max) Mean (Min, Max)

10 10 10.75(3.57, 25.38) 0.25(0.00, 2.52)
20 11.40(5,59, 28.59) 0.11(0.00, 1.50)
30 12.99(6.58, 21.15) 0.14(0.00, 0.97)

20 10 8.18(3.41, 16.81) 0.02(0.00, 0.12)
20 9.22(5.29, 14.67) 0.01(0.00, 0.14)
30 8.50(4.14, 14.63) 0.02(0.00, 0.14)

30 10 6.76(3.90, 12.66) 0.02(0.00, 0.23)
20 6.45(4.27, 9.36) 0.01(0.00, 0.03)
30 6.24(4.83, 9.34) 0.00(0.00, 0.02)

Avg. 8.94(4.62, 16.95) 0.06(0.00, 0.63)

Table 4. CPU (s) of LP Relaxation of P1 & P2

N T
LP-R of P1 LP-R of P2

Mean (Min, Max) Mean (Min, Max)

10 10 0.13(0.12, 0.14) 0.17(0.16, 0.18)
20 0.14(0.13, 0.14) 0.20(0.18, 0.22)
30 0.14(0.14, 0.15) 0.29(0.33, 0.41)

20 10 0.09(0.08, 0.10) 0.17(0.17, 0.19)
20 0.10(0.09, 0.10) 0.28(0.24, 0.32)
30 0.10(0.10, 0.12) 0.50(0.40, 0.72)

30 10 0.09(0.09, 0.10) 0.21(0.18, 0.28)
20 0.10(0.09, 0.11) 0.44(0.31, 0.65)
30 0.12(0.11, 0.19) 0.89(0.52, 1.66)

Avg. 0.11(0.11, 0.13) 0.35(0.28, 0.51)

The results of two-phase heuristic are summarized in Table
5. Two-phase heuristic can obtain the solutions for the
generated problem instances in very short computational
times. Second phase has a very efficient improvement on
the initial solution obtained from the first phase. This
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implies that the forward-looking check dynamic program
approach suggested is very effective in improving the ini-
tial constructed solutions. For example, in the case with
30 items and 30 periods, second phase can improve the
overall average of gap from 20.55% to 3.21%. The the
overall computational time of the two-phase heuristic are
significantly shorter than models P1 and P2 solving by
CPLEX solver.

Table 5. Gap (%) of two-phase heuristic

N T
Phase 1 Phase 2

Mean (Min, Max) Mean (Min, Max)

10 10 19.56(7.08, 38.82) 2.71(0.21, 6.73)
20 18.55(8.83, 38.70) 3.00(0.71, 7.35)
30 20.55(11.20, 33.99) 3.21(1.50, 5.57)

20 10 13.25(5.95, 26.30) 1.81(0.18, 5.45)
20 16.96(9.06, 28.10) 2.71(0.90, 4.89)
30 16.11(10.00, 28.53) 2.82(1.04, 6.43)

30 10 10.29(4.13, 20.53) 2.28(0.15, 9.17)
20 12.72(5.87, 21.96) 2.32(0.08, 3.94)
30 12.40(8.34, 19.82) 2.78(1.06, 5.98)

Avg. 13.60(7.83, 28.53) 2.63(0.65, 6.17)

We also analyze the impact of considering disposal deci-
sions on the total cost for the case with 30 items and 30
periods. The result show that a maximum cost reduction
of around 58% can be let by allowing disposal.

5. CONCLUSION

This paper addresses disassembly lot sizing problem for
the multi-product and two-level product structure with
parts commonality. The objective is to minimize the sum
of setup, disassembly operation and inventory holding
costs. Disposal decisions are applied to handle the issue of
surplus inventory in disassembly systems, which can make
a maximum cost reduction of around 58%, for the tested
problem instances. Two new MIP formulations (AGG and
FAL) with considering disposal decisions are proposed. For
real industrial cases, a two-phase heuristic is suggested in
which an initial solution is obtained by using LP relax-
ation approach, and it is improved by using a forward-
looking check dynamic programming based algorithm. The
improvement is made by changing the current solution
and considering cost changes efficiently. The two-phase
heuristic gives near optimal solutions in very short com-
putational times and it has an efficient performance to
improve the initial solution obtained by the first phase.
Also, we apply LP relaxation approach for the FAL model
to improve lower bound of the problem. As a future work,
we aim to develop the proposed model and method for
more complex product structure with multi-level and parts
commonality. Also, it is necessary to consider the problem
with resource capacity constraint for the real industrial
applications.
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