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Abstract: This paper presents a framework for modeling, scheduling, and controlling residential
thermostatically controlled loads (TCLs) to provide multiple grid services, such as energy
shifting, peak load reduction, and ancillary services. A modeling method is proposed to
characterize aggregate flexibility from heterogeneous TCLs using a virtual battery model. Based
on the flexibility model, a multi-period optimal scheduling formulation is developed to best
utilize the flexibility from building loads and maximize total benefits from stacked value streams.
An algorithm is proposed to control individual devices to follow the desired power consumption
in real-time. The proposed methods are illustrated and validated through simulations.
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1. INTRODUCTION

Flexibility is required to maintain an instantaneous bal-
ance between generation and continuously varying de-
mand in electric power systems. Conventionally, flexible
resources on the supply side are dispatched and controlled
to follow the load. The increasing penetration of renew-
able generation imposes challenges to this conventional
approach due to the natural uncertainty and variability
associated with renewable generation (Georgilakis, 2008).
Additional flexible resources are required for frequency
regulation and load following. Recent developments and
advances in energy storage systems (ESS) are making their
application a technically feasible solution to grid prob-
lems (Wu et al., 2015, 2016; Balducci et al., 2018). In spite
of the benefits from these applications, it is still difficult
for some ESS projects to be financially viable given their
cost at current market rates. Exploiting flexibility from
demand-side resources represents an innovative solution
for the power grid. Among all loads, thermostatically con-
trolled loads (TCLs) consume about 20% of the electricity
in the United States. When properly controlled, TCLs with
an inherent ability to store heat in the thermal mass can
vary their power consumption to serve power systems with
little impact on customers’ convenience and comfort. TCLs
represent a significant and largely untapped resource for
grid services.

Many studies have been dedicated to using TCLs for
grid services during the past few years. Abiri-Jahromi
and Bouffard (2016) developed an analytical approach to
characterize and control reserve capacity from a group of
TCLs. A demand-side response model was proposed for

? This material is based upon work supported by the U.S. Depart-
ment of Energy (DOE), Building Technologies Office through the
Emerging Technologies program. Pacific Northwest National Labo-
ratory is operated for the U.S. DOE by Battelle Memorial Institute
under Contract DE-AC05-76RL01830.

TCLs by Trovato et al. (2018) to enable optimal scheduling
of power and energy consumption and to provide multi-
ple ancillary services. When scheduling a large group of
TCLs for grid services, it is computationally expensive
yet unnecessary to model and consider detailed dynamics
and constraints of individual devices. A simplified model
that captures aggregate flexibility can help to facilitate
the scheduling and coordinating process. Methods were
developed to characterize aggregate flexibility from a col-
lection of TCLs using battery-equivalent models or virtual
batteries (VBs). A VB is a scalar linear system that
resembles simplified battery dynamics parameterized by
charging/discharging power limits, energy limits, and self-
discharging rate. Hao et al. (2015) proposed analytical
methods to approximate aggregate flexibility from homo-
geneous TCLs using a VB system. Aggregate flexibility
from heterogeneous TCLs was characterized as a proto-
type set that is bounded by two VB systems. The ana-
lytical characterization method was validated by Huang
and Wu (2019) through simulations using EnergyPlus. To
estimate VB parameters for more complex commercial
HVAC systems, a simulation-based method using detailed
building models is proposed by Hughes et al. (2015), and
an optimization-based method using simplified building
models is proposed by Hao et al. (2018).

This paper presents a framework for modeling, schedul-
ing, and controlling residential TCLs to provide multiple
grid services. An innovative modeling method is proposed
to approximate aggregate flexibility from heterogeneous
TCLs using a VB system, similarly as for homogeneous
TCLs. A VB-based optimal scheduling formulation is then
developed to maximize the total benefits from stacked
value streams, including energy charge and demand charge
reduction, frequency regulation, and critical asset upgrade
deferral. In the proposed scheduling formulation, reserve
margins are introduced to power and energy constraints to
improve signal tracking performance in real-time. Regula-
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tion up and down capacities are set to be equal to minimize
the energy requirement associated with regulation services,
and thereby maximize the revenue. Existing priority-stack-
based (PSB) algorithms can be used to control TCLs to
follow the desired power signal in real-time. A modified
PSB is proposed to properly shift flexibility over different
time periods and thereby improve signal tracking perfor-
mance for TCLs with lock time constraints.

The rest of this paper is organized as follows. Section 2
presents VB models and the proposed characterization
method to approximate aggregate flexibility from hetero-
geneous TCLs. A multi-period scheduling formulation is
developed in Section 3 to optimally utilize flexibility from
TCLs and maximize the total benefits from stacked value
streams. In Section 4, a modified PSB algorithm is pro-
posed to shift flexibility between time periods and improve
signal tracking performance. The proposed methods are
illustrated and validated through case studies in Section 5.
Conclusions are offered in Section 6.

2. VIRTUAL BATTERY MODELS AND
FLEXIBILITY CHARACTERIZATION

This section presents a flexibility characterization method
for using a VB system to approximate aggregate flexibility
from TCLs, taking air conditioners (ACs) as an example.
Considering a collection of ACs, the indoor air tempera-
ture dynamics of an AC with index i can be represented
by a first-order differential equation:

Ci
dθi(t)

dt
=
θo(t)− θi(t)

Ri
− si(t)PiCOPi + wi(t), (1)

where θi is the indoor air temperature, θo is the outdoor
temperature, Ci is the thermal capacitance, Ri is the
thermal resistance, si is the AC on/off state that is unity
when AC is on and zero when AC is off, Pi is the rated
power, COPi is the coefficient of performance, and wi is
the external disturbance.

Each AC has a temperature setpoint θr,i with a hysteretic
on/off local control within a temperature band [θr,i −
∆i, θr,i + ∆i]. The operating state si evolves as a discrete
function of air temperature θi.

si(t) =


1, θi(t) > θr,i + ∆i,

0, θi(t) < θr,i −∆i,

si(t− ε), otherwise,

(2)

where ε is an infinitely small positive number and si(t) =
si(t − ε) means that the AC maintains the same on/off
state as the previous time.

By defining

xi =
Ci(θr,i − θi)

COPi
, (3)

αi = 1
RiCi

, and pi = si(t)Pi − (θo−θr,i)
RiCOPi

, the thermal

dynamic model in (1) becomes

ẋi = −αix+ pi. (4)

Herein, xi represents the change of energy stored in the
thermal mass by deviating from the temperature setpoint.

Because si is either 1 or 0, pi is either Pi − (θo−θr,i)
RiCOPi

or − (θo−θr,i)
RiCOPi

. In addition, the indoor temperature θi is

required to be within [θr,i−∆i, θr,i + ∆i]. Hence, xi must

be within [− Ci∆i

COPi
, Ci∆i

COPi
].

Hao et al. (2015) found that for a large population of
TCLs, their aggregate behavior with the hybrid model can
be approximated by the continuous model. The baseline
of total power consumption from a group of ACs can be
approximated as

Pbase(t) =

N∑
i=1

θo(t)− θr,i
COPiRi

. (5)

This is the power consumption to maintain the tempera-
ture of those ACs at their setpoints.

A scalar linear system called VB is proposed to charac-
terize aggregate flexibility from a collection of TCLs. The
dynamics of the energy state of a VB is expressed as

ẋ(t) = −αx(t) + p(t), (6)

where p is the charging/discharging power and α is the
self-discharging rate.

For a collection of homogeneous TCLs, i.e., all devices are
with the same thermal capacitance and thermal resistance,
the aggregate flexibility can be directly approximated by
a VB system.

• The energy state corresponds to the average energy
state of the TCLs. Hence, the energy upper bound
and lower bound of the VB are

∑n
i=1

Ci∆i

COPi
and

−
∑n
i=1

Ci∆i

COPi
, respectively.

• The self-discharging rate is simply αi = 1
RiCi

.

• The charging/discharging power corresponds to the
deviation of total power consumption from the base-
line. Hence, the power upper bound and lower bound

of the VB are
n∑
i=1

Pi−Pbase and −Pbase, respectively.

For a collection of heterogeneous TCLs, the aggregate
flexibility of TCLs is defined as the Minkowski sum. The
geometry of this set is, in general, unwieldy. Hao et al.
(2015) have shown that the aggregate flexibility can be
bounded by two VB systems.

For a collection of homogeneous TCLs, the aggregate flex-
ibility can be approximated using a VB system, which
can be directly integrated into existing resource scheduling
and coordination methods and tools. On the other hand,
for a collection of heterogeneous TCLs, characterizing the
aggregate flexibility as a set bounded by two VB systems
is not convenient for operational planning purposes. To
address this issue, a new characterization method is pro-
posed in this paper to approximate aggregate flexibility
from heterogeneous TCLs using one VB system.

Theorem 1. The aggregate flexibility from a heteroge-
neous population of N TCLs can be characterized us-
ing a VB system with energy dynamics in (6), where

α =

∑N

i=1

∆i
RiCOPi∑N

i=1

Ci∆i
COPi

, p ∈ [−Pbase,
N∑
i=1

Pi − Pbase], and x ∈

[−
∑N
i=1

Ci∆i

COPi
,
∑N
i=1

Ci∆i

COPi
].

Proof. The proof is omitted due to the space limitation.
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3. OPTIMAL SCHEDULING FOR STACKED VALUE
STREAMS

Three most common types of services that can be provided
by residential TCLs are considered in this study.

• Energy and demand charge reduction
The energy charge is based on the amount and

time when energy is consumed. It reflects the op-
erational cost of electricity generation and deliv-
ery. The demand charge is based on the highest
power consumption during a day or a month. It is
mainly designed to recover the investment in elec-
tricity generation and transportation infrastructure.
Separate charges for energy consumption and power
demand more fairly distribute the power system’s
operation and investment cost to customers. Flexi-
ble residential TCLs can be used for energy shifting
through pre-cooling/heating. The economic reward
is the rate/price differential between “charging” (in-
creasing load) and “discharging” (decreasing load),
minus the cost of additional losses incurred during
pre-cooling/heating. In addition, residential TCLs
can also be used for demand charge reduction by
lowering the peak demand during a day or a month.
• Frequency regulation

The electric power system must maintain a near
real-time balance between generation and load. Bal-
ancing generation and load instantaneously and con-
tinuously is difficult because loads and generators are
constantly fluctuating. Regulation up/down services
are required to continuously balance generation and
load under normal conditions. Regulation is the use
of on-line generation, storage, or load that can change
output quickly to track the moment-to-moment fluc-
tuations in customer loads and to correct for the un-
intended fluctuations in generation. Regulation helps
to maintain system frequency, manage differences be-
tween actual and scheduled power flows between two
control areas, and match generation to load within
a control area. Regulation service has been identified
as one of the best values from energy storage and
demand response for increasing grid stability because
of the high cost of regulation services.
• Critical asset upgrade deferral

The basic assumption governing the critical asset
upgrade deferral analysis is that demand response
from building loads could offset part of the invest-
ment in generation, substation, or distribution circuit,
given the forecast system peaks. To receive the value
from a deferral of critical asset investment/upgrade,
load reduction from buildings must exceed a certain
power level during peak hours.

3.1 Optimal Scheduling Formulation

In day-ahead scheduling, dispatches of a VB for different
services need to be optimized to maximize the benefits
from stacked value streams. The total benefits highly de-
pend on how these assets are scheduled and operated.
Given the limited energy flexibility from TCLs modeled
as a VB, operation in different hours is interdependent.
For example, decreasing energy consumption of TCLs in
one hour helps to reduce the energy cost in that hour,

but results in less flexible energy that can be used in
future hours, and therefore may reduce the overall benefits.
Hence, an optimal schedule needs to be determined by
solving a look-ahead multi-period optimization problem
considering energy and demand charge rates, regulation
prices, and the power requirements for critical asset up-
grade deferral.

The objective function consists of three components in-
cluding energy cost, peak demand cost, and revenue from
regulation services:
K∑
k=1

λk(Lk +Pk)∆T +

J∑
j=1

βjdj −
T∑
t=1

(
γ+
t h

+
t + γ−t h

−
t

)
(7)

where ∆T is the time step size, λk is the energy charge
rate at time step k, Lk is the baseline load, Pk is the
charging/discharging power from a VB, βj is the demand
charge rate for time period j, dj is the peak demand, γ+

t

and γ−t are the regulation up and down price of hour t,
respectively, and h+

t and h−t are hourly regulation up and
down capacity of hour t, respectively.

The discrete version of dynamics of a VB energy state is
given as

Xk+1 = aXk + Pk∆T , ∀k = 1 , · · · ,K (8)

where a = 1− α∆T . The initial and required final energy
states are given as

X1 = X(1), XK+1 = X(K + 1) (9)

where Xk represents the VB energy state at time step k.
The power and energy limits need to be enforced:

cpkP k ≤ Pk ≤ c
p
kP k, ∀k = 1 , · · · ,K (10a)

cekXk ≤ Xk ≤ cekXk, ∀k = 1 , · · · ,K (10b)

Note that factors cek and cpk ∈ [0, 1] are reserve margins
introduced to improve signal tracking performance in real-
time. Without these margins, when the power and energy
state are close to their limits, the temperature of an AC or
a water heater might hit the temperature lower or upper
bounds and the device becomes unavailable to response
control signals from the grid, which negatively affects
signal tracking performance.

In general, the economic value from critical asset upgrade
deferral is much higher than energy shifting and ancillary
services, and only requires decreasing building load to
certain levels during a few peak hours each year. Therefore,
the power requirements are formulated as constraints, with
their service values estimated exogenously.

Pk ≤ −P req
k , ∀k ∈ Kc, (11)

where Kc is a set that contains all time steps when a VB
needs to be discharged for the purpose of critical asset
deferral.

There could be multiple peaks within a billing period,
operations of these assets need to be deliberately scheduled
to coordinate reduction of peaks so that a demand charge
can be effectively reduced. For a demand charge j, the
peak demand dj can be captured as

Lk + Pk ≤ dj , ∀k ∈ Nj , ∀j = 1 , · · · , J (12)

whereNj is a set that contains all the time steps of demand
charge j.

Regulation up and down capabilities at time step k are
constrained as
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0 ≤ r+
k ≤ Pk − c

p
kP k, ∀k = 1 , · · · ,K, (13a)

0 ≤ r−k ≤ c
p
kP k − Pk, ∀k = 1 , · · · ,K, (13b)

where r+
k and r−k denote the regulation up and down ca-

pability at time step k, respectively. The hourly regulation
up/down capacity is the minimum of regulation up/down
capability of all the time steps within that hour, which can
be expressed as

0 ≤ h+
t ≤ r+

k , ∀k ∈ Nt , ∀t = 1 , · · · ,T , (14a)

0 ≤ h−t ≤ r−k , ∀k ∈ Nt , ∀t = 1 , · · · ,T , (14b)

where Nt is a set that contains all the time steps within
hour t. Regulation associated energy is required to follow
regulation signals and needs to be included in the energy
constraints:

cekXk ≤ Xk − εh+
t T , ∀k ∈ Nt , ∀t = 1 , · · · ,T , (15a)

Xk + εh−t T ≤ cekXk, ∀k ∈ Nt , ∀t = 1 , · · · ,T , (15b)

where ε represents the energy reserved per unit regula-
tion service. Different amounts of hourly regulation up
and down capacity would require a significant amount of
energy to follow regulation signals. Given limited energy
flexibility from building assets, regulation up and down
capacity are set equal to each other in (16) to take ad-
vantage of energy-neutral regulation signals and maximize
regulation services provided by building assets:

h+
t = h−t , ∀t = 1 , · · · ,T. (16)

In summary, a linear programming problem can be formu-
lated as

min
Pk,Xk,dj ,r

+
k
,r−

k
,h+

t ,h
−
t

objective function in (7) (17)

subject to (7)–(16).

4. A MODIFIED PRIORITY-STACK-BASED
CONTROL

PSB control methods were proposed by Lu and Zhang
(2013) and Hao et al. (2015) for TCL control. In these
methods, TCLs are grouped based on their status at
current and previous time steps. Devices in each group are
then sorted based on temperatures. Switching operations
for individual TCLs are determined based on desired
power consumption and priority lists. The PSB control
strategy attempts to minimize ON/OFF switching actions
for each unit.

In practice, lockout controls are designed to avoid wear
and tear resulting from short-cycling of hardware. With
lock time constraints, a TCL could be turned off and stay
in lock-off mode in addition to for the purpose of following
regulation signals. In our previous study (Wang et al.,
2019), it was found that a PSB control algorithm may
unnecessarily turn off many ACs within a short time pe-
riod, resulting in poor signal-following performance. There
are time periods with insufficient flexibility from TCLs to
follow the desired power consumption while there exists
redundant flexibility in other time periods. If a control
method can appropriately shift power flexibility between
different periods, it could provide better signal-following
performance. With this idea in mind, a modified PSB
algorithm is proposed to better distribute flexibility over
time and thereby improve signal tracking performance.

Algorithm 1 Modified PSB Control

Input: Desired power consumption P ∗

1: Turn on TCLs that are in lock-on mode or with
temperatures above the upper bounds. The total rated
power of these TCLs is denoted as Pmust-on.

2: Turn off TCLs that are in lock-off mode or with
temperatures below the lower bounds.

3: Randomly select a percentage of TCLs ρ from the
rest and sort the selected TCLs by temperature in
descending order. Denote the sorted TCLs as TCLp.
The total rated power of these TCLs is denoted as Pp.

4: if Eth ≤ E ≤ Eth, where E is the energy state, then
5: ρ = 0.
6: end if
7: Group the remaining TCLs based on their on/off

status at previous time step and sort each group by
temperature in descending order. Denote the on-group
TCLs as TCLon and the total rated power as Pon.
Denote the off-group TCLs as TCLoff and the total
rated power as Poff.

8: switch P ∗ do
9: case Pmust-on ≤ P ∗ < Pmust-on + Pon

10: Select the first several TCLs in TCLon until the
total power consumption is equal P ∗ − Pmust-on.

11: case Pmust-on + Pon ≤ P ∗ < Pmust-on + Pon + Pp

12: Select all TCLs in TCLon; select the first several
TCLs in TCLp until the total power consumption is
equal P ∗ − Pmust-on − Pon.

13: case Pmust-on + Pon + Pp ≤ P ∗ < Pmust-on + Pon +
Pp + Poff

14: Select all TCLs in TCLon and TCLp; select
the first several TCLs in TCLoff until the total power
consumption is equal P ∗ − Pmust-on − Pon − Pp.

15: case Pmust-on + Pon + Pp + Poff ≤ P ∗

16: Select all TCLs in TCLon, TCLp, and TCLoff.

17: Turn on the selected TCLs and turn off the remaining
ones in TCLon, TCLp, and TCLoff.

In this method, a portion of TCLs are randomly selected
and turned on/off only based on temperature, regardless
of their previous on/off states. In this way, some TCLs
are switched before they reach the temperature bounds
such that they fall into lock mode during time periods
with redundant flexibility but become available later when
there is insufficient flexibility. The remaining TCLs are
divided into “on” and “off” stacks and controlled in a
similar manner to that of PSB algorithm. The modified
PSB algorithm is given in Algorithm 1.

As a portion of TCLs are sorted and switched purely based
on their temperatures, ignoring their previous on/off sta-
tus, some TCLs that were previously in “off” state could
be turned on while some other TCLs that were previously
in “on” state are turned off. Therefore, TCLs are generally
switched more often than with the PSB control in spite
of a better signal-following performance. The increased
switching frequency negatively affects the lifetime of TCL
devices. To mitigate the potential negative effects, one
should only select a number of TCLs and switch them
on/off purely based on temperature when the flexibility
is insufficient. Insufficient flexibility typically occurs when

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13519



the VB energy state is close to its energy bounds. Heuris-
tic energy thresholds can be used to determine when to
introduce TCLs switching purely based on temperature
ignoring previous on/off status. When the energy state is
within the thresholds, the proposed algorithm degenerates
to a PSB algorithm.

5. CASE STUDIES

Residential ACs within a distribution system model devel-
oped in our previous work (Reiman et al., 2019) are used in
this paper to illustrate and validate the proposed methods.
There are 340 residential houses and 152 with electric ACs.
The thermal resistance, thermal capacitance, temperature
setpoints, and deadbands for all ACs together with the
outdoor temperature have been extracted and are used
for developing the VB model and simulating individual AC
behavior in real-time. An example utility rate structure is
used, where the daily demand charge rate is $0.803/kW,
and the time-of-use energy charge rate is $0.067/kWh from
11 pm to 8 am, $0.145/kWh from 12 pm to 6 pm, and
$0.092/kWh for the remaining hours on a summer day.
Historical regulation prices and signals from online market
database in the U.S. are obtained. Based on the regulation
signals, ε is set to be 0.1 kWh/kW in this study.

5.1 Optimal Scheduling Results

For optimal scheduling, three cases are considered with
different reserve margins for power and energy.

• Case 1: cek = 1 and cpk = 1
• Case 2: cek = 0.75 and cpk = 0.55
• Case 3: Time-varying cek and cpk

The reserve margins are constant but at different levels in
the first two cases, and are time-varying in the last case.
The obtained benefits for different value streams are listed
in Table 1. Smaller cpk and cek lead to more reserves, which
tend to reduce the benefits of building assets from different
services, but help to improve tracking performance as will
be shown later.

• In Case 1, no energy or power margin is reserved. The
obtained total benefit is the largest among all three
cases.
• In Case 2, the decreasing coefficients lead to tighter

constraints and larger reserves in all hours. The ben-
efits from different services are considerably compro-
mised, about 19.91% reduced compared with Case 1.
• In Case 3, time-varying reserves are applied to better

balance the trade-off between economic benefits and
tracking performance. In particular, cpk is set to be
0.55 and cek is set to be 0.75 for hours with poor
tracking performance in Case 1 and both of them are
set to 0.9 for the remaining hours. The total benefits
increase by 15.54% compared with Case 2.

Table 1. Benefits with different VB optimal
scheduling scenarios

Energy Demand Regulation Total

Case 1 25.05 96.40 26.45 147.90
Case 2 19.88 84.05 14.53 118.46
Case 3 22.22 91.60 21.86 135.68

08/11/13-00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 08/12-00:00

Time

0

200

400

600

800

1000

P
o

w
e

r

upper bound desired actual lower bound

08/11/13-00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 08/12-00:00

Time

-100

-50

0

50

100

150

E
n

e
rg

y

upper bound energy state lower bound

08/11/13-00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 08/12-00:00

Time

0

200

400

600

800

1000

P
o

w
e

r

upper bound desired actual lower bound

08/11/13-00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 08/12-00:00

Time

-100

-50

0

50

100

150

E
n

e
rg

y

upper bound energy state lower bound

Fig. 1. Signal following results without reserve margins.
Top: desired power vs. actual power consumption
(kW); Bottom: desired VB energy state (kWh).

5.2 Control Results

Based on the optimal schedule and regulation signals, the
desired power consumption from ACs is calculated. ACs
are then controlled using a PSB algorithm to follow the
desired power in each case. The signal tracking results in
Case 1 are plotted in Fig. 1. As can be seen, the power
consumption cannot well follow the desired value between
6:00 and 9:00, around 12:00 and 15:00. Note that the total
power consumption from ACs is discrete, with a step equal
to the rate power of a single AC. Therefore, when the
tracking error is smaller than the rated power of a single
AC, the power signal is considered to be well followed. In
this case, the tracking error is larger than 5% of the target
power consumption for more than 8% of time.

In Case 2, with sufficient constant reserves for both power
and energy, the obtained optimal schedule can be well
followed. The tracking results are similar as the last case
and therefore are omitted here. The signal tracking results
in Case 3 are plotted in Fig. 2. For more than 99.4% of the
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Fig. 2. Signal following results with time-varying reserve
margins.
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Fig. 3. Signal-following performance of the PSB control
(top) and the modified PSB control (bottom).

time, the tracking error is within 5% of the target power
consumption.

To test the proposed control algorithm and compare it
with the PSB algorithm, simulations were also performed
for ACs with a two-minute lock-off time constraint to
follow the example power signals within the flexibility
limits of the VB. The results for a sampled 25-minute
period are shown in Fig. 3. As can be seen, with a two-
minute lock-off time constraint, the PSB algorithm fails to
control these ACs to follow the desired power consumption
in some time periods. It is found that many ACs are in
lock-off mode between 12:50 and 12:55 and there are not
enough devices to turn on to provide the desired power
consumption. On the other hand, using the proposed
algorithm with Eth set to be 62.5% of the energy upper
bound, and Eth set to zero (because there is no lock-on
time in the example), these ACs can be controlled to follow
the regulation signal well all the time, including the time
period between 12:50 and 12:55.

6. CONCLUSIONS

This paper presents a VB-based flexibility modeling,
scheduling, and controlling framework for residential TCLs
to provide multiple grid services. With the proposed flex-
ibility characterization, both homogeneous and heteroge-
neous TCLs can be approximated as a VB system that
can be directly integrated into existing resource schedul-
ing and coordination platforms. An optimal scheduling
formulation was developed to maximize the total benefits
from stacked value streams. It was found that time-varying
reserve margins can help to improve signal tracking perfor-
mance yet with little impacts on total economic benefits.
In addition, the PSB algorithm generally provides good

signal tracking performance. The proposed modified PSB
algorithm can shift flexibility over time and thereby help
to improve the signal tracking performance of ACs with
lock time constraints.
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