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Abstract: This work presents a robust MPC (Model Predictive Control) approach for reserve
balancing in DC microgrid systems under uncertainties like wind power and energy price
variations and different types of fault events. The robust MPC algorithm considers a variable-
length prediction horizon which accounts for forecasts in energy price and renewable power
over one day. Furthermore, a storage system is used to increase the utility of the demands and
minimize the energy costs. The algorithm is tested for multiple fault types which affect the
system (line and loss of power faults).
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1. INTRODUCTION

In view of increasing availability of renewable energy
sources and political efforts to encourage clean energy, an
EMS (Energy Management System) capable to adapt the
grid power distribution to the renewable energy variability
is required. The goal of this work is to propose a robust,
optimization-based control implementation and reconfig-
uration for the reserve balancing in a microgrid system
influenced by various types of uncertainties like wind and
energy price variations or fault events.

The technical literature provides an extensive number of
robust smart grids controller implementation with differ-
ent goals. In Prodan and Zio [2014] a MPC algorithm
for reliable microgrid energy management regarding un-
certainties in the forecast is proposed and extended to
fault cases in Prodan et al. [2015]. Herein the MPC algo-
rithm considers soft constraints to enable feasibility under
faults and disturbances. The algorithm enables robustness
against one broken line (N-1 security). In Wu and Conejo
[2017] the most critical facilities were protected to mini-
mize worst-case loads after physical attacks (faults), such
that at least N-1 security holds. Here, a tri-level min-
max-min problem is used, in order to minimize possible
damages (the attacker tries to maximize the damage, while
the operator handles the damage minimizing the cost). In
Khodabakhsh and Sirouspour [2016] the battery usage is
optimized, while a multi-variant Gaussian distribution is
used to model uncertainties in energy price and demands.
In addition, Wytock et al. [2017] proposed a scenario-based

? The first author would like to acknowledge the financial support
of the Chair TRUST of Grenoble INP for his research stay at the
Univ. Grenoble Alpes, Grenoble INP ?, LCIS, F-26000 Valence.
? Institute of Engineering Univ. Grenoble Alpes.

robust MPC approach, in which the worst case of all the
generated scenarios is considered. Khodaei [2014] emphasis
the resiliency for smart grid under islanded conditions,
while in Chen et al. [2016] the energy distribution within
connected smart grids after natural disasters is analyzed.
Furthermore Rahimiyan et al. [2014] provides a simple
EMS and data records for the energy price and wind power
for a 24 hours interval. An approximated minimax robust
approach is proposed for improving the utility of demands
under forecast uncertainties. Herein the approximation
considers a reduced set of disturbance scenarios.

The present work extends the MPC implementation pre-
sented in Prodan et al. [2015], uses the data provided
in Rahimiyan et al. [2014] and further applies robust
approaches and deals with fault events. The contributions
of this work are summarized in the following:

• a robust economic MPC scheme with variable pre-
diction horizon length will be implemented to handle
profile variations and maximize utility;

• branch disconnects will be treated as faults to be at-
tenuated via fault tolerant reconfiguration strategies;

• storage charge and discharge decisions will be cus-
tomized by two approaches such that a fault occur-
rence of finite length can be recovered from;

Hence, Section 2 details the dynamical model of the micro-
grid. Section 3 presents the proposed energy management
system using robust optimization which is further analyzed
thorough various case studies in Section 4. Finally, Section
5 draws the conclusions.

2. MICROGRID SYSTEM DESCRIPTION

We consider the dynamical model of a microgrid system
which contains various loads, renewable resources and stor-
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age units, all connected among themselves through lines
(which draw power from buses) and to the utility grid.
Hence, the microgrid model consists of various components
(each of them characterized 1 by power, energy and adja-
cency matrices which link them with other grid elements):

• NC consumers with: power PC ∈ RNC , energy eC ∈
RNC , the adjacency matrix ΩC

B ∈ INB×NC

• NW distributed energy resources with: power PW ∈
RNW , energy eW ∈ RNW , adjacency matrix ΩW

B ∈
INB×NW

• NST storages with: storage energy eST ∈ RNST ,
adjacency matrix ΩST

B ∈ INB×NST

• NS main grid connections with: power P S ∈ RNS ,energy
eS ∈ RNS , adjacency matrix ΩS

B ∈ INB×NS

• NL lines with: power P L ∈ RNL , adjacency matrix
ΩL

B ∈ INB×NL

• NB buses with: power PB ∈ RNB

The adjacency matrices take values from I ∈ {−1, 0, 1},
i.e., ΩC

B(i, j) denotes the link between the j-th consumer
and the i-th battery which can be one of “consumer takes
power from battery”, “consumer gives power to battery”
or “consumer and battery are not connected”.

Hereinafter we consider discrete-time equations with the
timestep τ . The storage energy eSTτ ∈ RNST depends on
the charge energy eST,+τ ∈ RNST and discharge energy
eST,−τ ∈ RNST with the conversion parameters µ1 and µ2:

eSTτ+1 = eSTτ + µ1e
ST,−
τ − e

ST,+
τ

µ2
. (1)

The storage capacity is bounded by the maximum storage
energy eST,max and a depth of discharge (DoD) of the
maximum capacity:

DoD · eST,max ≤ eSTτ ≤ eST,max. (2)

The energies corresponding to all the components of the
microgrid are gathered in a vector eτ

eτ = [eST,+τ , eST,−τ , eSτ , e
C
τ , e

W
τ ] (3)

with 0 ≤ eST,+τ , eST,−τ , eCτ , e
W
τ (4)

and are expressed in terms of power by using the trape-
zoidal rule:

eτ =
P τ + P τ+1

2
, (5)

where the inputs and decision variables are:

P τ+1 = [P ST,+
τ+1 ,P

ST,−
τ+1 ,P

S
τ+1,P

C
τ+1,P

W
τ+1]. (6)

To divide times of charge and discharge, we use an auxil-
iary variable ατ+1 ∈ {0, 1} in the mixed-integer conditions:

0 ≤ P ST,−
τ+1 ≤ ατ+1P

ST,max, (7a)

0 ≤ P ST,+
τ+1 ≤ (1− ατ+1)P ST,max. (7b)

A sell-or-pay contract is considered for the main grid,
wherein the microgrid can buy and sell energy for the
current, time-variant energy price λSτ . In this case the
minimum bound P S,min may be negative:

P S,min ≤ P S
τ+1 ≤ P

S,max. (8)

1 One or another of these variables may be ignored if not relevant
for the particular grid element.

The main grid power can increase per hour by a maximum
value ∆P S,max. In case of shutdown cycle, there exists no
lower bound for the main grid power variation:

P S
τ+1 − P

S
τ ≤ ∆P S,max (9)

The renewable power is bounded by the available renew-
able power PAW:

PW,min ≤ PW
τ+1 ≤ P

AW
τ+1 (10)

The renewable power is bought with the constant energy
price λW.

Each consumer has a power demand which lies in between
known minimum (time-variant) and maximum (constant)

demand bounds PC,min
τ+1 , PC,max:

PC,min
τ+1 ≤ PC

τ+1 ≤ P
C,max. (11)

Furthermore we bound the consumption variation by:

rmin ≤ PC
τ+1 − P

C
τ ≤ rmax. (12)

Also, the consumers have to meet a minimum daily en-
ergy consumption eday while, simultaneously, through an
optimal scheduling, increase the grid utility. Thus, at the
current time instant the sum of ”already” and ”to be”-
consumed energies has to respect the constraint

t−1∑
h=1

eCh +

24−t∑
h=0

eCτ ≥ eday. (13)

The power capacity of each line is bounded by the maxi-
mum capacity P L,max and minimum capacity P L,min:

P L,min ≤ P L
τ+1 ≤ P

L,max. (14)

The power balancing problem based on the so-called DC
power flow equations including the line incidence matrix
ΩL

B and susceptance B:

P L = BΩL
B

>
(ΩL

BBΩL
B

>
)−1PB (15a)∑

b

PB
b = 0. (15b)

The bus injection depends on the wind, storage charge
and discharge, main grid power, and the demand, where

Ω
(·)
B are the adjacency matrices:

PB = ΩW
B P

W −ΩC
BP

C

+ΩST
B (P ST,− − P ST,+) + ΩS

BP
S.

(16)

Each power demand is weighted by utility u> ∈ RNC , to
value the worth of the consumption in comparison to the
energy price.

3. ENERGY MANAGEMENT SYSTEM (EMS)

The EMS solves, at each step, a constrained optimization
problem with an economic objective function, which mini-
mizes the cost of wind λW and external grid energy, while
simultaneously maximizing the utility u.

Jt = λSt e
S
t − uT

t e
C
t + λWeWt

+

24−t∑
h=1

λSt+he
S
t+h − uT

t+he
C
t+h + λWeWt+h.

(17)

The whole optimization problem is given by
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min Jt (17) (18a)

s.t. power balancing conditions (15), (16) (18b)

storage unit dynamics (1) (18c)

storage constraints (2), (7) (18d)

trapezoidal rule (5) (18e)

main grid constraints (8), (9) (18f)

consumer constraints (11), (13), (12) (18g)

power lines constraints (14) (18h)

Using the utility as a time-varying weight, the value
describes the worth of a particular consumption. We want
to emphasize that, the objective function (17) utilizes a
shrinking prediction horizon. For the current time step
t, the objective function predicts 24 − t steps into future
(hence covering the remaining of the day). The constraints
include the microgrid model with τ = t+h, h = 0, ..., 24−t
and t = 1, ..., 24. The minimum generator power PW,min

appears for completeness reasons but in the scheme is set
to zero.

In general, the EMS is not robust under forecast distur-
bances. Therefore a robust control approach is required.
We propose two different control approaches: the robust
EMS (19) taken from Rahimiyan et al. [2014] and the
minimax EMS (20). Both of them consider the same cost
Jt from (17).

The robust EMS allows to set the degree of robustness by
the parameters ΓS and ΓW (for further information see
Rahimiyan et al. [2014]):

min Jt + βSΓS +

24−t∑
h=1

ξSt+h (19a)

s.t. constraints (18) (19b)

βS + ξSt+h ≥ (λS,max
t+h − λS,min

t+h )ySt+h (19c)

−ySt+h ≤ eSt+h ≤ ySt+h (19d)

PW
t+h+1 −

PAW,max
t+h+1 + PAW,min

t+h+1

2
+ βW

t+h+1ΓW
t+h+1 + ξWt+h+1 ≤ 0

(19e)

βW
t+h+1 + ξWt+h+1 ≥

PAW,max
t+h+1 − PAW,min

t+h+1

2
yWt+h+1 (19f)

1 ≤ yWt+h+1 (19g)

PW
t+1 ≤ PAW

t+1 (19h)

βW
t+h+1, y

W
t+h+1,ξ

W
t+h+1, ξ

S
t+h, y

S
t+h, β

S ≥ 0. (19i)

The minimax EMS considers the worst-case scenario
by using the minimax MPC algorithm [Löfberg 2003],
where the available wind power and the energy price is
parametrized by the minimum and maximum forecast
bound under the bounded uncertainty variables w (with
subscript denoting time and superscript denoting the
associated variable).

min max
wS,wAW

Jt (20a)

s.t. constraints (18) (20b)

PAW
t+h+1 =

PAW,max
t+h+1 + PAW,min

t+h+1

2

+ wAW
PAW,max
t+h+1 − PAW,min

t+h+1

2

(20c)

−1 ≤ wAW
t+h+1 ≤ 1 (20d)

λSt+h+1 =
λS,max
t+h+1 + λS,min

t+h+1

2

+ wS
λS,max
t+h+1 − λ

S,min
t+h+1

2

(20e)

−1 ≤ wS
t+h+1 ≤ 1 (20f)

PW
t+1 ≤ PAW

t+1 . (20g)

Due to the good performance results of the minimax EMS,
as highlighted in Section 4, the next considerations are
based on the minimax EMS implementation.

Note that, when considering faults, or operating in is-
landed mode, the minimax EMS (20) computes no pre-
emptive power and demand scheduling. To have reliability
and feasibility, we analyze two preemptive schemes:

(1) Soft constraints for power balancing (through the
slack variables θ3,(·), θ4,(·)), where the EMS is enforced
to meet the demand by the wind and storage power.

O1 : min
Jt +

24−t∑
h=0

Q3θ3,t+h+1

+Q4θ4,t+h+1

(21a)

s.t. constraints (20) (21b)
NC∑
i=1

PC,i
t+h+1 ≤ P

ST,+
t+h+1 + PW

t+h+1 + θ3,t+h+1 (21c)

P ST,−
t+h+1 ≤ P

W
t+h+1 + θ4,t+h+1 (21d)

0 ≤ θ3,t+h+1, θ4,t+h+1; (21e)

(2) Soft constraints for demand scheduling (through the
slack variable θC(·)), where the main grid power is

considered as a bounded disturbance. Soft constraints
are required to be feasible regarding the worst-case
scenarios.

O2 : min max
wPS

Jt +

24−t∑
h=0

QCθCt+h+1 (22a)

s.t. constraints (20) (22b)

P S,unc
t+h+1 =

P S,max
t+h+1 + P S,zero

t+h+1

2

+ wPS
P S,max
t+h+1 − P

S,zero
t+h+1

2

(22c)

P S,min
t+h+1 ≤ P

S
t+h+1 ≤ P

S,unc
t+h+1 (22d)

−1 ≤ wPS
t+h+1 ≤ 1 (22e)

PC,min
t+h+1 ≤ P

C
t+h+1 + θCt+h+1 ≤ P

C,max
t+h+1 (22f)

0 ≤ θCt+h+1 (22g)

0 ≤ PC
t+h+1 (22h)
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Fig. 1. 5-bus microgrid architecture.
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Fig. 2. Total utility of minimax MPC and robust EMS

4. CASE STUDIES

4.1 Performance over one day

For the undergoing case studies we use the 5-bus system in
Fig. 1. The wind power, energy price, utility and minimum
demand profiles are taken from Rahimiyan et al. [2014].

J =

24∑
t=1

λSt e
S
t − uT

t e
C
t + λWeWt (23)

Regarding the forecast disturbances, we simulate the
performance of the robust EMS (REMS) and the minimax
EMS, where we apply randomly the minimum or maxi-
mum forecast bound for the next time step in 100 scenar-
ios. To analyze both approaches we use the total utility
(23). The results in Fig. 2 indicate that the robust EMS
has a performance range which is strongly parameter-
dependent (e.g., there are parameter combinations that
cause infeasibility, and parameter combinations that are
feasible for every scenario). Depending on the scenario,
the robust EMS can lead to a better performance, than
the minimax EMS. The latter is feasible in every scenario
and leads to a good performance independent of the pa-
rameter choice. This is due to the good performance under
disturbances that the schemes (21) and (22) have for the
minimax EMS.

Considering line, storage, wind faults and the islanded
mode, the overall goal is to charge preemptively the
storage system, such that the necessary demand is covered.
For the implementation, we use two controllers:

(1) The “healthy-mode” controller (which uses internally,
for prediction, the nominal grid model). This corre-
sponds in fact to the results presented and discussed
above (Fig. 2 and the surrounding text).

Table 1. 5-bus-system: nominal Performance of pre-
emptive schemes for grid fault

Approach utotal [$ ·104] V0 V1 [ $
MWh

]

minimax EMS 3.92 0.035 7.66

O1 2.08 0.214 4.14

O2 3.23 0.042 6.11

(2) The “faulty-mode” controller (the grid model is
changed to characterize a fault 2 ). This controller be-
comes active whenever a fault is detected (we assume
no missed faults or false alarms). Once the grid is
again under nominal functioning, the EMS switches
back to the healthy-mode controller.

We are interested in the advantages and shortcomings
of preemptive control schemes. These strongly depend
on fault type, frequency of occurrence and operational
constraints (e.g., line faults do not require a charged
storage system; storage and wind faults depend on the
external grid power variation constraints wheneve, e.g.,
the EMS is bound to sell energy to the external grid).

Since each fault type is solved by specific and optimized
architecture design, we hereinafter consider a limited test
case: we focus on the islanded mode and consider tempo-
rary and unexpected lack of wind power as the fault.

In general, the minimax EMS does not schedule the de-
mands and charge the storage preemptively, thus we com-
pare two preemptive schemes in Fig. 3 under nominal con-
ditions. The soft constrained power balancing scheme O1

causes a high battery usage, such that the storage charges
and discharges frequently. In comparison to the minimax
capacity profile eSTnom, the preemptive scheme charges ear-
lier, while in this example the battery remains longer at the
maximum capacity for the original minimax EMS. Hence
the EMS schedules the demands preemptively. Scheme O2

charges earlier than the nominal case and remains close
to being fully charged until the economic cost forces the
discharge. In Tab. 1 Scheme O1 has a worse total utility
(24) and profit (27), since the higher battery usage (26) is
economically expensive.

utotal = −
24∑
t=0

[λSt e
S
t + λWeWt − uT

t e
C
t ] (24)

etotal =

24∑
t=1

NC∑
k=1

eCk,t (25)

V0 =

∑24
t=1 e

ST,−
t

etotal
(26)

V1 =
utotal
etotal

(27)

Under unexpected islanded mode the minimax EMS pre-
dicts at hour 7 no available wind power for the next 2 hours
(worst-case-scenario). Therefore a higher storage energy
is required due to variation constraints on the main grid
power. Scheme O1 is infeasible for this scenario, because
2 For line, storage and wind faults the fault duration is unknown,
so the fault is considered until the end of the day. For the islanded
mode, we use a fixed fault duration of one hour.
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Fig. 3. Nominal storage profile.

Table 2. 5-bus-system: performance under islanded
mode.

Approach utotal [$ ·104] V0 V1 [ $
MWh

]

Nominal 3.23 0.042 6.11

Unknown fault 2.95 0.046 5.72

Known fault 2.95 0.046 5.71

0 5 10 15 20 25
0

100

200

300

sim time

P
C

in
M

W

PC
nom PC

Fig. 4. Consumer 7 under fault.

EMS follows economic objectives which lead to stored
energy insufficient in covering the demands. Scheme O2

is feasible and chooses an optimal demand schedule under
fault. E.g. for consumer 7 in Fig. 4 the demand is lower
before the fault appears and still receives the minimum
demand under fault.

In general, we cannot a priori provide guarantees about
the feasibility of Schemes O1 or O2. Scheme O1 has a
high battery usage, which leads to a worse overall cost.
Scheme O2 is conservative, since it considers the worst-
case scenario. The economic objectives and economic soft
constraints can lead to infeasible steady-states. Thus, we
consider these schemes (and similar variations) as tools
to be used in Monte Carlo-like analysis: multiple faults,
profiles and parameters variations are considered in order
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sim time
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h eSTnom eST eST,-

eST,+

Fig. 5. Storage Energy under fault.

Fig. 6. 6-bus microgrid architecture.

to assess which scheme, and under which circumstances,
is better-suited to a particular case.

4.2 Capacity Comparison

In the previous section, we have focused on the perfor-
mance over one day with a particular model setup. For
further comparisons we introduce the 6-bus-system in Fig.
6, which is a simplification of the standard IEEE 9-bus
system. Arguably, the defining parameter for feasibility
and reliability is the storage capacity. To analyze certain
feasibility and reliability domains Fig. 7, 8 and 9 indicate
the total utility as a function on fault time and storage
capacity. These figures show the top-view of an 3D-plot,
where the height is color-coded.

We compare the Schemes O1 and O2 with the 5-bus-
system and the 6-bus-system. Infeasibility is denoted by
zero. The EMS in Fig. 7 is infeasible for both systems
between hour 8 for any storage capacity. There is no
storage range where the EMS is feasible, for any fault time.

With scheme O1 we can determine a feasible area for
a storage capacity between 70 and 180 MWh in Fig. 8
for the 6-bus-system. Applying the scheme O1 on the 5-
bus-system the infeasible area increases. On the contrary,
scheme O2 leads to a feasible range for the 5-bus-system
between 0 and 50 plus 70 and 230 MWh. Although the
scheme cannot provide a continuous feasible range for the
6 bus-system, it manages to minimize the infeasible areas.

5. CONCLUSION

We described a detailed microgrid model which was further
employed for model-based prediction into constrained-
optimization implementations of an energy management
system (EMS). We have considered two variations of
robust MPC and tested their feasibility and performance
under nominal and fault-affected functioning. The test
cases show that, even for small-scale microgrid systems
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Fig. 7. Total utility depending on fault time and storage
capacity with EMS. Zero indicates infeasibility.
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Fig. 8. Total utility depending on fault time and storage
capacity with scheme O1; the green frame indicates
storage capacities to obtain fault-time-independent
feasibility. Zero indicates infeasibility.

(5 and 6-buses) the behavior is complex and is strongly
influenced by the interplay between parameters, profiles
and control decisions. The storage is, arguably, the most
important grid component as its size and charge/discharge
decisions greatly influence the performance of the EMS.
Further work will focus on a priori guarantees of feasibility.
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Fig. 9. Total utility depending on fault time and storage
capacity with scheme O2; the green frame indicates
storage capacities to obtain fault-time-independent
feasibility. Zero indicates infeasibility.
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