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Abstract: Advanced Lithium-ion battery management systems rely on accurate cell-level
state of charge (SOC) and parameter estimation for safe and efficient real-time monitoring.
However, the design of combined state and parameter estimators that are provably convergent
is notoriously difficult. A robust observer framework based on a coupled equivalent circuit-
thermal model for a cylindrical battery is proposed. The coupled model also takes into account
SOC and temperature-dependent electrical parameters for higher accuracy. In the literature,
the model parameters are often treated as constants to simplify model structure and observer
analysis. The problem considered in this work is particularly challenging due to (i) nonlinear
two-way coupling between electrical and thermal sub-models, and (ii) nonlinear dependence of
model parameters on the system states. A single aggregated observer for both SOC and thermal
estimation becomes intractable due to lack of convergence certification caused by complex
model coupling. We tackle this problem by proposing a sequential estimation scheme such
that every sub-estimator converges separately, which is mathematically verified by Lyapunov
stability analysis. Simulation results demonstrate the performance of the proposed state and
parameters estimation framework.

Keywords: Li-ion Battery, State Estimation, Thermal Coupling, Lyapunov Stability, Robust
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1. INTRODUCTION

From mobile phones to electric vehicles, Lithium-ion (Li-
ion) batteries are the energy storage technology that make
these applications viable due to their high energy density,
low self-discharge rate, and high efficiency (Chaturvedi
et al., 2010). To extract their full potential while ensuring
safety, the internal states of Li-ion batteries need to be
properly monitored. Particularly relevant states are the
state of charge (SOC) and internal temperature. The
former is the fuel gauge of the battery, whereas the latter
directly impacts battery health and safety. Neither of them
are directly measured, and only nonlinear transformations
of them can be accessed through voltage and surface
temperature measurements during regular operation.

The model-based estimation problem of Li-ion batteries
has been widely considered in the literature. Interested
readers may refer to Pop et al. (2005); Hannan et al.
(2017). The estimation methods can be divided depending
of the type of model used, namely data-driven models,
physical models, and equivalent circuit models (ECM)
(Zhang et al., 2017; Park et al., 2017). The first model
type is black box and it suffers from needing a large
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training data set to describe the nonlinear behavior of the
battery. The second model type benefits from its physical
transparency (Zhang et al., 2019a), but the resulting
models are complex to run online and its parameters
might not be identifiable. In this context, the last model
type constitutes a good compromise between prediction
accuracy and computational complexity (Hu et al., 2012).
Given that electrical parameters are known to change
with operating conditions (Wang et al., 2017), ECMs have
been extended to form coupled equivalent circuit-thermal
models as well as models with SOC-dependent parameters
(Lin et al., 2014).

For the ECM model-based estimation, two main paths
can be distinguished, namely stochastic filtering and non-
linear observers. The most prolific contribution in the
first approach has been variants of Kalman filters (KF)
(Plett, 2004). Some approaches assume constant and
known parameters (Rahimi-Eichi et al., 2013), or unknown
slowly time-varying parameters that are estimated along-
side the states via joint/dual estimation (Wang et al.,
2017; Restaino and Zamboni, 2012). Others take into
account SOC-dependent parameters by relying on ro-
bust observers (Lotfi and Landers, 2012). Ouyang et al.
(2014) reported an observer for SOC and temperature
subject to state-dependent parametric changes. However,
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the coupling between the electrical and thermal models
is ignored, which eases the observer design at the sacri-
fice of model fidelity. Aside from the limited amount of
work, most approaches covering state-dependent param-
eters resort to nonlinear KFs. Additionally, adaptive ob-
servers exploit SOC-dependent/temperature-compensated
models and combine the state observer with parameter
estimators, e.g. Least-Squares (Rahimi-Eichi et al., 2013)
or Lyapunov-based estimators (Ning et al., 2016).

Battery model parameters are well-known to fluctuate
with SOC, temperature, and aging (Wang et al., 2017;
Meng et al., 2018), and the literature has not appropriately
addressed the state observer design considering explicit
two-way coupling in electro-thermal model 1 . In light of
the aforementioned challenge and existing work, this paper
contributes to the existing literature in the following ways:

• Designing an adaptive observer for combined state
(SOC and internal temperature) and parameter esti-
mation based on an ECM with thermal coupling;
• Proposing a nonlinear observer in a sequential fashion

to account for state-dependent electrical parameters,
which makes tractable the convergence analysis for
the estimators compared to aggregated ones.

2. MODEL DEVELOPMENT

This section reviews a two-way coupled electro-thermal
model that consists of an equivalent-circuit model and a
two-state thermal model for a cylindrical battery cell.

The ECM for a battery cell, shown in Fig. 1, is described
by the following continuous-time dynamical equations,

ż(t) =
1

Q
I(t), (1)

V̇c(t) = − Vc(t)

R2(z, T, η)C(z, T, η)
+

I(t)

C(z, T, η)
, (2)

V (t) = Voc(z(t)) + Vc(t) +R1(z, T, η)I(t), (3)

where z(t) represents the cell SOC, Vc(t) denotes the
voltage across the R-C circuit, and I(t) is the applied cur-
rent. We herein specify positive current for charging and
negative current for discharging. Battery charge capacity
is denoted by Q. T (t) represents the cell temperature. The
electrical model parameters, namely R1, R2, and C, are de-
pendent on cell SOC, temperature, and the sign of current
η ∈ {+,−}. Such dependence can be explicitly character-
ized via an offline experiment. For instance, the work by
Lin et al. (2014) on a LiFePO4/Graphite cell conducted
a set of experiments at various SOC and temperature
points, and proposed empirical equations used to predict
parameter values. The output equation (3) provides the
voltage response determined by a nonlinear open circuit
voltage (OCV) as a function of SOC, voltage from the R-
C pair, and voltage associated with resistance R1.

A two-state thermal model is adopted from Lin et al.
(2014). The model states are cell core temperature and
surface temperature:

1 The phrase “two-way coupling” indicates that the electrical and
thermal sub-models have explicit influence on each other.
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Fig. 1. The schematic of an equivalent circuit model

Cc
dTc(t)

dt
=
Ts(t)− Tc(t)

Rc
+ E(t) (4)

Cs
dTs(t)

dt
=
Tf (t)− Ts(t)

Ru
− Ts(t)− Tc(t)

Rc
(5)

E(t) = I(t)
[
V (t)− Voc(z(t))

]
, (6)

T (t) =
1

2

(
Ts(t) + Tc(t)

)
, (7)

where Tc(t) and Ts(t) denote core and surface tempera-
tures, and T (t) represents the average between core and
surface. Symbols Rc, Ru, Cc, and Cs represent heat con-
duction resistance between core and surface, convection re-
sistance between ambient and surface, core heat capacity,
and surface heat capacity, respectively. Symbol E(t) ≥ 0
represents the internal heat generation from resistive dis-
sipation. Note that the electrical model (1)-(3) and the
thermal model (4)-(7) are non-linearly coupled via

(1) internal heat generation E(t), since E(t) explicitly
depends on z(t) generated by the electrical model;

(2) thermally-dependent electrical parameters, namely
R1(z, T, η), R2(z, T, η), and C(z, T, η).

The measured quantities for the coupled electro-thermal
model (1)-(7) are the cell voltage and surface temperature:

y(t) =
[
V (t), Ts(t)

]>
. (8)

3. ESTIMATION WITH CONSTANT PARAMETERS

As an intermediate step, suppose the state-dependent
electrical parameters in (2)-(3) are constants, and each
takes a nominal value, i.e. R1(z, T, η) = R0

1, R2(z, T, η) =
R0

2, and C(z, T, η) = C0. We refer to this model as the
“reduced model”. The objective of this section is to design
an adaptive observer to estimate the states (SOC and core
temperature) as well as the constant electrical parameters
in the reduced model in an online fashion.

It is worth highlighting that the reduced model still main-
tains a nonlinear structure, due to nonlinear OCV-SOC
relation and nonlinear internal heat generation. However,
the electrical part of the model becomes independent since
it is not affected by the thermal model. The electrical
model is now upstream of the thermal model by generating
resistance heat to excite the thermal model. In general,
the combined online state and parameter estimation based
on a nonlinear model has proven to be challenging. We
propose a sequential estimation scheme to (i) estimate
the core temperature and internal heat generation with a
robust observer, and then (ii) design an adaptive state and
parameter estimation algorithm for the electrical model by
taking advantage of the estimates from the previous step.
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3.1 Robust State Estimator for Thermal Model

We adopt a robust observer framework from Zhang et al.
(2017) to simultaneously estimate the core temperature
and internal heat generation using surface temperature
measurement. The design treats the internal heat gen-
eration in the thermal model as an unknown input, and
utilizes a sliding mode observer to reconstruct the unmea-
sured core temperature with the presence of an unknown
input with a high observer gain (Khalil, 2002). Further-
more, it also produces the estimation for the unknown
input which is used in subsequent designs. The robust
estimation is described by the following dynamical system:

dT̂c(t)

dt
=
T̂s(t)− T̂c(t)

RcCc
+ L1sgn(v), (9)

dT̂s(t)

dt
=
Tf (t)− T̂s(t)

RuCs
− T̂s(t)− T̂c(t)

RcCs
+ L2vs, (10)

where T̂c(t) and T̂s(t) are estimates of Tc(t) and Ts(t),
and L1, L2 > 0 are observer gains to be designed. Symbol
sgn(·) is the signum function. Moreover, vs = sgn(Ts− T̂s),
and v is the filtered version of L2vs. In real time, v can be
computed by passing L2vs through a low pass filter with
unity steady-state gain, i.e. v(t) = {ω/(s + ω)}L2vs(t),
where ω is the cut-off frequency. We now provide the
convergence results of observer (9)-(10) in Theorem 1.

Theorem 1. (Zhang et al. (2017)). Consider the locally ob-
servable system (4)-(8) with heat generation |E(t)| ≤ME ,
∀ t ∈ R+. If the observer gains are chosen such that

L1 >
ME

Cc
and L2 >

|T̃c|max

RcCs
, (11)

where |T̃c|max is the maximum absolute value of estimation

error for Tc, then the estimation error T̃c = Tc − T̂c
converges to zero within finite time. In addition, the
estimation of the unknown input E(t) is given by

Ê(t) = L1Ccsgn(v). (12)

Details can be found in Section III in Zhang et al. (2017).

3.2 Estimator for SOC and Capacity

The heat generation estimation Ê(t) is then utilized to al-
gebraically compute a pseudo-measurement that decouples
the measurement associated with SOC from the overall
voltage. Let yz(t) = Voc(z(t)), and according to (6),

yz(t) = Voc(z(t)) = V (t)− E(t)

I(t)
. (13)

Since I(t) and V (t) are measured, yz(t) can be computed in

real time by replacing E(t) by its estimate Ê(t) (Ioannou
and Sun, 2012). Hence, (1) and (13) define a new system
for SOC, as follows,

ż(t) =
1

Q
I(t), (14)

yz(t) = Voc(z(t)). (15)

A robust observer, i.e. a sliding mode observer, is designed
to simultaneously estimate SOC z(t) and capacity Q:

˙̂z(t) = L3sgn (yz − ŷz) , (16)

ŷz(t) = Voc(ẑ(t)), (17)

where L3 is to be designed. Under this scenario, we provide
the convergence results of SOC observer (16)-(17).

Theorem 2. (Zhang et al. (2019b)). Consider the dynami-
cal system for SOC (14)-(15), and the estimated internal
heat generation from (12). Furthermore, assume Voc(z)
is a monotonically increasing function of z over domain
0 ≤ z ≤ 1. Also, assume bounds MI > 0,mQ > 0 are
known, where

∣∣I(t)
∣∣ ≤ MI , ∀ t ∈ R+, and Q ≥ mQ. If the

scalar observer gain L3 verifies

L3 >
MI

mQ
, (18)

then the estimation error z̃(t) = z(t)− ẑ(t) from observer
(16)-(17) converges to zero in finite time. Furthermore,
estimated battery capacity is given by

Q̂(t) = − I(t)

L3µ
, (19)

where µ is the filtered version of sgn(yz − ŷz), computed
by passing sgn(yz − ŷz) through a low pass filter with
unity steady-state gain in real time, i.e. µ(t) = {ω/(s +
ω)}sgn(yz(t)− ŷz(t)), where ω is the cut-off frequency.

3.3 State Estimator for ECM

The estimated heat generation Ê(t) is then used to cal-
culate another pseudo-measurement to decouple the mea-
surement associated with the R-C from the overall voltage.
Let ye(t) = V (t)− Voc(z(t)). Now, based on (3) and (6),

ye(t) = V (t)− Voc(z(t)) = Vc(t) +R0
1I(t) =

E(t)

I(t)
. (20)

Therefore, ye(t) can be obtained in real time by substitut-

ing E(t) by its estimation Ê(t). Combining (2) with (20)
yields the dynamical equation

ẋ(t) = − 1

R0
2C

0
x(t) +

1

C0
u(t), (21)

ye(t) = x(t) +R0
1u(t), (22)

where x(t) = Vc(t), and u(t) = I(t). Since x(t) is
exponentially stable when u(t) = 0, we design a linear
Luenberger observer by injecting the estimation output
error:

˙̂x(t) = − 1

R0
2C

0
x̂(t) +

1

C0
u(t) + L4

[
ye(t)− ŷe(t)

]
, (23)

ŷe(t) = x̂(t) +R0
1u(t). (24)

The dynamics for x̃ = x− x̂ is given by

˙̃x(t) = −

(
1

R0
2C

0
+ L4

)
x̃ (25)

and L4 ≥ −1/R0
2C

0 sets the exponential convergence rate.

Remark 3. Note the parameters R0
2 and C0 in (23), and R0

1
in (24). In the subsequent section we design a parameter
identifier. We then formulate an adaptive observer by
replacing these parameters with their estimates, via the
certainty equivalence principle (Ioannou and Sun, 2012).

3.4 Parameter Identifier for ECM

In this section, we design a recursive identification algo-
rithm for unknown ECM parameters, i.e. R0

2 and C0 in
(23), and R0

1 in (24), respectively. Taking Laplace trans-
form on both sides of (21) yields

sX(s)− x(0) = − 1

R0
2C

0
X(s) +

1

C0
U(s). (26)
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Next, take Laplace transform on both sides of (22) and
substitute X(s) from (26), and we have that

sYe(s)−x(0)=
−1

R0
2C

0
Ye(s)+

1

C0

(
1 +

R0
1

R0
2

)
U(s)+R0

1sU(s).

(27)
To avoid time differentiation, a filter needs to be applied
in both sides of (27). The filter takes the form

1

Λ(s)
=

1

(s+ λ1)(s+ λ2)
, (28)

where λ1 and λ2 are time constants of the filter (Ioannou
and Sun, 2012). We can derive a linear parametric model

Z(s) = θ>Φ(s), (29)

where

Z(s) =
sYe(s)− x(0)

Λ(s)
, (30)

θ =

− 1

R0
2C

0

1

C0

(
1 +

R0
1

R0
2

)
R0

1

> , (31)

Φ(s) =

[
Ye(s)

Λ(s)

U(s)

Λ(s)

sU(s)

Λ(s)

]>
. (32)

Both observation Z and regressor Φ are measured or
generated from measured signals. Parameter vector θ will
be identified recursively. For practical implementation,
the identification is formulated along with signals z(t)
and φ(t) in the time domain, where Z(s) and Φ(s) are
Laplace transform of z(t) and φ(t). For instance, φ3(t),
whose Laplace transform is Φ3(s) = sU(s)/Λ(s), can be
obtained by computing the convolution of u(t) and the
inverse Laplace transform of s/Λ(s). Hence, we avoid time
differentiation of u(t), which can be corrupted by noises.

With a linear parametric model, the recursive least squares
algorithm is applied in an online fashion, as parameters are
updated continuously

˙̂
θ = Pε(t)φ(t), (33)

ε(t) =
z(t)− θ̂>φ(t)

m2(t)
, (34)

Ṗ = −P φφ
>

m2
P, P (0) = P0 (35)

m2(t) = 1 + αφ>(t)φ(t), α > 0, P0 = P>0 � 0 (36)

where θ̂ is the estimate of θ, α > 0 is a scalar constant, and
P = P> � 0 is a symmetric positive definite matrix. With

the identified θ̂, the original parameters can be recovered
individually by

R̂0
1 = θ̂3, R̂0

2 = − θ̂1θ̂3 + θ̂2

θ̂1
, Ĉ0 =

1

θ̂1θ̂3 + θ̂2
. (37)

4. ESTIMATION WITH STATE-DEPENDENT
PARAMETERS

We extend the design in Section 3 to the coupled electro-
thermal dynamics (1)-(8) with state-dependent electrical
parameters. In fact, the parameter dependence on the
states (SOC and temperature) renders the estimation task
as a state-only observer design. When the state estimates
have converged, the parameters can be simply retrieved

Fig. 2. Sequential observer design structure.

assuming the map between the parameter and states are
known. We will demonstrate that the methodologies from
Section 3 can be readily generalized to this seemingly
complex model structure with little extra efforts.

4.1 Estimator for Thermal, SOC, and Capacity

The first few steps essentially duplicate the estimator
designs in Section 3.1 and Section 3.2. We hereby sum-
marize these existing steps in conjunction with the design
topology depicted in Fig. 2, which has four layers:

• Layer 1 – Thermal model based observer, utilizes
surface temperature to estimate core temperature and
heat generation. See Theorem 1.

• Layer 2 – Pseudo-measurement computation, alge-
braically calculates two pseudo-measurements and
decouples the electrical model into two separate com-
ponents. See (13)-(15) and (20)-(22).

• Layer 3 – SOC and capacity observer, estimates SOC
and capacity using the pseudo-measurement of OCV,
based on a sliding mode observer. See Theorem 2.

• Layer 4 – ECM observer will be discussed in detail in
the subsequent section.

4.2 ECM Observer with State-Dependent Parameters

This section demonstrates the estimator design for the
bottom layer of Fig. 2. The objective is to estimate the
state Vc(t) while taking nonlinear parameter dependence
on SOC and temperature into account. We employ the
reformulated model (21)-(22) and replace the constant
parameters with nonlinear state-dependent parameters:

ẋ(t) = − 1

R2(z, T, η)C(z, T, η)
x(t) +

1

C(z, T, η)
u(t),

(38)

ye(t) = x(t) +R1(z, T, η)u(t), (39)

where x(t) = Vc(t), and u(t) = I(t). A state observer can
be designed using linear output error injection technique,
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˙̂x(t) = − 1

R2(ẑ, T̂ , η)C(ẑ, T̂ , η)
x̂(t) +

1

C(ẑ, T̂ , η)
u(t)

+ L5

[
ye(t)− ŷe(t)

]
, (40)

ŷe(t) = x̂(t) +R1(ẑ, T̂ , η)u(t). (41)

Note that the estimation of SOC and temperature are
injected into the above observer. Due to the sequential na-
ture, the SOC and temperature estimators are autonomous
and upstream from the state estimator for Vc(t), so they
are convergent independently. Theorem 4 provides the
convergence analysis for the observer (40)-(41).

Theorem 4. Consider the plant model (38)-(39) and the
state observer (40)-(41). If the observer gain L5 verifies

L5 > −
1

R2,maxCmax
, (42)

where R2,max and Cmax denote the maximum values for
R2(z, T, η) and C(z, T, η), then the estimation error x̃(t) =
x(t)− x̂(t) converges to zero exponentially.

Proof. The estimation error x̃(t) = x(t)−x̂(t) is described
by the dynamical equation

˙̃x(t) =− x(t)

R2(z, T, η)C(z, T, η)
+

x̂(t)

R2(ẑ, T̂ , η)C(ẑ, T̂ , η)

+
u(t)

C(z, T )
− u(t)

C(ẑ, T̂ )

− L5x̃(t)− L5

[
R1(z, T )−R1(ẑ, T̂ )

]
u(t). (43)

As t → ∞, T̂ (t) → T (t) and ẑ(t) → z(t), according to

Theorem 1 and Theorem 2. Hence, we have R1(ẑ, T̂ , η)→
R1(z, T, η), R2(ẑ, T̂ , η) → R2(z, T, η), and C(ẑ, T̂ , η) →
C(z, T, η), and we simplify the error dynamics for x̃(t) as

˙̃x(t) = −

[
1

R2(ẑ, T̂ , η)C(ẑ, T̂ , η)
+ L5

]
x̃(t). (44)

Since x̃(t) ∈ R, the estimation error x̃(t) is exponentially
convergent to zero if (42) is valid.

5. SIMULATION RESULTS

A simulation study is conducted on a Li-ion cell modeled
using a lumped electro-thermal model (1)-(8). The state-
dependent electrical parameters in (2)-(3) are taken from
Lin et al. (2014). The applied current is a scaled Urban Dy-
namometer Driving Schedule (UDDS). The “true value” is
simulated from the plant model dynamics. The simulation
study is performed on two scenarios: estimation with the
reduced model and with the full model.

5.1 Estimation with the Reduced Model

We first evaluate the adaptive observer in Section 3, with
constant electrical parameters. The simulation results for
the robust thermal state estimator are plotted in Fig. 3.
The core temperature in the plant model is initialized to
room temperature 25oC and the estimator with a 2oC
initial error. According to Theorem 1, both T̂c(t) and

Ê(t) converge to their true values in finite time. Since the

expression for heat generation estimate Ê(t) given by (12)
is algebraic, the initial estimation error is proportionally

Fig. 3. Adaptive estimation for the reduced model. (a)
constant electrical parameters; (b) z; (c) Vc.

Fig. 4. Adaptive estimation for the reduced model. (a)
constant electrical parameters; (b) z; (c) Vc.

Fig. 5. Estimation results for the full model with state-
dependent electrical parameters. (a) SOC; (b) Vc.

amplified by observer gain L1. A high gain would render
large initial error, as shown in the second graph in Fig. 3.

Next, the estimated Ê(t) is utilized to compute two
pseudo-measurements in (13) and (20) for adaptive state
and parameter estimation in the electrical model. As
shown in Fig. 4, we recursively identify parameters R0

1, R0
2,

and C0 as outlined in Section 3.4. The solid black curve in
Fig. 4(a) is the normalized true parameter and the dashed
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curves are the parameter estimates. Even though initially
the estimates experience drastic transients, the parameter
estimates recover in about 50 s from large initial errors.
The large initial errors are inherited from the large initial
error in Fig. 3(b) and the chattering nature of the SMO.
Furthermore, the SOC estimate converges in about 15 s
with 10% initial error and a suitable observer gain given by
(18). Finally, the capacitance voltage Vc in Fig. 4(c) obeys
an exponential convergence behavior and it converges after
the parameters have converged to their true values.

5.2 Estimation with the Full Model

Now consider the nonlinear state estimation with state-
dependent electrical parameters. The current profile in
Fig. 3(a) is used. The design follows the sequential struc-
ture depicted in Fig. 2. The first three layers overlaps with
that of the previous case, as discussed in Section 4.1, so
we only demonstrate the performance of the electrical state
estimation. In Fig. 5, the solid curves represent the actual
states whereas the dashed curve corresponds to estimates.
The estimates reconstruct quickly (approximately 20 s),
which verifies Theorem 4. These results confirm the con-
vergence of nonlinear observer design based on sequential
estimation scheme for a complex two-way coupled system.

6. CONCLUSION

This paper presents an adaptive estimation scheme for Li-
ion batteries based on a nonlinear two-way coupled electro-
thermal model, which also takes into account the depen-
dence of electrical parameters on SOC and temperature.
The design consists of four cascaded steps. A robust ob-
server, i.e. a sliding mode observer, is utilized to simultane-
ously estimate the unmeasured core temperature and the
unknown input heat generation. Next, the heat generation
estimation is used to compute two pseudo-measurements
that separates the electrical model into two components.
Moreover, SOC as well as the battery capacity is then
estimated. Finally, provided that temperature and SOC
have converged, the capacitance voltage estimate (with
time-varying parameters) is proven to converge exponen-
tially. The results presented in this paper contribute to
the existing literature in two ways: (i) designing an adap-
tive observer for combined state and constant parameter
estimation with thermal coupling, and (ii) extending the
observer design to account for state-dependent electrical
parameters. These estimates are crucial for understanding
the health and current operation conditions of batteries.
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