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Abstract: Dynamic models of biotechnological processes form the basis of process optimization,
control, and estimation. Metabolic network models are often at the core of such models. Since
metabolic network models can be very large, and consequently computationally expensive, model
reduction techniques can be applied. The derivation of a suitable reduced metabolic network
that captures the essential metabolism is still a challenging problem. State-of-the-art network
reduction algorithms utilize a priori defined phenotypes that reflect the expected behavior of
the biological system. However, most bioprocesses undergo changes in the metabolism, hence,
a switch in the cellular phenotype. If these phenotypes are unknown a priori, the reduced
network fails to represent all observed metabolic behaviors. Contrary to these approaches, we
propose a method that reduces genome-scale metabolic networks models using data from real
experiments instead of relying on predefined phenotypes. Doing so, we circumvent the use of a
priori information and guarantee that the network is capable to describe all observed phenotypes
and can be reliably used for estimation, prediction, and optimization.

Keywords: Model reduction, networks, multi-mode, data-driven, measurement uncertainties,
biotechnology.

1. INTRODUCTION

Stoichiometric metabolic network models describe the cel-
lular metabolism of a certain organism via a system of
linear algebraic equations. Since this system is gener-
ally underdetermined, a variety of computational network
analysis tools have been developed to retrieve valuable
information for analyzing and optimizing biotechnologi-
cal processes (Trinh et al., 2009). These methods have
different objectives. Flux balance analysis can be used
to identify the optimal medium formulation (Xie and
Wang, 1997). Elementary flux mode analysis as well as
flux balance analysis can be used to design strains tailored
to specific needs or to fulfill certain tasks (Machado and
Herrg̊ard, 2015). Further, in a hybrid system representa-
tion the metabolic network can be extended with ordinary
differential equations or time series (Mahadevan et al.,
2002; Höffner et al., 2013; Song et al., 2009; Leighty and
Antoniewicz, 2011). These hybrid models have an even
broader application range as they represent the dynamics
of the bioprocess and can be used for model-based process
control and optimization (Chang et al., 2016; Jabarivelis-
deh et al., 2018; Morabito et al., 2019).

Since these applications require a stoichiometric metabolic
model, the accuracy will increase if the model has a high
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descriptive power. The metabolic models with the high-
est descriptive power are genome-scale metabolic network
models. Genome-scale models are obtained by annotating
the whole genome of an organism and can consist of
thousands of reactions and species. However, with the in-
creasing complexity of genome-scale models the computa-
tional burden increases up to the point where even modern
computers are not able to apply computational network
analysis tools, such as elementary flux mode analysis.
Nowadays, these genome-scale models are stored in online
databases accessible to everyone, like BiGG or KEGG
(King et al., 2016; Kanehisa and Goto, 2000), where they
are maintained and kept up to date.

To be able to apply these tools but still have good
descriptive power, a trade-off between the computational
complexity and the descriptive power has to be made. A
very efficient way of accomplishing this trade-off is the use
of network reduction algorithms. These generally operate
by deleting reactions that are not required to fulfill a set
of constraints, which is defined by the user beforehand.
The reduction process is usually executed by optimization-
based techniques or methods derived from graph theory
(Erdrich et al., 2015; Röhl and Bockmayr, 2017; Ataman
et al., 2017). An essential aspect of the user-defined set of
constraints is the phenotype of the biological system. Using
a priori knowledge, expected phenotypes can be defined
and considered in the network reduction. Since most
biological systems go through changes during a process,
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several switches can occur in the phenotype. Usually
these changes are not known a priori and, consequently,
the reduced metabolic network can fail to represent all
observed phenotypes.

The aim of this work is to propose a method that uses
real data measured during an experiment as a replacement
for a priori generated phenotypes inside the user-defined
constraints. Our results show, that data driven network
reduction obtains metabolic models which represent all the
experimentally observed phenotypes without the need to
have an in-depth knowledge about the metabolism of the
considered organism.

2. METABOLIC NETWORK MODEL

The temporal change in the concentration xi of the
metabolite i = 1, . . . ,m in an organism can be described
by the following system of differential equations

dxi
dt

=

q∑
j=1

nijrj(t), (1)

or in matrix notation
dx

dt
= Nr(t). (2)

The stoichiometry matrix N ∈ Rm×q represents a compact
form of the metabolic network and consists of m rows, one
for each participating metabolite and q columns, one for
each occurring reaction. The vector r ∈ Rq×1 contains the
rates of each reaction rj , which usually have a lower bound
αj and an upper bound βj .

Most of the network analysis tools assume that all internal
metabolites of the metabolic network are in a quasi-steady-
state, i.e.

dx

dt
= 0 = Nr(t). (3)

This is a reasonable assumption, since the ratio between
the reaction rates and the concentrations of the metabo-
lites is very high, at least in the central metabolism
(Stephanopoulos et al., 1998).

2.1 Computational Network Analysis Tools

This subsection briefly reviews the computational network
analysis tools that are generally used either during the
network reduction or for the analysis and validation of the
reduced networks.
Flux balance analysis utilizes a linear program to find
a flux distribution that minimizes or maximizes specific
fluxes (Savinell and Palsson, 1992)

min
r

cTr, (4a)

s.t. Eq. (3), (4b)

α ≤ r ≤ β. (4c)

Here the objective coefficient c is usually a vector of zeros,
except at the positions of the fluxes to be minimized or
maximized. Flux variability analysis uses the formalism
of the flux balance analysis to find a range for each flux
satisfying given constraints (Mahadevan and Schilling,
2003). This is achieved by alternating the sign of the
objective coefficient c to find a minimal flux and a maximal
flux for each reaction.
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(c) Second elementary mode
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(d) Third elementary mode

Fig. 1. Elementary flux modes in a simple network. The
elementary flux modes are marked red.

Elementary flux mode analysis decomposes the network
into minimal functional units, i.e. the non-decomposable
steady-state pathways through the metabolic network
(Schuster and Hilgetag, 1994). These pathways are also
called elementary flux modes. A flux mode e is called
elementary flux mode, if

supp (e) 6⊃ supp (r) , (5)

for every admissible flux mode r, that meets the homoge-
neous constraints, where the support of a flux mode r is
defined as

supp (r) = {i | ri 6= 0} .
Figure 1 shows the elementary flux modes for a simple
reaction network. Elementary flux modes can be used to
span a yield space for the metabolic network which depicts
the solution space in which the metabolic network can
operate without getting infeasible (see Figure 5).

2.2 Network Reduction

Network reduction methods aim at identifying the most
important network pathways and remove the least impor-
tant. As an example of a network reduction algorithm
the NetworkReducer (Erdrich et al., 2015) is outlined.
NetworkReducer takes as an input from the user a set of
constraints and the metabolic network model, represented
by the stoichiometry matrix N and the lower and upper
bounds α and β, respectively. The following constraints
are considered

Xprot = {xi | i ∈ [1, m]} , (6a)

Rprot = {rj | j ∈ [1, q]} , (6b)

Dpr ≤ dp, p = 1, . . . , np, (6c)

dof ≥ dofmin, (6d)

nr ≥ nmin. (6e)

Where Xprot is a set of protected metabolites, Rprot is
a set of protected reactions, dof = q − rank (N) is the
degree of freedom, and nr is the number of reactions in
the reduced network. The linear inequalities in Equation
(6c) represent the phenotypes, where np is the number of
phenotypes which the reduced network should be able to
describe.

After checking the initial feasibility of equations (6), the
NetworkReducer will begin to iteratively remove all the
reactions that will not lead to a violation of the constraints.
This step is called pruning, and utilizes flux variability
analysis to find reactions that are necessary to fulfill
the constraints. Finally, the remaining reactions can be
optionally lumped in an loss-free network compression step
by removing redundancies in the reduced stoichiometry
matrix Nred (Gagneur and Klamt, 2004).
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Fig. 2. Workflows of the state-of-the-art network reduction
and the data-driven network reduction. The maxi-
mum growth rate for each phenotype µpmax in the
state-of-the-art network reduction is usually gener-
ated by applying flux balance analysis, given some
upper bounds on the rates rpub. The operator � is
used to indicate the Hadamard product and δi is a
relaxation factor.

Data-driven Network Reduction Rather than using a
priori knowledge to determine the phenotypes, the pro-
posed data-driven network reduction takes experimentally
measured rates into account. To prevent infeasibility of
the flux variability analysis, the measured reaction rates
are relaxed with relaxation factors δr and δµ that define
a range containing each measured rate. The ranges of the
rates for each experimentally induced phenotype are used
in Equation (6c) as constraints to the NetworkReducer.
Figure 2 depicts the workflow for both reduction proce-
dures, the state-of-the-art network reduction and the data-
driven network reduction.

2.3 Validation of the Descriptive Power of the Network

The performance of a reduced network can be measured
by its capability to represent the measured data. Usually,
imposing all the measured rates to the reduced metabolic
network results in an overdetermined system that, due to
uncertainty in the measurements, has no feasible solution.
Metabolic flux analysis can be used to find a feasible flux
distribution close to the measurement data in the case of
overdetermined systems by considering the measurement

time

ra
te

Fig. 3. The 5 experimental phases generated by different
rO2

set points (blue line). When the process gets more
microaerobic, the cells shift from aerobic towards fer-
mentative metabolism, which is indicated by a de-
creasing µ (black line) and an increasing secretion of
fermentation products (red line). The cellular behav-
ior in each phase is referred to as a certain phenotype
in the following.

uncertainties. Originally, metabolic flux analysis does not
consider constraints, such as flux directions. Instead, a
constraint formulation of the metabolic flux analysis is
used to compare the reduced networks

min
r

1

2

∥∥∥√P−1(r̄k − rk)
∥∥∥2
2
, (7)

s.t. Eq. (4b)− (4c),

where P is the covariance matrix, r̄k is the vector of the
measured rates, and rk is the known part of the reaction
rate vector r.

3. EVALUATION OF THE DATA-DRIVEN
NETWORK REDUCTION CONSIDERING

ESCHERICHIA COLI

The experimental data used for the data-driven network
reduction comes from an experiment with Escherichia coli
on glycerol as carbon source, which was carried out in
5 phases. In each phase, the input to the process was
changed, more specifically the oxygen uptake rate rO2

was decreased. This generates multiple switches in the
phenotype of the biological system, since the organism has
to adapt to survive under the different degrees of oxygen-
limited (microaerobic) conditions. Besides the growth rate
µ, other measured rates during this experiment are the
uptake rates of oxygen (O2) and glycerol (Glyc) and the se-
cretion rates of carbon dioxide (CO2), hydrogen (H2) and
the fermentation products acetate (Ac), ethanol (EtOH),
formate (Form) and succinate (Succ). A qualitative plot
of the experimental procedure can be seen in Figure 3.

3.1 Network reduction

The genome-scale metabolic network model used for net-
work reduction in this work is the reconstruction of the or-
ganism Escherichia coli K-12 MG1655 (Orth et al., 2011).
The NetworkReducer by Erdrich et al. (2015) was used
for the network reduction. For comparison a state-of-the-
art reduced network model was used, more specifically the
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Fig. 4. Differences between both reduced networks. Path-
ways that are unique to EcoliCore2 are colored in
orange and pathways that are unique to the network
EcoliCoreDD are red. Pathways in black are common
to both networks and mostly contain the protected
reactions of the core metabolism. The biomass com-
position is different for both networks. The network
map was adapted from Hädicke and Klamt (2017).

reference model EcoliCore2 (Hädicke and Klamt, 2017),
which was also derived with the NetworkReducer. The
same reactions of the core metabolism were protected for
the data-driven network reduction as for EcoliCore2, with
the exception of the glucose update, since the cultivation of
Escherichia coli was performed in a glycerol medium, and
not glucose. The network reduced in this work using the
data-driven approach is called EcoliCoreDD throughout
the rest of the paper. The ranges used for the data-driven
network reduction are calculated by assuming an error
of ±10 % (δi = 0.1) for each rate. This is a simplified
assumption, that corresponds to smallest error observed
during performed experiments. Figure 4 shows the differ-
ent remaining reactions in both reduced networks. As can
be seen, the network EcoliCoreDD has additional secretion
reactions for hydrogen sulfide (H2S) and acetaldehyde
(AcAld). These two alterations indicate that cells require
additional reactions to balance the cellular redox potential
and carbon metabolism. Literature review indicates that
Escherichia coli indeed produces H2S during phases of
high oxidative stress as a protection mechanism (Mironov
et al., 2017). However, both compounds could not be
measured during the experiment, since they are highly
volatile. Another reason for the imbalance in the cellular
redox potential and carbon metabolism could be that the
error of the rates is higher than the assumed ±10 %.

3.2 Analyzing Network Performance

To analyze the descriptive power of the obtained metabolic
networks the constraint metabolic flux analysis (Equation
(7)) was used to determine adjusted rates. Measurement
uncertainties were taken into account by assuming a stan-
dard deviation for each rate of σi = 0.1 · r̄i. After calcu-
lating the least squares solution, the adjusted rates were
compared to the taken measurements and an error was
computed as a degree for the descriptive power of the
metabolic network. The results for each phenotype are
shown in Table 1 and are discussed in the following in
more detail.

Aerobic Growth Phase – Phase 1 For the aerobic growth
phase, both network models are able to reflect the mea-
surements very well. The network EcoliCoreDD is able to
predict the measurements without any adjustments. The
network EcoliCore2 is also able to predict the measured
rates quite well, since the adjustments to the measured
rates are minimal, except for qO2

and qCO2
, which have

slightly bigger errors, but still lie within the 95 % confi-
dence interval.

Microaerobic Growth Phase – Phases 2-5 The last 4
phases from the experiment shown in Figure 3 represent
microaerobic growth behavior. Overall, it can be seen,
that the reference network EcoliCore2 struggles to pro-
duce good predictions for these microaerobic phenotypes,
especially in the phases 3 and 4, whereas the network
EcoliCoreDD can reflect the measurements with only min-
imal adjustments. The biggest errors are produced for the
carbon dioxide emission rate qCO2 , with a maximum error
of −151.65 % in phase 4. Here, the glycerol uptake rate
qGlyc also has its highest error, i.e. the network EcoliCore2
is not able to map these two rates to the rates of the
secreted fermentation products, which indicates that the
carbon balance is probably not in equilibrium. This dis-
crepancy could also be caused by the low relative standard
deviations.

3.3 Yield Space

To further show that the network reduced using experi-
mental data instead of user-defined phenotypes is able to
better describe the behavior of a metabolic network in
an experimental setup, Figure 5 depicts the yield spaces
for both networks. The yield space shows a selection of
elementary flux modes that are calculated via elementary
flux mode analysis. Here, the elementary flux modes were
calculated using the FluxModeCalculator (van Klinken and
van Dijk, 2016). In this figure, it can be seen that for the
state-of-the-art network EcoliCore2 the experimental data
is outside the solution space for the last three phases. Since
the solution space of the network EcoliCoreDD has been
adapted to the observed phenotypes, all experimental data
lie within its solution space.

4. CONCLUSION

A key component for deriving meaningful metabolic net-
works from genome-scale models is the set of cellular phe-
notypes the derived network is expected to describe prop-
erly. State-of-the-art network reduction algorithms can be
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Table 1. Comparison of the results of constraint metabolic flux analysis (Equation (7)) for both
networks using experimental data and a relative standard deviation of σi = 0.1 for each rate ri.
Red marks error values for rates that lie outside the r̄i± 3σi interval, orange marks error values
for rates that lie between the r̄i ± 2σi interval and the r̄i ± 3σi interval, and green marks error

values for rates that lie between the r̄i ± σi interval and the r̄i ± 2σi interval.

µ rO2
rCO2

rH2
rGlyc rAc rEtOH rForm rSucc

Aerobic Growth Phase - Phase 1

measured 0.3589 8.7200 8.1442 0.0000 7.8093 0.2355 0.0000 0.0000 0.0000

EcoliCore2 0.3601 9.9623 7.0194 0.0000 7.4244 0.2354 0.0000 0.0000 0.0000

error +0.34 % +12.47 % −16.02 % − −5.18 % −0.03 % − − −
EcoliCoreDD 0.3589 8.7200 8.1442 0.0000 7.8093 0.2355 0.0000 0.0000 0.0000

error − − − − − − − − −
Microaerobic Growth Phase - Phase 2

measured 0.2246 5.3400 5.6400 − 5.5100 2.1100 0.0430 0.0000 0.0000

EcoliCore2 0.2118 6.3559 4.2507 − 5.7023 2.0383 0.0430 0.0000 0.0000

error −6.06 % +15.98 % −32.68 % − +3.37 % −3.52 % ±0.00 % − −
EcoliCoreDD 0.2112 5.3400 5.4345 − 6.0985 2.0525 0.0430 0.0000 0.0000

error −6.33 % ±0.00 % −3.78 % − +9.65 % −2.80 % ±0.00 % − −
Microaerobic Growth Phase - Phase 3

measured 0.0917 1.9635 3.0052 0.5010 4.2380 1.9193 0.2951 0.0000 0.1358

EcoliCore2 0.0862 2.8020 1.9217 0.5283 3.1253 1.3876 0.3015 0.0000 0.1347

error −6.42 % +29.93 % −56.38 % +5.17 % −35.60 % −38.31 % +2.11 % − −0.79 %

EcoliCoreDD 0.0870 2.1227 2.9711 0.5031 4.1953 1.9144 0.2958 0.0000 0.1358

error −5.42 % +7.50 % −1.15 % +0.42 % −1.02 % −0.25 % +0.25 % − ±0.00 %

Microaerobic Growth Phase - Phase 4

measured 0.0372 0.9403 1.9703 0.9657 3.5856 0.7160 0.5651 0.8823 0.3879

EcoliCore2 0.0369 1.2430 0.7829 1.0378 2.3909 0.7053 0.6678 0.7044 0.3559

error −0.74 % +24.35 % −151.65 % +6.95 % −49.97 % −1.52 % +15.37 % −25.26 % −9.00 %

EcoliCoreDD 0.0338 1.0671 1.8486 0.9846 3.8469 0.7207 0.5716 0.8679 0.3801

error −10.05 % +11.88 % −6.58 % +1.92 % +6.79 % +0.65 % +1.13 % −1.66 % −2.05 %

Microaerobic Growth Phase - Phase 5

measured 0.0200 0.5539 1.3784 − 2.0300 0.5096 0.8198 0.4786 0.2063

EcoliCore2 0.0184 0.6853 0.9951 − 1.9974 0.5182 0.9915 0.4298 0.1981

error −8.64 % +19.18 % −38.52 % − −1.63 % +1.66 % +17.31 % −11.36 % −4.17 %

EcoliCoreDD 0.0183 0.6127 1.3914 − 2.2274 0.5238 0.8198 0.4770 0.2046

error −9.35 % +9.59 % +0.93 % − +8.86 % +2.71 % ±0.00 % −0.33 % −0.85 %

used to derive such models by introducing constraints, that
represent these phenotypes.
Often, the phenotypes are defined a priori, requiring in-
depth knowledge about the metabolism of the used organ-
ism. However, the organism usually switches between dif-
ferent phenotypes during a biological cultivation process,
which makes it difficult to know all relevant phenotypes a
priori. Due to these uncertainties in the phenotypes, the
metabolic network may not be able to represent the exper-
imentally observed phenotypes. Consequently, metabolic
pathway analysis tools fail to analyse the experimentally
obtained data sets, since the linear algebraic equation
system becomes infeasible.

In this work, real data gathered during an experiment was
used to define the phenotypes for the network reduction al-
gorithm. To generate different phenotypes, the experiment
was divided into 5 phases, each exploring a certain degree
of oxygen limitation, resulting in different phenotypes for
the used organism. The data-driven reduced network had
an improved descriptive power compared to the reference
network reduced with a priori knowledge. It was able to
reflect the observed phenotypes with only minimal errors,
whereas the reference network struggled to represent most
of the observed phenotypes sufficiently, especially in the
oxygen-limited phases of the experiment.

Future work will investigate the capabilities of the data-
driven network reduction regarding the real time use at
a biotechnological process in combination with control
strategies which aim to steer the process towards a de-
sired product yield. Furthermore, we plan to explore the
impact of individual errors for each rate on the network
performance and network topology.
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