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Abstract: This paper presents a robust actuator fault diagnosis algorithm for hexacopter
Unmanned Aerial Vehicles (UAVs). The algorithm, based on Adaptive eXogenous Kalman Filter
(AXKF), consists of two-stage operations: (i) a nonlinear observer and (ii) a linearized adaptive
Kalman filter. To this end, we provide a sufficient condition for the nonlinear observer and
recursive formulas for the linearized adaptive Kalman filter. The algorithm is tested for actuator
fault diagnosis of a hexacopter UAV. Simulation results show that the proposed cascaded
algorithm is able to accurately estimate the magnitude of the actuator fault.

Keywords: Fault diagnosis, Kalman filter, Unmanned Aerial Vehicles (UAVs).

1. INTRODUCTION

1.1 Motivation

Autonomous systems such as autonomous Unmanned
Aerial Vehicles (UAVs) can cause harm or injury for people
and other adverse consequences, especially when they are
flying Beyond Visual Line Of Sight (BVLOS). In this case,
it is very important to increase their reliability, e.g., to
detect failures and to react to them in the safest and
fastest possible way. Due to mechanical vibrations, high
temperature, and heavy workload, the actuator system of
an autonomous UAV is prone to failure. In general, there
are two ways to increase the reliability of UAVs: hardware
redundancy and analytical redundancy. The idea of the
first approach is to add redundant hardware, e.g., sensors
or actuators. However this comes with a cost, since the
system gets heavier, more expensive, and more complex.
The second approach is to use analytical models for fault
diagnosis, which does not require additional hardware.
Therefore, it is well suited for UAVs, where space is limited
and additional weight results in a shorter flight time.

1.2 Literature review

Fault diagnosis consists of three stages: detection, iso-
lation, and estimation. Studies have been conducted on
this issue by using adaptive methods, such as Adap-
tive Extended Kalman filter (AEKF) for UAV fault di-
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agnosis based on online modification of noise matrices
(Zerdali (2019), Hajiyev and Soken (2013)). However, such
a method cannot be used to calculate the magnitude of
the fault, which is useful for fault-tolerant control. To
overcome this problem, Amoozgar et al. (2013); Kim et al.
(2009); Moghadam and Caliskan (2015) have focused on
adaptive two-stage extended Kalman filters. This method
allows to measured the failure if there is sensory feedback
for fault measurement.

For a linear system, it has been possible to detect actuator
loss of effectiveness using Adaptive Kalman Filter (AKF)
(Zhang (2018), Wu et al. (1998), Skriver et al. (2019)).
Nevertheless, this method cannot be directly applied to
nonlinear systems. Linearizing the nonlinear systems may
cause the estimations do not converged to the actual
values. To solve this problem different approaches have
been taken into account. For example, Yang et al. (2013)
have used Unscented Kalman Filter (UKF) using a deter-
ministic sampling approach. Safarinejadian and Kowsari
(2014) have extended this by combining the Unscented
and Extended Kalman filters with Gaussian processes for
fault detection and residual evaluation.

1.3 Contribution of this paper

All methods mentioned above, while impressive in their
own right, have not addressed the magnitude estimation of
the actuator fault of complex nonlinear systems, like hex-
acopter UAVs, with high accuracy. This is an important
factor for safety. From this point of view, we propose here
a new approach for actuator fault diagnosis of hexacopter
UAVs. This approach consist of two-stage operations: (i)
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a nonlinear observer, which is used to guarantee the es-
timation converging to the actual values; (ii) a linearized
AKF, which is used to remove the noises and to estimate
the magnitude of the fault.

2. PROBLEM STATEMENT

Let us consider dynamic models of hexacopter UAVs that
can be written in the following form

x(k + 1) = Ax(k) + f(x(k)) + Bu(k)

+Φ(k)ϑ + w(k) (1)

y(k) = Cx(k) + v(k) (2)

where x(k) ∈ Rn is the state vector, A ∈ Rn×n is the
state matrix, f : Rn → Rn is the nonlinear function,
B ∈ Rn×l is the input matrix, u(k) ∈ Rl is the input vec-
tor, y(k) ∈ Rm is the output vector, and C ∈ Rm×n is the
measurement matrix. The term Φ(k)ϑ represents actuator
faults with a known matrix sequence Φ(k) ∈ Rn×p and a
constant (or piecewise constant with rare jumps) parame-
ter vector ϑ ∈ Rp. The process and measurement noise are
denoted by w(k) and v(k), respectively. These noises are
assumed to be zero mean Gaussian white noise with known
covariance matrices , i.e., w(k) ∼ (0,QF (k)), v(k) ∼
(0,RF (k)).

An example of actuator faults represented by the term
Φ(k)ϑ is the loss of actuator effectiveness. In this case,
when p = l, the matrix sequence Φ(k) is given by Φ(k) =
−Bdiag(u(k)). Thus, when the faults happen the nominal
control term Bu(k) is given by B (Il − diag(ϑ))u(k). In
this case, if diag(ϑ) = Il, then the actuators experience
complete failures, while if diag(ϑ) = 0, then there is no
failure.

The following assumptions are used throughout this paper.

Assumption 1. The matrices A, B, C, Φ(k), QF (k), and
RF (k) are upper bounded.

Assumption 2. The nonlinear function f is one-sided Lip-
schitz, i.e., there exists ρ ∈ R such that

〈f(x1)− f(x2),x1 − x2〉 ≤ ρ‖x1 − x2‖2 (3)

Assumption 3. The nonlinear function f satisfies the
quadratic inner-boundedness condition, i.e., there exist
scalar β, η ∈ R such that

∆fᵀ∆f ≤ β‖x1 − x2‖2 + η〈x1 − x2,∆f〉 (4)

where ∆f = f(x1)− f(x2).

The problem of actuator fault diagnosis is to estimate
the state vector x(k) and the fault parameter ϑ from the
measurement vector y(k) under process and measurement
noise w(k) and v(k).

3. ACTUATOR FAULT DIAGNOSIS ALGORITHM

In this section, we present a robust actuator fault diagnosis
algorithm based on Adaptive eXogenous Kalman Filter
(AXKF). The algorithm consists of two-stage estimations:
(i) a nonlinear observer, (ii) a linearized Adaptive Kalman
Filter. Let x̄(k+ 1) denotes the state estimation from the

nonlinear observer, while x̂(k+1) and ϑ̂(k+1) denote the
state and fault estimation from the linearized Adaptive
Kalman Filter. The schematic diagram of the algorithm is
presented in Fig. 1.

Fig. 1. The schematic diagram of AXKF for actuator fault
diagnosis.

3.1 Nonlinear Observer

The nonlinear observer is designed as follow

x̄(k + 1) = Ax̄(k) + f(x̄(k)) + Bu(k)

+Φ(k)ϑ + G−1Y y̆(k) (5)

where x̆(k) = x(k) − x̄(k), y̆(k) = y(k) − Cx̄(k), and
∆f(x̆(k)) = f(x(k)) − f(x̄(k)). In this case, we assume
the fault parameter ϑ can be obtained from the second
stage estimation. The error dynamic is given by

x̆(k + 1) = (A−G−1Y C)x̆(k) + ∆f(x̆(k)) (6)

Theorem 1. If there exist a symmetric positive definite
matrix G ∈ Rn×n and a matrix Y ∈ Rn×m such that(−G + a1In LᵀG + a2In LᵀG

GL + a3In G + a4In 0n
GL 0n −G

)
< 0 (7)

where L = A − G−1Y C, a1 = ε1ρ + ε2β, a2 = a3 =
ηε2−ε1

2 , and a4 = −ε2, for ε1, ε2 and ρ, β, η ∈ R, then the
equilibrium x̆ = 0 of the error dynamic (6) is globally
uniformly asymptotically stable.

Proof 1. Let us define

V (k) = x̆(k)ᵀGx̆(k) (8)

Furthermore, let ∆Vk = V (k + 1)− V (k). Thus, we have

∆Vk = x̆(k + 1)ᵀGx̆(k + 1)− x̆(k)ᵀGx̆(k) (9)

Let L = A−G−1Y C. Substituting (6) into (9), yields

∆Vk ≤ x̆(k)ᵀ (LᵀGL−G) x̆(k) + 2x̆(k)ᵀLᵀG∆f(x̆(k))

+∆f(x̆(k))ᵀG∆f(x̆(k)) (10)

Thus, we have

∆Vk ≤
(

x̆
∆f

)ᵀ(
LᵀGL−G + νIn LᵀG

GL G

)(
x̆

∆f

)
(11)

From Assumption 2, we obtain ∆Vk ≤ 0 if(
LᵀGL−G + a1In LᵀG + a2In

GL + a3In G + a4In

)
< 0 (12)

Applying Schur complement completes the proof.
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3.2 Linearized Adaptive Kalman Filter

Linearizing (1) at x̄(k), we obtain

x(k + 1) = F (x̄(k))x(k) + E(x̄(k)) + Bu(k)

+Φ(k)ϑ + w(k) (13)

where

F (x̄(k)) = A +
∂f(x(k))

∂x(k)

∣∣∣∣
x̄(k)

(14)

E(x̄(k)) = f(x̄(k))− ∂f(x(k))

∂x(k)

∣∣∣∣
x̄(k)

x̄(k) (15)

From here, we use Adaptive Kalman Filter Algorithm for
actuator fault diagnosis developed by Zhang (2018). A
summary of the algorithm can be found in Table 1.

3.3 Adaptive eXogenous Kalman Filter Algorithm (AXKF)

The stability of the cascaded system has been studied by
Loria and Panteley (2004) (see, Theorem 2.1 and Proposi-
tion 2.3). Furthermore, a similar concept for discrete-time
systems has been proposed by Hasan (2019); Hasan et al.
(2019b,a) and for continuous systems by Gudmundsson
et al. (2018); Hasan and Johansen (2018). The algorithm is
a combination of the two-stage operations described above:
(i) a nonlinear observer and (ii) a linearized adaptive
Kalman filter. In the first stage, the state estimation is
obtained after calculating the observer gains G and Y . In
the second stage, the Kalman gain and the fault estimation
gain are obtained from the error covariance matrix. One
important assumption is the signals in the matrix Φ(k)
are persistently exciting in the sense that there exist an
integer N > 0 and a real constant α such that, for all
integer k, the matrix sequence Ω(k) satisfy

N−1∑
s=0

Ωᵀ(k + s)Σ−1(k + s)Ω(k + s) ≥ αIp (16)

4. DYNAMIC MODEL OF A HEXACOPTER

Fig. 2. Image of a hexacopter DJI F550, similar to the
system simulated.

In this section, we present a dynamic model used to
describe a hexacopter (see Fig. 2). The classical dynamic
model is based on a Euler-Lagrange equation

M(q)q̈ + C(q, q̇)q̇ +
∂V(q)

∂q
= Bu + Φϑ (17)

where q is the orientation around the x, y, and z axis (φ,
θ, ψ), V is the potential energy function, B is the input
matrix, and ϑ is the actuator gain loss. The generalized
inertia matrix M(q) and the Coriolis term C(q, q̇) are
given by

M(q) = R(q)JRT (q) (18)

C(q, q̇) = Ṁ(q)− 1

2

∂q̇TM(q)

∂q
(19)

with

J =

[
Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

]
(20)

R(q) =

[
1 0 0
0 cosφ − sinφ

− sin θ sin θ cos θ cosφ cos θ

]
(21)

Here, Ixx, Iyy, Izz Ixz are the moment of inertia around
the specific axis.

Applying Port-Controlled Hamiltonian model (PCH) (Or-
tega et al. (2002), Acosta et al. (2005)) the Euler-Lagrange
equation can be transformed into the following form

[
q̇
ṗ

]
=

[
0 In
−In 0

] [
∇qH
∇pH

]
+

[
0
B

]
u +

[
0
Φ

]
ϑ (22)

where p = M(q)q̇ is the generalized momenta and the
Hamiltonian function

H(q,p) =
1

2
pTM−1(q)p + V(q) (23)

represent the total energy of the system. Applying time
discretization using Euler method, the Euler-Lagrange
equation (22) can be transformed into (1), with A = I6.

In the particular case of a hexacopter attitude control, two
different approaches can be considered:

• Virtual control input where the desired moments
around each axis is the control signal:

u = [Mx My Mz]
T

and B = I3
• Real control input where each motor is controlled

individually:

u = [T1 T2 T3 T4 T5 T6]
T

and

B =


−L 0 −b
L 0 b

L cos 60 L sin 60 −b
−L cos 60 −L sin 60 b
−L cos 60 L sin 60 b
L cos 60 −L sin 60 −b


Here, L is the distance from the propeller to the center of
mass, 60 is the angle between the arm and the y axis and
b is the drag coefficient of the propeller. The parameters
of the hexacopter are shown in Table 2.

5. SIMULATION RESULTS

In this section, we describe simulation environment used
for the numerical simulation where the effectiveness of the
proposed algorithm is tested.
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Table 1. Discrete-time AXKF algorithm for actuator fault diagnosis.

Initialization x̂(0) = x̂0,ϑ̂(0) = ϑ̂0, P (0|0) = P0,Υ(0) = 0, S(0) = Ip
Determine observer gains G and Y based on Theorem 1

Recursions for k = 0, 1, 2, · · ·
First stage estimation: Nonlinear observer

x̄(k + 1) = Ax̄(k) + f(x̄(k),y(k)) + Bu(k) + Φ(k)ϑ̄(k) + G−1Y y̆(k)

Second stage estimation: Linearized Adaptive Kalman Filter

Calculate the Kalman gain K(k + 1) and error covariance matrix P (k + 1|k + 1)
P (k + 1|k) = F (x̄(k))P (k|k)F (x̄(k))ᵀ + QF (k)

Σ(k + 1) = CP (k + 1|k)Cᵀ + RF (k)
K(k + 1) = P (k + 1|k)CᵀΣ(k + 1)−1

P (k + 1|k + 1) = [In −K(k + 1)C]P (k + 1|k)

Calculate the fault estimation gain Γ(k + 1)
Υ(k + 1) = (In −K(k + 1)C)F (x̄(k))Υ(k) + (In −K(k + 1)C) Φ(k)
Ω(k + 1) = CF (x̂(k))Υ(k) + CΦ(k)

Λ(k + 1) = [λΣ(k + 1) + Ω(k + 1)S(k)Ω(k + 1)ᵀ]−1

Γ(k + 1) = S(k)Ω(k + 1)ᵀΛ(k + 1)

S(k + 1) = 1
λ
S(k)− 1

λ
S(k)Ω(k + 1)ᵀΛ(k + 1)Ω(k + 1)S(k)

Calculate the measurement error ỹ(k + 1)

ỹ(k + 1) = y(k + 1)−C[f(x̄(k)) + Bu(k) + Φ(k)ϑ̂(k)]

Calculate the state estimation x̂(k + 1) and fault estimation ϑ̂(k + 1)

ϑ̂(k + 1) = ϑ̂(k) + Γ(k + 1)ỹ(k + 1)

x̂(k + 1) = Ax̂(k) + f(x̂(k)) + Bu(k) + Φ(k)ϑ̂(k) + K(k + 1)ỹ(k + 1) + Υ(k + 1)[ϑ̂(k + 1)− ϑ̂(k)]

Table 2. System description.

Ixx 0.0145

Iyy 0.0141

Izz 0.0266

Ixz 0

Arm length (L) 0.55

Propeller drag
coefficient (b)

0.1

5.1 Simulation environment

The simulations are done in Matlab. In this case, the
faults are introduced at different time steps. The sensor
feedback in the simulation is computed from the real model
and then used for the state and fault estimation. In this
simulation, we assume the only sensor feedback available
is the attitude of the hexacopter.

5.2 Numerical simulation

The model used in the simulation is based on the PCH
dynamic model of the hexacoptor with the implementation
of the Adaptive eXogenous Kalman Filter algorithm. We
assume only q can be measured and we can control each
motor individually. Thus, the model for this setup can be
described as follow:

x =

[
q
p

]
(24)

f(x) =

[
0 I3
−I3 0

] [
∇qH
∇pH

]
(25)

C = [I3 03] (26)

The fault ϑ is defined as the actuator gain loss for each
of the motors. Thus, in this case ϑ ∈ R6. If parameters
in Theorem 1 are chosen as follow: ε1 = 10, ε2 = 10,
η = 1, β = −4, ρ = 1, then we can choose G = 9 · I6 and
Y = [3·I3 03]ᵀ, such that (7) is satisfied. Furthermore, the
values of the noise covariance matrices are QF = 0.01 · I6
and RF = 0.04 · I3, the initial states are x̂(0) = 0,

P (0) = I6, ϑ̂(0) = 0, S(0) = 0.001 · I6 and the forgetting
factor is λ = 0.995.

The system is simulated for 8 seconds with a time step of 1
millisecond. At the beginning, all the motors are stopped
and after 1 second they are turn on to a constant thrust
(Figure 3). Assuming a balanced system, the drone will
takeoff with constant speed and maintain balance in the
air. As the mass of the drone is not being taken into
account this value is smaller than it should be, but it
is good enough for simulation purpose. The motor fault
occurs after 3.5 seconds on motor 1 going from 0 to 0.124
and after 5.5 seconds on motor 3 going from 0 to 0.135
(Figure 4). The red dash line represents the estimation,
the blue and the black solid one show the observer output
and the real value.

Based on the motor configuration shown in Figure 5, a
gain loss on motor 1 will cause the UAV to be unbalanced
in a positive angle around the x axis generating a moment
around the same axis. In a similar way this will make the
UAV to rotate around its z axis in a positive angle due to
the total moment around the same axis generate by the
drag of the propellers will be unbalanced.

Likewise, when the motor 3 has a fault, the moment
around the x axis is reduced as the other side is also failing.
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Fig. 3. Individual Thrust given by each motor. t < 1 →
Ti = 0, t > 1→ Ti = 0.01.

Fig. 4. Comparison between the estimated value of the
fault and the actual value.
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46

Fig. 5. Motor distribution and UAV coordinate system
used for the simulation

However, the moment around the z axis is increased as
both propellers are rotating in the direction generating a
similar moment. Nevertheless, in this case the failure is not
align within the y axis so the moment around it is lower
than 0 making the drone tilt. These results can be seen
in Figure 6 and 7. On the other hand, these figures also
shown that the moments estimation has a slower dynamic
than the attitude estimation due to the lack of sensory
feedback on the moments estimation, thus it is necessary
to estimate the fault in order to compensate it. For this

reason when the fault estimation is removed (Figure 8 and
9), it is no longer possible to estimate the moments.

Attitude Estimation
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Fig. 6. q estimation (qφ :=roll, qθ :=pitch, qψ :=yaw).
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Fig. 7. p estimation (px := moment around the x axis,
py := moment around the y axis, pz := moment
around the z axis).
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Fig. 8. q estimation (qφ :=roll, qθ :=pitch, qψ :=yaw).

6. CONCLUSION

We present a new approach for actuator fault diagnosis
of hexacopter UAVs. The state and fault estimation are
guaranteed to converge to the actual value. Simulation
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Fig. 9. p estimation (px := moment around the x axis,
py := moment around the y axis, pz := moment
around the z axis).

results show our proposed algorithm can be used to esti-
mate hexacopter actuator faults accurately. Further works
include implementation of the actuator fault algorithm on
a real hexacoptor UAV.
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