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Abstract: In the present work, we investigate the challenges and limitations of the incorporation
of nonlinear model predictive control (NMPC) for the integration of design and control of
chemical processes. To tackle this problem, we implemented a simultaneous methodology based
on a back-off approach, in which the process design moves away from the optimal steady-state
to a new dynamically feasible operating condition under process disturbances. The procedure
is formulated as a series of bounded optimization problems in a sequential manner to identify
the optimal design of the process with optimal control performance. Power series expansion
(PSE) is used to represent constraints and cost functions in the bounded optimization problems.
The approach has been implemented on a wastewater treatment plant. Results indicate that
the proposed methodology leads to considerable improvement in the process economics and
performance compared to a decentralized PI control strategy.
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1. INTRODUCTION

Classical approaches for process design focuses on the con-
sideration of steady-state operation such that design and
operating conditions are often decided in the absence of
process uncertainty and disturbances. Subsequently, pro-
cess dynamics are considered for the intended design. Tra-
ditionally, the connection of process dynamic behavior to
design factors is considered in a sequential way. Instead, in
modern approaches for process design, the controllability
aspects are taken into account at the early stages of process
design where the dynamic interactions between the de-
sign and control parameters are considered simultaneously.
The integrated concept results in attractive alternatives
to obtain optimal profitable process designs that remain
dynamically feasible in the presence of disturbances and
uncertainty.

Integration of design and control leads to more econom-
ically attractive process designs and plant performance.
In further attempts to improve process performance, the
application of advanced control strategies has been consid-
ered within the integrated design and control framework.
Although the implementation of decentralized strategies
based on PID controllers often results in acceptable control
schemes, the application of modern control approaches,
such as model predictive control (MPC), has shown signif-
icant improvements in terms of process performance and
process economics (Francisco et al. (2009); Moon et al.
(2011)). MPC strategy has some advantages over PID con-
trol in handling multivariable control problems and offers
the possibility of including explicit constraints. Previously,
simultaneous design and control techniques using MPC

has been proposed in the literature (Brengel and Seider
(1992)). Sanchez-Sanchez and Ricardez-Sandoval (2013)
presented a methodology that incorporates structural de-
cisions for the selection of optimal process flowsheet and
control design by the evaluation of convex dynamic feasi-
bility and asymptotic stability analysis. Implementation
of a multi-parametric MPC approach for simultaneous
design and control was presented by Diangelakis and Pis-
tikopoulos (2017); that work suggested an improvement in
operating cost compared to decentralized PI controllers.
Furthermore, Bahakim and Ricardez-Sandoval (2014) re-
ported economically attractive designs with high control
performance for MPC-based simultaneous design and con-
trol in comparison to decentralized PI controllers under
stochastic-based uncertainty descriptions. Simultaneous
design and control is an area widely studied nowadays. A
complete review and discussion about the state-of-the-art
and future steps is discussed by Pistikopoulos and Dian-
gelakis (2016). Nevertheless, the performance of NMPC
within an integrated design and control framework has
been identified as one of the open challenges in this field
(Rafiei and Ricardez-Sandoval (2019)). To the authors’
knowledge, previous studies addressing simultaneous de-
sign and control with an NMPC has not been reported.

NMPC relies on the nonlinear constraints and dynamics of
the problem and has shown enhancements in control per-
formance compared with linear MPC (Biegler and Thierry
(2018)). Often, linear MPC may need to be avoided when
processes exhibit nonlinear behavior; thus, the implemen-
tation of a controller with a nonlinear model to capture the
actual behavior of the process is preferred. The back-off
methodology for optimal simultaneous design and control
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using Power Series Expansions (PSE) has been proposed
previously in our group (Rafiei and Ricardez-Sandoval
(2018); Rafiei-Shishavan and Ricardez-Sandoval (2017);
Mehta and Ricardez-Sandoval (2016)). In those studies,
PID-based control approaches were considered. In the cur-
rent work, we explore the implementation of an NMPC
framework for simultaneous design and control using the
back-off methodology previously developed in our group.
To the authors’ knowledge, this is the first study that
explores the implementation of an NMPC scheme in the
context of integration of design and control. The outline of
this work is as follows: Section 2 presents the description
of the proposed methodology for simultaneous design and
control. Section 3 presents a wastewater treatment plant
case study that is used to test the performance of the
present approach. At the end, concluding remarks and
directions for future works are provided.

2. FORMULATION & METHODOLOGY

In this section, the NMPC formulation is introduced first.
Then, we provide a detailed description of the method and
challenges regarding to the implementation of NMPC for
the integration of design and control.

2.1 Nonlinear Model Predictive Control

NMPC is based on the solution of an optimization problem
where the cost function penalizes the deviations of the
controlled and manipulated variables with respect to a
reference trajectory (i.e. a set-point). NMPC generates a
prediction of the dynamic behavior of the process based
on measurements obtained from the process at time t;
the predictions are generated forward in time such that
the controller can minimize the control actions required to
reach the target. The optimization problem for an NMPC-
based controller is as follows:

min
∆û(·)

Ψ(x̂ (τ),∆û(τ)) (1a)

s.t. ˙̂x = F (x̂ (τ), û(τ),d) (1b)

H(x̂ (τ), û(τ),d) = 0 (1c)

G(x̂ (τ), û(τ),d) ≤ 0 (1d)

û(τ) ∈ U, ∀ τ ∈ [t, t+ tC ], (1e)

û(τ) = û(t+ tC), ∀ τ ∈ [t+ tC , t+ tP ], (1f)

x̂ (τ) = x (t), ∀ τ = t (1g)

x̂ (τ) ∈ X, ∀ τ ∈ [t, t+ tP ] (1h)

X :=
{
x ∈ R

n| xL ≤ x ≤ xU
}

(1i)

U :=
{
u ∈ R

m| uL ≤ u ≤ uU
}

(1j)

T :=
{
τ ∈ R

l
∣∣ t ≤ τ ≤ t+ tP

}
(1k)

where, tP and tC are the prediction and control horizon,
respectively. d represents the set of measured disturbances
affecting the process that remain constant during the
prediction horizon. ∆û is the predicted change of the
manipulated variables. Both ∆û and x̂ are bounded in
the range of uL, uU and xL, xU , respectively. H represents
the set of equality constraints. Moreover, G represents the
set of inequalities that define the feasibility region for the

process. Likewise, Ψ represents the controller cost function
given by Equation (2).

Ψ =

∫ t+tP

t

‖x̂ (τ)− xsp‖
2
Q + ‖∆û(τ)‖

2
R dτ (2)

where Q and R are positive-defined weighting matrices. x̂
and xsp are the predicted value of states and their desired
reference values, respectively. In the present NMPC prob-
lem we assume that we have access to the measurement
for all states in the process, i.e. predicted variables (x̂ )
are the same as measured states (x ) at time τ equal to t
(Equation (1g)).

The tuning parameters for NMPC are the weighting ma-
trices and the control and prediction time horizons. A
primary approximation for the weighting matrices (Q and
R), and prediction and control horizons (tP and tC , re-
spectively) is carried out through closed-loop simulations.
The closed-loop system is tested with a set of disturbances
such that Q, R, tP , and tC are adjusted based on the
observed performance of the controller to reject the pre-
specified disturbances. However, increasing or decreasing
the magnitude of weighting matrices, Q and R, can reduce
the sensitivity of the controller to changes in the controlled
variables or inhibit the controller actions. On the other
hand, increasing tP and tC may require a higher computa-
tional cost, thus making their implementation challenging
for online control. The selection of the tuning parameters
is directly related to the speed of the controller response
to dynamic changes in the process (i.e. R, tP , and tC) and
the precision of the controller in maintaining the control
variables at their corresponding desired set-points (i.e. Q).
Therefore, these parameters can be considered as part of
the optimization variables, i.e. control decision variables,
in the simultaneous design and control optimization prob-
lem, which is described next.

2.2 Simultaneous Design & Control with NMPC

The integration of design and control considers the solu-
tion of an optimization problem where economic profits
(design aspects) and control performance (operating as-
pects) are simultaneously considered. Then the conceptual
mathematical formulation for the simultaneous design and
control with NMPC is as follows:

min
η=[γ,ς],x ,u,y

Φ(ς,x (t),u(τ),y(t),d(t)) (3a)

s.t. ẋ = f(γ, ς,x (t),y(t),u(τ),d(t)) (3b)

h(γ, ς,x (t),y(t),u(τ),d(t)) = 0 (3c)

g(γ, ς,x (t),y(t),u(τ),d(t)) ≤ 0 (3d)

u(τ) = arg

{
min
û

Ψ(·) s.t. ˙̂x , H(·), G(·), û ∈ U

}
(3e)

where h denotes the equality constraints of the process
and g represents the process feasibility constraints. The
states of the system are given by x with time derivatives
indicated as ẋ ; u represents the control actions obtained
from the NMPC formulation as shown in Equation (3e);
whereas y are the measured states of the system. Decision
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variables, η = [γ, ς], contain the process design variables
(γ) such as equipment sizing parameters, e.g. area and
volume; and the controller tuning parameters (ς) such as
weighting matrices, Q and R. Note that control actions
u stated in Equation (3e) are given by the solution the
NMPC optimization problem described in the Equation
(1). The cost function Ψ is given by Equation (1a) and
is subject to the dynamic model for system states ẋ , and
constraints H and G (i.e. Equations (1b), (1c), and (1d),
respectively). In the NMPC formulation, the inclusion of
nonlinear differential equations ẋ is carried out by the dis-
cretization of these equations using orthogonal collocation
on finite elements. For design and control purposes a set of
disturbances (d(t)) is considered to ensure robustness of
the solution to perturbations that can take place during
the process’ operation. Note that d(t) is not available a
priori for the controller as part of the input information
to predict control actions; however, it is assumed that
measurement for states and disturbances are available for
the NMPC at any time interval, where the disturbances are
kept constant to their current values along the prediction
and control horizons in the NMPC formulation.

Implementation of NMPC for simultaneous design and
control represents a challenging task since it implies the
solution of a sub-level optimization problem to calculate
the control actions required to maintain at the dynamic
operation of the process on target and feasible. Then, the
optimization model becomes a bi-level optimization prob-
lem that consists of two levels. The outer level represents
the design problem whereas the inner level is the optimal
(NMPC) control problem. The solution of the NMPC
sub-level (inner) aims to calculate the control actions.
Accordingly, NMPC has a different dimension of time
τ ∈ [t, t+tP ] as shown in Equation (1h), while the primary
(outer) problem takes place between the initial simulation
time t0 and the final time tf (i.e. t ∈ [t0, tf ]). Interactions
between the inner and outer optimizations problems are
given by the design variables (γ) and the set of controller
tuning parameters (ς). As described above, solving the
conceptual problem presented in Equation (3) may become
challenging even for medium-size applications. Thus, a
reformulation of the original problem is required to reduce
the complexity burden. Typically, the problem is decom-
posed and solved using sequential algorithms. Although
a direct solution can be addressed using mathematical
programs with complementarity constraints, it increases
the complexity of the model and the computational de-
mands (Migdalas et al. (2013)). In the present work, we
use a back-off approach previously developed in our group
to examine the behavior of the model using piecewise
PSE models in an iterative manner. The back-off is an
attractive alternative since it reduces the complexity of the
problem and thus requires lower computational demands.
The methodology seeks for the optimal design and control
parameters that maintain the process in a dynamically
feasible state, given a set of process disturbances. The
description of the methodology is provided next.

2.3 Back-off Approach

A back-off methodology is employed to integrate design
and a NMPC-based control scheme. An extended descrip-
tion of the back-off methodology can be found elsewhere
(Rafiei and Ricardez-Sandoval (2018)). In this section, we
present a brief description of the NMPC-based implemen-
tation proposed in the current work to address simultane-
ous design and control. This methodology is illustrated in
Figure 1.

Fig. 1. Algorithm for NMPC-based simultaneous design
and control approach.

Step 1: Initialization. The procedure is initialized by
establishing trajectory profiles for disturbances d(t), max-
imum number of iterations (Niter), order of the PSE func-
tion, search space region for the decision variables (δ), and
initial guesses for the controller tuning parameters ς.

Step 2: Optimal open-loop steady-state design. As dis-
cussed in section 2.2, a direct implementation of NMPC
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to solve a closed-loop design optimization problem leads
to a challenging task since the resulting model is a bi-
level optimization problem (Baker and Swartz (2008)).
Therefore, to obtain a first nominal starting point for the
development of PSE-based functions, an optimal steady-
state problem is solved. The solution obtained from the
steady-state problem (4) determines the nominal values
for process design variables (γ).

min
γ

ΓSS(γ,x ,y) (4a)

s.t. ẋ = f(γ,x ,y) (4b)

h(γ,x ,y) = 0 (4c)

g(γ,x ,y) ≤ 0 (4d)

where ΓSS represents the cost function for steady-state
design.

Step 3: Development of PSE-based functions. PSEs are
mathematical expressions that can be used to state the
functions in our optimization model in explicit terms of
design variables and the system’s uncertain parameters
around specific operating points. This low-order model
representation enables fast calculation of optimal values
for the decision variables. Thereby, to reduce the nonlin-
earity burden of our optimization problem, the cost and
constraint functions are replaced with their PSE functions
around a nominal condition. In this work, the calculation
of PSE-based functions is carried out around the worst-
case variability point obtained from the closed-loop simu-
lation of the process under disturbances d . The worst-case
variability conditions correspond to the largest violations
in the constraints as shown in Figure 2. The closed-loop
process that needs to be solved at each sampling instant
is presented in Equation 5.

ẋ = f(η,x (t),y(t),u(τ),d(t)) (5a)

h(η,x (t),y(t),u(τ),d(t)) = 0 (5b)

g(η,x (t),y(t),u(τ),d(t)) ≤ 0 (5c)

Φ(η,x (t),u(τ),y(t),d(t)) = 0 (5d)

u(τ) = arg

{
min
û

Ψ(·) s.t. ˙̂x , H(·), G(·), û ∈ U

}
(5e)

For example, the worst-case variability of the sth con-
straint function (gs) can be expanded in terms of decision
variables (η) as follows:

gs,PSE(η)|d(t),twc
= gs(ηnom) +∇gs(η) (η − ηnom)

+
1

2
(η − ηnom)

T
∇2gs(η) (η − ηnom)

(6)
where ∇gs(η) and ∇2gs(η) are the first and second order
sensitivities of the function with respect to the decision
variables (η) evaluated at the worst-case variability point
represented by twc in Figure 2. Gradients are required
at the nominal condition (ηnom) for the PSE expansions
(Equation 6). Therefore, to compute PSE for cost and con-
straint functions, it is necessary to enforce small forward
and backward variations in every decision variable (η) and
complete a closed-loop simulation for every variation in η

to determine gradients. The finite difference method has

Fig. 2. Identification of the worst-case scenario required
for the PSE expansions.

been used to calculate the gradients.

Step 4: Optimization of the PSE-based functions. The
PSE-based optimization problem (Equation 7) is formu-
lated using the PSE-based functions developed in Step 3.
The optimization variables (η) in the model are restricted
to upper and lower bounds determined with respect to
their nominal values (ηnom ). δ is a parameter that rep-
resents the region where the approximation made by the
PSE-based model is valid (Rafiei and Ricardez-Sandoval
(2018)).

min
η,λ

ΓPSE(η) +
S∑

s=1

Mλs (7a)

s.t. hPSE(η) ≤ λs ∀ s = 1, · · · , S (7b)

ηnom(1− δ) ≤ η ≤ ηnom(1 + δ) (7c)

λs ≥ 0 ∀ s = 1, · · · , S (7d)

In this PSE-based optimization problem, ΓPSE(η) and
hPSE(η) are the PSE-based functions for the cost and
the inequality constraint functions, respectively. The op-
timization problem shown in Equation (7a) contains the
parameter λs that is used to avoid infeasibility of sth

constraint. The optimization is formulated to drive infea-
sibility variables (λ) to zero. Parameter M represents a
penalty term that requires to be at least three orders of
magnitude higher than the actual cost function value. Note
that the PSE-based optimization formulation presented
in Equation (7) represents the simultaneous design and
control optimization model stated in the Equation (5)
around a nominal condition.

As shown in Figure 1, the values obtained as a result of
the solution of the PSE-based optimization problem (η∗)
are taken as new nominal values (ηnom) and returned to
step 3 to generate a new nominal closed-loop simulation of
the process and identify a new worst-case variability point
(see Figure 1).

Step 5: Convergence criterion. We evaluate the conver-
gence of this methodology by the evaluation of a floating
average. Accordingly, mean values for the cost function
obtained from Equation (7) of two different sampling
periods N are compared. If the difference in means is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11725



Table 1. Cost function and constraints.

Cost Function

Θ = 0.16(3500V + 2300Ad) + 870(qp + fk) + 105(100− sw)2

Constraints

0.01 ≤
qp

qr+qp
≤ 0.2

0.8 ≤
V xw(t)+A lr xr(t)

24 qp xr(t)
≤ 15

sw(t) ≤ 100

Table 2. Disturbance trajectory profiles

t qi si xi

hr m3/hr mg/L mg/L

0 500 366 80
50 480 371 75
100 510 361 85
150 480 371 75
200 500 366 80
250 505 363 83
300 500 366 80

less or equal to a threshold value (ǫ), then the method
has converged. More details about this methodology are
omitted for brevity and can be found in our previous work
(Rafiei and Ricardez-Sandoval (2018)).

3. CASE STUDY

An existent wastewater treatment plant was used as a case
study to test the performance of the NMPC framework
(Rafiei and Ricardez-Sandoval (2018)). This plant includes
a biological reactor and a secondary settler to control the
substrate concentration (sw) in the biodegradable waste
stream. Purge flow rate (qp) and turbine speed (fk) are
selected as manipulated variables to control the substrate
concentration (sw) and dissolved oxygen concentration
(cw). The model equations, parameters and their corre-
sponding nominal values can be found elsewhere (Rafiei
and Ricardez-Sandoval (2018)).

Table 1 provides the annualized cost function and con-
straints of the current model. The cost function consists of
annualized capital cost (CC), annual operating cost (OC),
and a variability cost (V C). Variability cost is specified
to drive the system to restrain the substrate (sw) close
to saturation (sw ≤ 100). Likewise, the constraints listed
in Table 1 identifies the feasible operating region for this
process. The set of decision variables η is given by the
volume of the reactor (V ) and the area of the settler
(Ad) as the design parameters (γ); the NMPC tuning
parameters (ς) are given by the weighting matrix Q, and
the controller set points for sw and cw (i.e. sspw and cspw ,
respectively). To simplify the analysis, the control and
prediction horizons were set to 5 hours for each. Moreover,
second order PSE functions are considered for both the
cost functions and process constraints. A constant search
space (δ) was employed for the current case study, i.e.
at every iteration of the back-off procedure, the decision
variables in the PSE-based optimization problem are set
to be explored up to 1% of their nominal value. More
details regarding the search space is provided in Rafiei and
Ricardez-Sandoval (2018).

Table 3. Comparison of NMPC-based ap-
proach and PI-based methodology.

Decision Variable NMPC PI

Ad [m2] 991.0 2386.15
V [m3] 2133.8 1541.9
s
sp
w [mg/L] 97.0 86.25
c
sp
w 0.001 0.037
Qs 42.25 -
Qc 0.001 -
Kcs - 1.160
Kcc - 0.205
τcs - 16.23
τcc - 7.99
Total Cost [$/yr] 5.389×106 2.022×107

Iterations 74 102
Amount of back-off 4.039×106 1.887×107

3.1 Results

The implementation of the NMPC-based simultaneous
design and control framework was performed in GAMS
V28.2.0. using CONOPT4 as the NLP solver, for the
NMPC model, the orthogonal collocation discretization
was made with 20 finite elements and 3 collocation points,
then the model has 1,061 nonlinear algebraic equations
with 961 variables. Likewise, the plant model was dis-
cretized with 1 finite element and 3 collocation points, then
the model has 56 equations with 56 variables. The solu-
tion obtained from the NMPC-based back-off approach is
presented in Table 3. The performance of the proposed
NMPC-based framework has been compared with a de-
centralized PI-based approach previously reported in the
literature involving two PI controllers paired as follows
sw-qp and cw-fk (Rafiei-Shishavan et al. (2017)). As indi-
cated in Table 3, a 73% improvement has been achieved
with the present NMPC-based methodology in terms of
cost function compared to the decentralized PI-based ap-
proach. The two methods converged to different design
configurations, i.e. area (Ad) and volume (V ). Although,
the volume is 38% larger than that obtained by the PI-
based approach, it allowed the system to operate at higher
set-points thus allowing the reduction of 73% in the overall
cost. The NMPC-based approach enables the system to
operate at higher substrate set-points, i.e. a closer set-
point to the saturation limit (sw ≤ 100), without any
violations of constraints. Figure 3 shows the convergence
of the methodology in terms of the objective function. As
expected, the amount of back-off required from the steady-
state in the NMPC-based approach is lower than the PI-
based approach, i.e. the process is more economical. On
the other hand, the CPU time for the current approach
is five orders of magnitude higher than the decentralized
PI-based approach. The CPU cost are mostly due to the
identification of the PSE functions needed to replace the
nonlinear constraints and cost functions. In particular,
the NMPC framework requires the solution of an NLP
at each time step in Step 3 of the algorithm and for all the
iterations. The design and control strategy obtained from
the NMPC framework was validated. As shown in Figure
4, the NMPC is able to maintain dynamic feasibility for
the substrate in the presence of disturbances. The rest of
the constraints also remained dynamically feasible and are
not shown here for brevity.
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Fig. 3. Cost function convergence profile.

Fig. 4. Closed-loop simulation using results obtained from
Back-off methodology: substrate (sw) dynamic profile.

4. CONCLUSION

We presented an NMPC-based simultaneous design and
control methodology based on a back-off approach. The
key idea is to initiate the search for the optimal de-
sign and control from the optimal steady-state design
using bounded optimization problems that are constructed
based on PSE functions. The current methodology leads
to considerable improvement in annualized cost and per-
formance. Consequently, the integration of a sophisticated
control scheme such as NMPC into the design process
results in significant advantages in process economics and
performance compared to classical decentralized PID con-
trol strategies. The complexity of the problem and high
computational costs act as the main barriers to imple-
ment the present NMPC-based framework, particularly
for large-scale systems. For future work, uncertainty in
parameters will be considered with the aim to explore the
robustness in the solution. Moreover, the direct solution of
the simultaneous design and NMPC control will be tack-
led using mathematical programs with complementarity
constraints. Furthermore, we will consider the proposed
simultaneous design and NMPC-based control for large-
scale applications.

REFERENCES

Bahakim, S.S. and Ricardez-Sandoval, L.A. (2014). Simul-
taneous design and mpc-based control for dynamic sys-
tems under uncertainty: A stochastic approach. Com-
puters & Chemical Engineering, 63, 66–81.

Baker, R. and Swartz, C. (2008). Interior point solution
of multilevel quadratic programming problems in con-
strained model predictive control applications. Indus-
trial & Engineering Chemistry Research, 47(1), 81–91.

Biegler, L.T. and Thierry, D.M. (2018). Large-scale
optimization formulations and strategies for nonlinear
model predictive control. IFAC-PapersOnLine, 51(20),
1–15.

Brengel, D. and Seider, W. (1992). Coordinated design and
control optimization of nonlinear processes. Computers
& Chemical Engineering, 16(9), 861–886.

Diangelakis, N.A. and Pistikopoulos, E.N. (2017). A multi-
scale energy systems engineering approach to residential
combined heat and power systems. Computers & Chem-
ical Engineering, 102, 128–138.

Francisco, M., Revollar, S., Vega, P., and Lamanna, R.
(2009). Simultaneous synthesis, design and control
of processes using model predictive control. IFAC
Proceedings Volumes, 42(11), 863–868.

Mehta, S. and Ricardez-Sandoval, L.A. (2016). Integra-
tion of design and control of dynamic systems under
uncertainty: A new back-off approach. Industrial &
Engineering Chemistry Research, 55(2), 485–498.

Migdalas, A., Pardalos, P.M., and Värbrand, P. (2013).
Multilevel optimization: algorithms and applications,
volume 20. Springer Science & Business Media.

Moon, J., Kim, S., and Linninger, A.A. (2011). Integrated
design and control under uncertainty: Embedded control
optimization for plantwide processes. Computers &
Chemical Engineering, 35(9), 1718–1724.

Pistikopoulos, E.N. and Diangelakis, N.A. (2016). Towards
the integration of process design, control and scheduling:
Are we getting closer? Computers & Chemical Engineer-
ing, 91, 85–92.

Rafiei, M. and Ricardez-Sandoval, L.A. (2018). Stochastic
back-off approach for integration of design and control
under uncertainty. Industrial & Engineering Chemistry
Research, 57(12), 4351–4365.

Rafiei, M. and Ricardez-Sandoval, L.A. (2019). New
frontiers, challenges, and opportunities in integration
of design and control for enterprise-wide sustainability.
Computers & Chemical Engineering, 106610.

Rafiei-Shishavan, M., Mehta, S., and Ricardez-Sandoval,
L.A. (2017). Simultaneous design and control under
uncertainty: A back-off approach using power series
expansions. Computers & Chemical Engineering, 99,
66–81.

Rafiei-Shishavan, M. and Ricardez-Sandoval, L.A. (2017).
A stochastic approach for integration of design and
control under uncertainty: A back-off approach using
power series expansions. In Computer Aided Chemical
Engineering, volume 40, 1861–1866. Elsevier.

Sanchez-Sanchez, K.B. and Ricardez-Sandoval, L.A.
(2013). Simultaneous design and control under un-
certainty using model predictive control. Industrial &
Engineering Chemistry Research, 52(13), 4815–4833.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11727


