
Modelling Human Driving Behavior for
Constrained Model Predictive Control in

Mixed Traffic at Intersections

Johanna Bethge ∗, Bruno Morabito ∗, Hannes Rewald ∗,∗∗,
Adil Ahsan ∗, Stephan Sorgatz ∗∗, Rolf Findeisen ∗

∗ Laboratory for Systems Theory and Automatic Control,
Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany,

(e-mail: {johanna.bethge, bruno.morabito, hannes.rewald,
rolf.findeisen}@ovgu.de).

∗∗Volkswagen AG, Berliner Ring 2, 38440 Wolfsburg, Germany

Abstract: Safe autonomous passing of intersections with mixed traffic, including human
drivers and autonomous vehicles, is challenging. We propose a tailored approach that provides
guarantees despite uncertainties fusing learned models and model predictive control. A single
autonomous vehicle is controlled by the predictive controller via acceleration and steering angle
without assumption of a global controller. Each maneuver of the human behaviour is modeled
with a neural network, which enters the predictive controller formulation as a constraint. As
an example, we consider a single autonomous vehicle on an unsignalized intersection, which
gives right-of-way to a human-driven vehicle. We show how human driving behavior can be
modeled based on real recorded trajectory data and implemented in the proposed predictive
control approach by dynamically changing the constraints of the optimization problem.

Keywords: Nonlinear model predictive control, multi-mode systems, machine learning,
dynamic constraints

1. INTRODUCTION

Increasing travel safety, comfort and efficiency is the driver
of all ongoing activity in the development of autonomous
vehicles. Due to the extremely complex environment,
reaching full or semi autonomy requires tackling a series
of subproblems, such as minimization of fuel consumption
and traveling time in urban environment (Van den Berg
et al. (2004); Riegger et al. (2016)), traffic light optimiza-
tion, (Guler et al. (2014); Tettamanti et al. (2008); Dresner
and Stone (2004); Lin et al. (2013); Portilla et al. (2013)),
obstacle avoidance (Makarem and Gillet (2013); Park et al.
(2009); Widyotriatmo et al. (2009); Qian et al. (2016); Fal-
cone et al. (2008); Borrelli et al. (2005)), overtaking (Park
et al. (2009)), lane keeping (Falcone et al., 2008; Borrelli
et al., 2005), autonomous parking (Hsieh and Ozguner
(2008)) and navigation or path planning (Widyotriatmo
et al. (2009); Alonso et al. (2011); Qian et al. (2016)).

One essential aspect of autonomous driving concerns the
safety on intersections with mixed traffic, i.e. human
driven vehicles and autonomous vehicles. Making decisions
in such environments requires adequate prediction models
for human driving behaviour. While approaches for ap-
proximate modelling of human drivers by first principle
models exist, (Falcone et al., 2008; Borrelli et al., 2005),
the use of machine learning approaches is most promising,

? BM and RF are affiliated to the International Max Planck Re-
search School (IMPRS) for Advanced Methods in Process and Sys-
tems Engineering, Magdeburg. JB acknowledge support by the Ger-
man Research Foundation in the frame of the GRK 2297.

(Bender et al. (2015); Gu and Hu (2002); Prokop (2001);
Zyner (2018)). In this paper a Model Predictive Control
(MPC) approach for the control of a autonomous vehicle is
proposed. The MPC computes the optimal control actions,
while considering the behaviour of the other vehicles as
dynamic constraints. The behaviour of those vehicles is
modeled using a neural network.

We will focus on a standalone predictive controller for a
single autonomous (ego) vehicle on a 4-way unsignalized
intersection with mixed traffic. The only control inputs
are steering angle and acceleration of the ego vehicle.
There is no further communication (V2X) or traffic light
optimization assumed. Neither the traffic light nor the
other vehicles are controlled. In the example, the ego
vehicle gives, if necessary, right-of-way to one or more
human driven vehicles (target vehicles).

The autonomous vehicle crosses the intersection following
a predefined path, while considering the states of human
driven vehicles as constraints. We assume that human
drivers can take only a finite number of decisions i.e.
turning left, right or going straight. We will refer to
these decisions as modes. For the ego vehicle, the actual
intention of the human driver (= mode) it is not known
a priori. Hence, to avoid collisions, all likely modes need
to be considered at the same time by the controller of
the ego vehicle. The estimated human vehicle mode is
updated online by using a machine learning model. To
solve this problem, we exploited the concept of multi-mode
predictive control (Bethge et al., 2018; Morabito et al.,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 14557

2019). Contrary to these contributions, where the modes
affect the dynamics of the system, in this paper the modes
effect the constraints of the optimal control problem.

offline
data

path
generation

human
vehicle

online data

MPC
ego

vehicle

s(px, py)s

T

u

Fig. 1. Approach Architecture

The idea and structure of the approach, see Fig. 1, can
be summarized as follows. First, the desired path of
the ego vehicle is planned offline. The human driving
behavior is learned offline from data. For each mode
a separate neural network is trained. Online, the MPC
controller determines the optimal control input trajectory,
i.e. acceleration and steering angle, for the ego vehicle
to follow the desired path, while considering the human-
driven vehicles as constraints. The current mode and states
of the human driven vehicles are determined from online
measurements using nearest neighbor comparison (NNC).
The first part of the optimal control input trajectory is
applied to the ego vehicle. Afterwards, the states of the
ego and the human driven vehicles are measured and the
optimal control input trajectory is determined again with
the updated states until the ego vehicle reaches the end
of the desired path. This enables the controller to react to
disturbances.

There are various datasets publicly available, which can
be used for autonomous driving related tasks, e.g. (Yin
and Berger, 2017). Datasets are suitable for specific areas
of application such as highways (He, 2017), intersections
(Bender et al., 2015) (Zyner, 2018) etc. Driving datasets
may require preprocessing prior to the application of
machine learning algorithms (Feng and Zhu, 2016; Zheng,
2015). We used a dataset provided by the Australian
Center for Field Robotics (Bender et al., 2015).

The proposed fusion of a model predictive controller and
a learning approach, has the following advantages:

• The human driving behavior can be modeled from
real data.
• The predicted human driving behavior learned by a

neural network can directly be considered as con-
straints in the controller.
• All likely modes can be considered as constraints and

not only the most probable one.
• The probability of the modes can be evaluated online

(at every time step).
• The multi-mode MPC reduces conservativeness as

modes, which are very unlikely, can be removed online
from the constraints of the optimal control problem.

The remaining paper is structured as follows. In Section 2
we describe how the human driving behavior was modeled
from real data, while Section 3 outlines how the actual
mode of the human drivers can be determined online.
Path generation of the ego vehicle is covered in Section
4. In Section 5 the model predictive control scheme with
multi-mode constraints for human drivers is outlined.
Some simulation results for proof-of-concept are shown in

Section 6, finally some short conclusions follow in Section
7.

2. MODELLING OF HUMAN DRIVERN VEHICLES

Based on a model, the proposed controller predicts the tra-
jectory, i.e. the future states, of the human-driven vehicles.
Here, neural networks were used as prediction models. The
human vehicle states are predicted by regression of the
observed data.

Fig. 2. Structure of a neural network.

The general structure of a neural network (Kruse et al.,
2016; Goodfellow et al., 2016; Maas et al., 2013; Mitchell,
1997) is shown in Fig. 2. In general a neural network has
one input layer, one output layer and an arbitrary number
of hidden layer. Each neuron (shown as circles) receives
an input, which is either a part of the feature vector ξ
(input of the neural network) or a weighted combination
of the neurons in the previous layer. The input of the
neuron is proceeded by an activation function σ(ξ), where
the result is saved on the neuron itself. The output of the
neuron is either a weighted connection (shown as arrows)
to neurons in the next layer or to the output h(·) of the
neural network. The weights θ are optimized trough a
cost function by minimizing the error between the output
from the training set and the hypothesis h(·), which is the
output of the neural network.

The dataset (Bender et al. (2015)) includes measurements
of the human-driven vehicles on an unsignalized intersec-
tion. Each data entry contains vehicles’ latitude, longitude
and orientation in addition to the timestamp at which
the observation was taken. We consider 6 different modes.
Each mode m is represented by two letters, the first let-
ter indicating the initial cardinal direction of the target
vehicle, and the second letter the final cardinal direction.
Directions are defined as West (W), East (E), South (S).

m ∈M = [1, nmode] (1)

= {WE, WS, EW, ES, SW, SE}.
For each mode m we train a separate hypothesis h(θm, ·)

with one hidden layer. Each feature in the feature vector
ξ(k) = (px(k), py(k), ψ(k)) is represented by a single
neuron in the input layer. The output of the neural
networks ẑm(k + 1|k) = (px(k + 1), py(k + 1), ψ(k +
1)) are the predicted states ẑm(·), i.e. location (px, py)
and yaw angle ψ, of a human-driven vehicle for the next
time instant k + 1. Hence, we have three neurons in the
input layer as well as in the output layer. The hidden
layer contains seven neurons. We use a sigmoid activation
function (2), which leads to the following neural network
(3):

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14558

σ(ξ) =
1

1 + e−θ·ξ
, (2)

z(l|k) = (ξ(k − l), . . . , ξ(k))

ẑm(k + 1) = h (θm, σ(·), z(l|k)) . (3)

The neural network predicts the human driving behavior
ẑm,j(k + 1) at the next time step k + 1 for mode m and
target vehicle j from the data points. Our neural network
was trained using 70% of the dataset for each mode, while
the test set contains 30% of the real trajectories for each
mode. The data of vehicles trajectories were pre-processed
to eliminate outliers and noise, and re-sampled to get
constant time steps of ∆t = 0.1 s. The algorithm was
implemented using the Matlab Deep Learning Toolbox
(Mat, 2018b). The weights θ of the connections are op-
timized during the training with Levenberg Marquardt
algorithm by minimizing a cost function (Kruse et al.,
2016; Mitchell, 1997). In our example, the cost function
is the mean squared error between the predicted state and
the measured state taken from the dataset.

3. CLASSIFICATION OF HUMAN VEHICLES

Because the human vehicles can execute multiple modes,
c.f. Fig. 3, and to reduce conservativeness, there is a
desire to determine the true mode of the human vehicles.
When no information is available, all modes are considered
equally likely. Hence all modes are taken into account
as constraint in the optimal control problem. To reduce
conservativeness, the probability of each mode is updated
online, when new measurements are available. The modes,
whose probabilities lie below a certain threshold will be
eliminated from the constraints. To update the proba-
bility, we use nearest neighbor comparison (NNC) (Tan
et al., 2017). The algorithm takes as an input a reference
datasets, one for each potential mode. Here the main steps
of NNC is summarized:

(1) At the current time step k, the partial trajectory
yj(k) = (ξj(1), ξj(2), . . . , ξj(k)) is observed. The

nearest neighbor trajectory y
(j)
m,r for a target vehicle

j is identified within the sets of recorded trajectories
Ym for each mode m:

y(j)
m,r(k) = arg min

m,r
d(yj(k), ym,r(k)),

∀m ∈M, ∀r ∈ Ym.

This is done, using the Euclidean distance d(·) :

d(yj(k), ym,r(k)) =

√√√√ k∑
l=1

((ξj(l)− ξm,r(l))� η)
2
.

The normalization factors η ∈ R3 are chosen a priori
(� is element-wise division).

(2) For each mode, distance d(·) between nearest neigh-

bor trajectory y
(j)
m,r(k) and observed data points is

converted to similarity γ(·):

γ(yj(k), y(j)
m,r(k)) =

1

1 + d(yj(k), y
(j)
m,r(k))

.

(3) The probability p of the observed sequence is calcu-
lated, separately, for each mode m ∈M :

p(yj(k) | m) ≈ γ(yj(k), y
(j)
m,r)∑

m∈M γ(yj(k), y
(j)
m,r)

.

(4) The normalized probability p̂ and the maximum likeli-
hood naive Bayes estimate lead to the predicted mode
m̂j :

p̂(yj(k) | m) =
p(yj(k) | m)∑

m∈M p(yj(k) | m)
,

m̂j(k) = arg max
m∈M

p̂(yj(k) | m).

This algorithm enables to classify the mode online after
each new observation. However, determining the nearest
neighbor trajectory in each mode (step 1 of the algorithm)
is computationally expensive, especially for big datasets.
For this reason, we compared NNC with a prototype path
generation and comparison algorithm, c.f. Vasquez and
Fraichard (2004). The classification accuracy

accuracy(k) =
1

k

k∑
l=1

{
1, m̂r(l) == mr

0, m̂r(l) 6= mr

for both algorithms after each time step ∆t = 0.1 s are
shown in Fig. 4. It can be seen that nearest neighbour
comparison provides significant better accuracy. Espe-
cially, when only a few observed data points are available.
Therefore, nearest neighbour comparison is used in the
example in Section 6. However, for real-time experiments,
prototype path generation and comparison might be the
better choice due to the lower computational time.

4. PATH GENERATION

The path of the ego vehicle is planned offline, using optimal
rapidly exploring random trees (RRT) and the MATLAB
Automated Driving Toolbox (Mat, 2018a). Once the path
is defined, the controller of the ego vehicle follows this
path by adapting the control input, while avoiding human
driven vehicles on the intersection.

Here, the main idea of RRT is given. The path is modeled
as a tree with vertices representing points in space, i.e.
vehicle position (px, py), and edges representing the paths
connecting the points, see Fig. 5. The algorithm starts
with an initial state qi represented by the green vertex
in Fig. 5 and with a goal state qr represented by the
red vertex. Then, a point qa is randomly sampled from
the configuration space. If the point does not satisfies the
constraints, e.g. street border, it is discarded. Otherwise,
the algorithm adds the point as a vertex. The vertex is then
connected by an edge to the nearest reachable vertex qn in
the existing tree by evaluating the cost to reach this vertex.
This process is repeated, until a feasible path that reaches
the goal state qr is obtained. The vertices are connected
by Dubins segments (Dubins, 1957) to generate the path.
To generate a smooth path, cubic spline interpolation is
used.

We define the following costs for path generation:

costpath =

{
0.1, (px, py) ∈ ego vehicle’s lane
0.5, (px, py) ∈ target vehicle’s lane
1.0, (px, py) /∈ road boundaries.

}
.

The generated paths, given for the specified waypoints, are
shown in Fig. 6. The reference path P maps path progress
s to location (px, py) and curvature (dX, dY):

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14559

Far from intersection Close to intersection After crossing

Target

vehicle

Ego vehicle

Predictions

Fig. 3. The mode of the target vehicle is determined online, to predict its future trajectory. At the initial time step (left)
all modes are possible and equally likely. After obtaining more measurements (middle), one mode is considered
more likely than the other. Finally the likelihood of the mode lies below a certain threshold, the prediction of that
mode is removed from the constraints (right).

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

time (s)

cl
as

si
fi

ca
ti

on
ac

cu
ra

cy

prototype path generation and comparison

nearest neighbor comparison

Fig. 4. Comparison of classification accuracy at each time
step k for nearest neighbor comparison algorithm and
prototype path generation and comparison.

Fig. 5. Exploration of a rapidly random tree.

−100−50050100
−100

−50

0

50

100

y [m]

x
[m

]

straight

left

right

Fig. 6. Path of the ego vehicle coming from north defined
a priori.

P = {s ∈ R | 0 ≤ s ≤ 1}. (4)

5. MPC WITH MULTI-MODE CONSTRAINTS

The autonomous driving is realised by an MPC approach
considering the human driven vehicles as constraints. We
model the ego vehicle as a nonlinear system with states
x(t) = (v(t), px(t), py(t), ψ(t)) ∈ Rnx and control input
u(t) = (a(t), δ(t)) ∈ Rnu . The nonlinear dynamics x(k +
1) = f(x(k), u(k)) of the ego vehicle are described by the
following kinematic bicycle model (Kong et al., 2015):

ṗx = v cos (ψ + β)

ṗy = v sin (ψ + β)

v̇ = a (5)

ψ̇ =
v

lr
sinβ

β = tan−1 lr
lf + lr

tan δ.

The states x of the ego vehicle are its velocity v, x-
and y-position (px, py) and orientation ψ. The parameters
lr = 1.8 m and lf = 1.4 m describe the distance of the
center of gravity to the rear axles and the front axles,
respectively. The control inputs are the steering angle δ
and the acceleration a of the ego vehicle. Furthermore, the
states x ∈ X and the control input u ∈ U are bounded in
the compact and connected set X ⊆ Rnx and the compact
set U ⊂ Rnu , respectively.

The target vehicles’ behavior up to the time k + l is
iteratively modeled with a neural network trained offline
(3) as follows

ẑj,m(k + g|k) = (ẑj,m(k + 1|k), . . . , ẑj,m(k + g|k))

ẑj,m(k + g + 1|k) = h(θm, σ(·),
zj(l − g|k), ẑj,m(k + g|k)) (6)

where zj(·) denotes the previously measured states of the
target vehicle j. Each target vehicles can operate in dif-
ferent modes. All likely modes whose probability p(m, z)
is larger than εp of all target vehicles j ∈ [1, nvehicle] are
taken as constraints to the controller. The real target mode
is determined online (see algorithm and results in Section
3).

The overall model predictive controller is formulated as

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14560

min
û(·)

J(û(·), x̂(·))

s.t. J(·) =

k+N−1∑
i=k

(
‖ û(i) ‖2R1

+ ‖ ∆û(i) ‖2R2

)
+

k+N∑
i=k+1

(
‖ x̂(i)− xref(s) ‖2Q1

+ ‖ ŝ(i) ‖2Q2

)
,

x̂(k + i) = f(x̂(·), u(·)), x̂(k) = x(k), (7a)

ẑj,m(k + i) = h(θm, σ(·), zj(·), ẑj,m(·)), (7b)

∆u = û(k)− û(k − 1), ∆u(k) = 0, (7c)

x(k) ∈ X 	 Tj,m(k), (7d)

u(k) ∈ U , ∆u(k) ∈ U∆,

∀j ∈ [1, nvehicle], ∀m ∈M | p(m, zj(·)) ≥ εp, ∀k

where J(·) is the objective function, d(·) is the distance
between the predicted states of the target vehicle zj,m(·)
for mode m and predicted states x̂(·) of the ego vehicle.
The set Tj,m(k) is defined as

Tj,m(k) = {x ∈ X | ‖(ẑj,m(k)− x)‖2 ≤ εd} (8)

and represents a ball of radius εd that circumscribed the
target vehicle. Note that this set is subtracted from the
nominal feasible set (the street borders) using Minkowski
subtraction operator 	. A mode is likely, and therefore
considered in the constraints, if the probability p(·) of this
mode based on all previously measured target states z is
greater or equal a threshold εp.

The equations (7a) and (7b) describe the dynamics of the
ego vehicle j (5) and the target vehicle (6), respectively.
The state and input constraints as well as the constraints
of the path progress s(·) and the change of input ∆u are
described by (7c). The path progress s(k) is given by (4)
in the optimal control problem (OCP).

This OCP is repeatedly solved at every time step k and
only the first part of the optimal control input sequence
{û∗(0), û∗(1), ..., û∗(N)} is applied to the ego vehicle. At
the next time step, the states of the ego vehicle and the
target vehicle are updated by measurements, and the OCP
is solved again. This enables the controller to react to
disturbances and (measurements) noise. It is assumed that
all system states x(k) and all target states z(k) can be
measured directly and instantaneously at all time steps
k ≥ 0.

The steps of the proposed algorithm can be summarized
as follows.

Offline:

(1) Preprocessing and mining of real driving data.
(2) Learning human driving behavior by generating one

model (Neural Network) for each mode from real
data.

(3) Modelling of the ego vehicle as simple bicycle model.

Online:

(1) Solve the OCP (7) for the ego vehicle (while taking
into account all likely modes of the target vehicle.

(2) Classify the trajectory of the target vehicle based on
all observed data up to the current time step using
nearest neighbourhood comparison.

(3) Remove modes with probability p lower than thresh-
old εp, from the OCP constraints as these modes are
not likely anymore.

(4) Apply first part of optimal control input (solution of
OCP (7)).

(5) Repeat from step (1).

6. SIMULATION RESULTS

−20 −10 0 10 20
−30

−20

−10

0

10

20

y-position [m]

x
-p

o
si

ti
on

[m
]

real target traj real ego traj

position at k=50 ego predicted at k=50

target pred WE target pred WS

Fig. 7. Intersection with trajectories of the ego (blue) and
target (red) vehicle. Crosses denote the real trajectory
at the end of the simulation, while dots denote the
prediction at time step k = 50, i.e. t = 5 s. Predictions
start at the black circle of the ego (blue) and target
vehicle (red), respectively.

0 20 40 60 80 100
0

20

40

60

time step k

ve
h

ic
le

d
is

ta
n

ce
[m

] safe margin
real distance

Fig. 8. Safe margin (red) and real distance (blue) between
the centers of gravity of ego vehicle and target vehicle,
respectively.

Table 1. Minimum distance between ego and
target vehicle for 20 trajectories per scenario.

Mode Straight Left-Turn Right-Turn

WE 4.7 m 9.1 m 8.7 m
WS 6.6 m 12.2 m 5.3 m
EW 4.6 m 9.9 m 7.4 m
ES 4.8 m 8.7 m 11.6 m
SW 5.3 m 16.9 m 9.1 m
SE 6.6 m 15.6 m 10.2 m

We consider an autonomous vehicle on a 4-way unsignal-
ized intersection, which may need to give right-of-way
to a single human-driven target vehicle. The autonomous

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14561

0 20 40 60 80 100
−4

−2

0

2

4

time step k

ac
ce

le
ra

ti
on

[m
2
/s

]
an

d
st

ee
ri

n
g

[r
ad

]

a [m2/s]

δ [rad]

Fig. 9. Input of the ego vehicle, chosen from the MPC with
multi-mode constraints and learning based model.

vehicle comes from north and performs a right turn, while
the target vehicle goes straight through the intersection
from West to East. The left-hand driving setup is shown
in Fig. 7 with blue and red dots denoting the ego and
target vehicle real trajectory, respectively.

The simulation duration is 25 s with a sampling time of
∆t = 0.1 s, while the prediction horizon is NH = 30
steps. The road boundaries are at x = {−9 m, 9 m} and
y = {−9 m, 9 m}, while the chosen input constraints are
−5 m

s2 < a < 5 m
s2 and −1 rad < δ < 1 rad. The probability

threshold is chosen as εp ≈ 0.17.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time step k

p
ro

b
ab

il
it

y

WE
WS
EW
ES
SW
SE

Fig. 10. Probabilities of the modes m with threshold εp.
Active modes are shown as solid lines.

Throughout the first 6.4 s in the simulation (c.f. Fig. 10),
two modes of the target vehicle are considered likely and
thus both considered as constraints in the OCP.

Furthermore, the desired threshold εd of the minimum
distance between ego and target vehicle depends on the
maneuvers, i.e. for direct conflicts εd = 2 m, while for
indirect conflicts a bigger threshold εd = 5 m is chosen.
Direct conflicts occur, if the ego vehicle has right-of-way,
i.e. the ego vehicle goes straight and the target vehicle is
reaching from south. The tuning parameters and weights
are chosen as Q1 = diag(2 · 10−2, 2 · 10−2, 0, 1 · 10−5),
Q2 = diag(2 · 10−2), R1 = diag(1 · 10−8, 0) and R2 =
diag(1 · 10−5, 1 · 10−5).

The safe margin is 5 m, which is satisfied for the whole
simulation duration. This can be seen in Fig. 8, where the
actual minimum distance between the center of gravity
of the ego vehicle and the target vehicle is around 12 m.
One reason might be that the prediction of the target

vehicle position through the neural network is not exactly.
Furthermore, the safe distance needs to be ensured for all
probable modes. Hence, if a mode becomes unlikely the ego
vehicle has less constraint restriction and can accelerate to
safely and fast crossing of the intersection. This behavior
can be seen in Fig. 9. Furthermore, the target vehicle
might be predicted to be slower, which results in a smaller
predicted distance and less acceleration of the ego vehicle,
cause the ego vehicle gives way to the target vehicle.
The prediction of the target vehicle and the ego vehicle
positions, respectively, at time step k = 60 are also shown
in Fig. 7. The current position of both vehicles are drawn
with black circles, while the blue, red and green crosses
denote the predicted positions of the ego and the two
probable target vehicle modes, respectively. The control
input for the ego vehicle is shown in Fig. 9, where the blue
and red lines denote the acceleration −5 m

s2 < a < 5 m
s2 and

the steering angle −1 rad < δ < 1 rad, respectively. Both
control inputs satisfy their constraints. In Fig. 9 it can be
seen, that the ego vehicle starting around time step k = 20
reduces the acceleration and than decelerates at k = 29 to
give way to the target vehicle. At k = 64 the ego vehicle
slowly accelerates again as the target vehicle has entered
the intersection at this point, which removes the possibility
that the target vehicle stops at the intersection.

The minimum distance between target and ego vehicle
for each combination of ego vehicle maneuver and target
vehicle mode are shown in Table 1. The minimum distance
was determined considering all data points of 20 randomly
chosen trajectories of the test set We can see that the mini-
mum distance (2 m) is satisfied for all modes. Furthermore,
the optimal control problem was always feasible and the
constraints were satisfied at all time steps k.

7. CONCLUSION

We proposed a unifying approach fusing model predictive
control and learning of dynamic constraints. The proof-of-
concept simulation using a single target vehicle, modeled
by offline trained neural networks, showed promising re-
sults: the optimal control problem was always feasible and
the constraints were satisfied at all time steps k. However,
no additional uncertainties, e.g. errors in the prediction
of the neural network, are considered in the proposed
approach.

REFERENCES

(2018a). Matlab automated driving toolbox 2018a. The
MathWorks, Natick, MA, USA.

(2018b). Matlab deep learning toolbox 2018b. The
MathWorks, Natick, MA, USA.

Alonso, J., Milanés, V., Pérez, J., Onieva, E., González, C.,
and De Pedro, T. (2011). Autonomous vehicle control
systems for safe crossroads. Transportation research part
C: emerging technologies, 19(6), 1095–1110.

Bender, A., Ward, J.R., Worrall, S., and Nebot, E.M.
(2015). Predicting driver intent from models of natural-
istic driving. In 2015 IEEE 18th International Confer-
ence on Intelligent Transportation Systems, 1609–1615.
IEEE.

Bethge, J., Morabito, B., Matschek, J., and Findeisen, R.
(2018). Multi-mode learning supported model predictive

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14562

control with guarantees. IFAC-PapersOnLine, 51(20),
517–522.

Borrelli, F., Falcone, P., Keviczky, T., Asgari, J., and
Hrovat, D. (2005). Mpc-based approach to active steer-
ing for autonomous vehicle systems. International Jour-
nal of Vehicle Autonomous Systems, 3(2), 265–291.

Dresner, K. and Stone, P. (2004). Multiagent traffic
management: A reservation-based intersection control
mechanism. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multia-
gent Systems-Volume 2, 530–537. IEEE Computer Soci-
ety.

Dubins, L.E. (1957). On curves of minimal length with
a constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American
Journal of mathematics, 79(3), 497–516.

Falcone, P., Eric Tseng, H., Borrelli, F., Asgari, J., and
Hrovat, D. (2008). Mpc-based yaw and lateral stabil-
isation via active front steering and braking. Vehicle
System Dynamics, 46(S1), 611–628.

Feng, Z. and Zhu, Y. (2016). A survey on trajectory data
mining: Techniques and applications. IEEE Access, 4,
2056–2067.

Goodfellow, I., Bengio, Y., and Courville,
A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Gu, D. and Hu, H. (2002). Neural predictive control
for a car-like mobile robot. Robotics and Autonomous
Systems, 39(2), 73–86.

Guler, S.I., Menendez, M., and Meier, L. (2014). Using
connected vehicle technology to improve the efficiency of
intersections. Transportation Research Part C: Emerg-
ing Technologies, 46, 121–131.

He, Z. (2017). Research based on high-fidelity ngsim
vehicle trajectory datasets: A review. Research Gate,
1–33.

Hsieh, M.F. and Ozguner, U. (2008). A parking algorithm
for an autonomous vehicle. In 2008 IEEE Intelligent
Vehicles Symposium, 1155–1160. IEEE.

Kong, J., Pfeiffer, M., Schildbach, G., and Borrelli, F.
(2015). Kinematic and dynamic vehicle models for
autonomous driving control design. In 2015 IEEE
Intelligent Vehicles Symposium (IV), 1094–1099. IEEE.

Kruse, R., Borgelt, C., Braune, C., Mostaghim, S., and
Steinbrecher, M. (2016). Computational intelligence: a
methodological introduction. Springer.

Lin, S., Ling, T., and Xi, Y. (2013). Model predictive
control for large-scale urban traffic networks with a
multi-level hierarchy. In 16th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC
2013), 211–216. IEEE.

Maas, A.L., Hannun, A.Y., and Ng, A.Y. (2013). Rectifier
nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, 3.

Makarem, L. and Gillet, D. (2013). Model predictive coor-
dination of autonomous vehicles crossing intersections.
In 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013), 1799–1804. IEEE.

Mitchell, T.M. (1997). Machine learning. McGraw Hill
Education.

Morabito, B., Kienle, A., Findeisen, R., and Carius, L.
(2019). Multi-mode model predictive control and esti-
mation for uncertain biotechnological processes. In 12th

International-Federation-of-Automatic-Control (IFAC)
Symposium on Dynamics and Control of Process Sys-
tems including Biosystems (DYCOPS), 709–714. Else-
vier.

Park, J., Kim, D., Yoon, Y., Kim, H., and Yi, K. (2009).
Obstacle avoidance of autonomous vehicles based on
model predictive control. Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile
Engineering, 223(12), 1499–1516.

Portilla, C., Cortes, L.G., Valencia, F., López, J., Es-
pinosa, J., Núnez, A., and De Schutter, B. (2013).
Decentralized model-based predictive control for urban
traffic control. In Proceedings of the 8th Triennial Sym-
posium on Transportation Analysis (TRISTAN VIII),
San Pedro de Atacama, Chile.

Prokop, G. (2001). Modeling human vehicle driving by
model predictive online optimization. Vehicle System
Dynamics, 35(1), 19–53.

Qian, X., Navarro, I., de La Fortelle, A., and Moutarde,
F. (2016). Motion planning for urban autonomous
driving using bézier curves and mpc. In 2016 IEEE 19th
International Conference on Intelligent Transportation
Systems (ITSC), 826–833. Ieee.

Riegger, L., Carlander, M., Lidander, N., Murgovski, N.,
and Sjöberg, J. (2016). Centralized mpc for autonomous
intersection crossing. In 2016 IEEE 19th international
conference on intelligent transportation systems (ITSC),
1372–1377. IEEE.

Tan, Y.V., Elliott, M.R., and Flannagan, C.A. (2017).
Development of a real-time prediction model of driver
behavior at intersections using kinematic time series
data. Accident Analysis & Prevention, 106, 428–436.

Tettamanti, T., Varga, I., Kulcsár, B., and Bokor, J.
(2008). Model predictive control in urban traffic network
management. In 2008 16th Mediterranean Conference
on Control and Automation, 1538–1543. IEEE.

Van den Berg, M., De Schutter, B., Hegyi, A., and Hel-
lendoorn, J. (2004). Model predictive control for mixed
urban and freeway networks. In Proceedings of the 83rd
Annual Meeting of the Transportation Research Board,
volume 19.

Vasquez, D. and Fraichard, T. (2004). Motion prediction
for moving objects: a statistical approach. In IEEE
International Conference on Robotics and Automation,
2004. Proceedings. ICRA’04. 2004, volume 4, 3931–
3936. IEEE.

Widyotriatmo, A., Hong, B., and Hong, K.S. (2009).
Predictive navigation of an autonomous vehicle with
nonholonomic and minimum turning radius constraints.
Journal of Mechanical Science and Technology, 23(2),
381–388.

Yin, H. and Berger, C. (2017). When to use what data
set for your self-driving car algorithm: An overview of
publicly available driving datasets. In 2017 IEEE 20th
International Conference on Intelligent Transportation
Systems (ITSC), 1–8. IEEE.

Zheng, Y. (2015). Trajectory data mining: an overview.
ACM Transactions on Intelligent Systems and Technol-
ogy (TIST), 6(3), 29.

Zyner, A.G. (2018). Naturalistic driver intention and path
prediction using machine learning.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14563

