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Abstract: The presented paper deals with the area of research on multibody mechanical systems
focused on underactuated systems, where the impact of the missing actuator is compensated
by means of mathematical modeling. Several approaches based on the dynamics of individual
bodies make it possible to obtain the mathematical model of the mechanical system. This paper
focuses on summarizing and comparing Lagrange’s and Kane’s method, describing the steps
that need to be applied to obtain a model for a particular mechanical system in each case.
The methods are subsequently applied to selected benchmark underactuated systems such as
cart-pole, acrobot, and reaction wheel pendulum, where the aim is to show that both produce
the same equations of motion. The corresponding procedures are implemented in MATLAB as
part of a custom application with graphical user interface.
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1. INTRODUCTION

Although cybernetics is a young science created in the
middle of the last century (Novikov, 2016), the founda-
tions it is based on, such as system dynamics, had been
studied decades to centuries before. In today’s modern
age of automation, when people are talking of a new
industrial revolution (Vuksanovic et al., 2016), this science
is an essential part of technical life and involves a lot of
unanswered questions and tasks.

Modeling is a very important prerequisite for the analysis
and control of nonlinear physical systems. It is based on
basic principles that are valid in the field of cybernetics
and system theory (Novikov, 2016). (Fantoni, 2002). The
mathematical model, which replaces the physical system,
is the most fundamental starting point for the analysis
of nonlinear systems. It makes it easier to explore the
observed system, to analyze its dynamics and to design
control algorithms. Its use in simulation allows us to
experiment with the model the same way as we would
with a real object, but with significantly lower costs.
MATLAB program environment, with its proprietary
matrix-oriented language, graphical capabilities and spe-
cialized toolboxes, can be used as a suitable tool in all
stages of modeling, analysis and control algorithm design.

As a significant category of physical systems, mechanical
systems generally consist of n free particles with 3 degrees
of freedom (Hamil, 2014; Goldstein et al., 2002). Study-
ing underactuated systems that have fewer inputs than
degrees of freedom is a broad-spectrum cybernetic and
mechanical problem. Their extensive applications can be
seen in the field of robotics or transport, but due to their
complicated nonlinear dynamics, they are often studied
on the basis of simpler benchmarks, most of which are

based on pendulum dynamics (Spong et al., 2005). The
pendulum is a typical nonlinear system, while also being
relatively simple. Generally, it is one of the most important
and most used mechanical systems that have been studied
since Galileo. It was his study of the pendulum’s motion
that brought many questions that were later answered e.g.
by Newton’s laws of dynamics (Aström et al., 2007).

Mathematical modeling of underactuated systems yields
equations of motion which are represented by highly non-
linear differential equations (Bremer, 2008). A number
of approaches can be used to obtain these equations and
although each is based on the model’s dynamics, different
physical laws, such as Newton’s second law or d’Alembert
principle, may apply (Goldstein et al., 2002) (Fantoni,
2002). One of the earliest modeling methods is the New-
ton’s method, which has the disadvantages of inefficient
computation and determination of all forces acting upon
a system, including constraint forces. That is why the
process is hard to algorithmize. On the other hand, energy-
based methods, such as the one invented by Joseph-Louis
Lagrange, do not consider these forces because they do not
have a direct impact on the kinetic or potential energy of
the system (Parsa, 2007). As a result, this method is easier
to algorithmize, but its complexity arises with more com-
plex systems, such as multibody spatial systems. These
classical methods are complemented by Kane’s method,
which is rarely used because of its short history, but it
has great potential in solving more complicated multibody
systems due to less computational load and preserving
the physical nature of the system, which we will discuss
in this paper (Kane et al., 1985). Some of the example
usage can be seen in (Gillespie, 2003; Chen et al., 2017)
or (Sandino et al., 2011). Part of the modeling skill is
to become familiar with available approaches with their
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advantages and disadvantages, and to be able to choose
the one which is most effective for a particular system.

The structure of this paper is as follows. Section 2 de-
scribes the process of obtaining the mathematical model
for a multibody mechanical system by the Lagrangian me-
chanics and Kane’s method, respectively. This is followed
by section 3, where we present the most frequent underac-
tuated benchmarks – cart-pole, acrobot and reaction wheel
pendulum – and describe the process of obtaining their
equations of motion using both methods. The final section
4 describes the implementation of methods into MATLAB
using Symbolic Math Toolbox in order to generate the
equations of motion, and the corresponding application to
represent the results in a user-friendly manner. The paper
concludes by evaluating the methods with respect to the
stated objective and outlines the next research directions.

2. HOW TO OBTAIN THE EQUATIONS OF MOTION

In this section, we will analyze two approaches for obtain-
ing the equations of motion for any mechanical system in
more detail. Out of the available modeling methods, we
have chosen the method based on Lagrangian mechanics
(Parsa, 2007), which is frequently used to obtain mo-
tion equations, and the more recently introduced Kane’s
method, in which it is necessary to derive generalized
active and inertia forces (Gillespie, 2003).

2.1 Lagrangian mechanics

Complexity of Newton-Euler approach was the main mo-
tivation behind the development of the Lagrangian view
of mechanics, where the resulting second-order differential
equations represent the dynamics of the individual degrees
of freedom, each characterized by a generalized coordinate
(Parsa, 2007). They define the position of a center of
gravity for each system’s particle in a reference frame
relative to Newtonian reference frame (Gillespie, 2003).

As a fundamental principle of Lagrangian mechanics, the
principle of virtual work says that the system stays in
balance if the virtual work of all forces acting on the system
is zero (Bremer, 2008), i.e.:

δw =

n∑
i=1

Qiδqi = 0, (1)

where Qi is the general force acting in the direction of the
ith coordinate, qi is the ith generalized coordinate.

We will consider the basic form of Lagrange equations of
the second kind, defined as

d

dt

( ∂L
∂q̇i

)
− ∂L

∂qi
= Qi for i = 1, 2, . . . , n, (2)

where i is a degree of freedom index, L is the Lagrange’s
function (also referred to as Lagrangian or kinetic poten-
tial), defined as the difference of the overall kinetic and
potential energy of the system (Goldstein et al., 2002):

L = Ek − Ep. (3)

The total kinetic energy of the system is calculated as the
sum of the kinetic energies of all mass points of the system,
with the kinetic energy of the jth mass point expressed as
(Spong et al., 2005)

Ekj =
1

2
mj

(
v2xj + v2yj

)
+

1

2
Ij

( i∑
n=1

q̇n

)2
, (4)

where vxj and vyj are the linear velocities of the center
of gravity of the jth mass point in the direction of the
coordinates, Ij is the moment of inertia of the jth mass
point, q̇ is the angular velocity of jth mass point.

The same principle applies to the total potential energy
of the system, which is for the jth mass point obtained as
(Spong et al., 2005)

Epj = mjgryj , (5)

where mj is the mass of j-th point, g is the gravitational
acceleration, ryj is the y-coordinate of the system’s jth
mass point.

2.2 Kane’s method

We will next focus on the Kane’s method, which is based
on the derivation of physical quantities such as angular
velocity and acceleration, linear velocity and acceleration,
moment of all forces and generalized active and inertia
forces acting on the system (Kane et al., 1985).

If the rigid body B moves within the reference frame
A in such a way that there exists a unit vector k for
a certain time interval t, whose orientation in A and B
is independent of time, we can say that B has a simple
angular velocity during the time interval t which can be
defined as (Kane et al., 1985)

AωB = ωk, (6)

where ω is the angle change over time

ω = θ̇, (7)

and θ is the angle of rotation measured in radians and its
orientation is fixed in both frames A and B. The θ sign is
determined by the right hand rule.

The angular acceleration AαB if the rigid body B in a
reference frame A is defined as the first time derivative in
A angular velocity B in A (Kane et al., 1983)

AαB =
AdAωB

dt
. (8)

Since the time derivative AωB in A and B is the same, we
can say that

AαB =
BdAωB

dt
. (9)

Let p be a position vector from any point O moving in
reference frame A and fixed to point P within A. The
linear velocity P in A is given by the time derivative of
the position vector p

AvP =
AdpP

dt
(10)

and the linear acceleration of the point P within A is
defined as

AaP =
AdvP

dt
. (11)

However, if two points P and Q having an angular velocity
AωB in A are attached to a rigid body B, then linear
velocities AvP of the point P in A and AvQ in A are
interrelated by (Kane et al., 1985)

AvP =A vQ +A ωB × r, (12)
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where r is the position vector from Q to P . In this case,
the equation that applies for the acceleration is

AaP =A aQ +A ωB × (AωB × r) +A αB × r. (13)

Angular momentum principle of inertia

The angular momentum principle of inertia for any system
S in main reference frame A defines the moment of all
forces acting on the center of gravity Sm as the time

derivative of system’s angular momentum AHS/Sm about
Sm within A (Mitiguy, 2017)

MS/Sm =
AdAHS/Sm

dt
, (14)

while
AHS/Sm = ÏS/Sm ·A ωSm , (15)

where ÏS/Sm is the inertia matrix defined as

Ï =

[
Ixxii+ Ixyij + Ixzik
Iyxji+ Iyyjj + Iyzjk
Izxki+ Izykj + Izzkk

]
. (16)

Generalized active forces

The generalized active forces depend on forces acting on
the system S in the main reference frame A and the partial
derivatives of angular and linear velocities. If u1, u2, . . . , un
are generalized speeds for the system S in the A, then the
generalized active forces are defined as (Gillespie, 2003;
Kane et al., 1985)

Fu =

n∑
i=1

(∂vPi

∂u
·Ri +

∂ωPi

∂u
· Ti
)
, (17)

where n is the number of particles that are part of the sys-
tem S, Pi is a particular particle, vPi is the linear velocity
of particle Pi, Ri is the result of all contact forces (such
as frictional forces) and forces, such as gravity, magnetic,
translational, and input forces, ωPi is the angular velocity
of particle Pi and Ti is the torque.

Generalized inertia forces

The generalized inertia forces depend on the forces that
are derived by the 2nd Newton’s law and the partial an-
gular and linear velocities. If u1, u2, . . . , un are generalized
speeds for the system S in the reference frame A, then
the generalized inertia forces are defined (Gillespie, 2003;
Kane et al., 1985)

AFS
u =

n∑
i=1

(∂vPi

∂u
·R∗

i +
∂ωPi

∂u
·Mi

)
, (18)

where n is the number of particles that are part of the
system S, Pi is a particular particle, vPi is the linear
velocity of particle Pi, ω

Pi is the angular velocity of
particle Pi, Mi is the angular momentum and R∗

i is the
force defined as

R∗
i = mPiaPi , (19)

where mPi is the mass of the particle Pi and aPi is a linear
velocity.

Equations of motion

The equations of motion derived by Kane’s method are
expressed from the equality of generalized active forces and
inertia forces. If u1, u2, . . . , un are generalized speeds for
system S in the reference frame A, then (Mitiguy, 2017):

Fu =A FS
u . (20)

As it can be seen from equations (2) and (20), there are
several ways to construct the equations of motion of any
system. In this section, we have shown Lagrange’s and
Kane’s method. The goal for the following section is to
use these methods to construct the equations of motion
for basic underactuated benchmark systems and to prove
that the results will be the same.

3. MATHEMATICAL MODELING OF BENCHMARK
UNDERACTUATED SYSTEMS

A benchmark underactuated system is a system that may
not have significant direct applications, but its features
allow to analyze and verify a number of properties of
complex systems on a simpler setup. Most common un-
deractuated benchmarks include the pendulum on the cart
(cart-pole), the acrobot and the reaction wheel pendulum
(see Figure 1). All mentioned systems are underactuated,
with two degrees of freedom but only a single actuator.
The cart-pole system consists of a pendulum attached by
a joint to a cart moving horizontally due to the force
acting upon it. The Acrobot was inspired by the gymnast
(acrobat), who hangs on the bar and moves only through
the strength of the waist, and is therefore represented by a
two-link planar robotic arm consisting of two pendulums
that are connected by a joint with an actuator (Murray
et al., 1991). The reaction wheel pendulum is composed
of a pendulum with an actuated reaction wheel mounted
on its end, rotating about an axis that is parallel to the
pivot axis of the pendulum itself - as a result, the reaction
wheel’s angle acceleration is used to control the entire
system (Spong et al., 2001). The most common control
objective for these benchmarks involves stabilization of all
pendulum links in the upward equilibrium.
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Fig. 1. Benchmark systems with their coordinate systems: cart pole, acrobot and reaction wheel pendulum, respectively
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Table 1. x- and y-coordinates of mass points of benchmarks

Cart pole Acrobot Reaction wheel pendulum

rxa x la sin θ1 lp sin θ1
rya 0 lp cos θ1 la cos θ1

rxb x+ l sin θ l sin θ1 + lb sin(θ1 + θ2) lw sin θ1
ryb l cos θ l cos θ1 + lb cos(θ1 + θ2) lw cos θ1

An accurate mathematical model is necessary for all ma-
nipulations or generalizations involving an underactuated
benchmark. A set of equations of motion will now be de-
rived for each system via both the Lagrange’s and Kane’s
method and the results will be compared to verify the
equivalence of obtained mathematical models.

Since all three benchmark systems can be described by an
analogical set of parameters, let us define the nomenclature
as follows:

• weight – m[kg] – mc,mp,ma,mb,mw

• length – l[m] – lp, la, lb, lw

• inertia – I[kgm2] – Ip, Ia, Ib, Iw

where indices a and b refer to the first and second pendu-
lum respectively, index p refers to pendulum, w describes
the reaction wheel and c makes reference to the cart.

3.1 Using Lagrangian mechanics

The first step of the method based on the Lagrange equa-
tions of the second kind consists of determining the x and y
coordinates for the individual mass points (center of grav-
ity) of the system. The center of gravity positions are listed
in Table 1, where rxa and rxb represent the x-coordinate
of the cart, the first pendulum, and the pendulum and rya
and ryb are y-coordinates of the pendulum, the second
pendulum, and the reaction wheel.

To obtain the Lagrange function, kinetic and potential
energies of the systems are first derived according to the
formulas (4) and (5) based on the positions and their
derivatives (i.e. velocities). They are all listed below for
each benchmark system (Ek refers to the total kinetic
energy and Ep is the total potential energy):

• Cart pole:

Ek =
1

2
ẋ2(mc +mp) + ẋθ̇mpl cos θ +

1

2
θ̇2mpl

2

Ep = mplg cos θ
(21)

• Acrobot:

Ek =
1

2
θ̇21(mbl

2 + Ia +mala + 2mbllb cos(θ2)

+ Ib +mblb) + θ̇1θ̇2(Ib +mbllb cos(θ2) +mbl
2
b )

+
1

2
θ̇22(Ib +mbl

2
b)

Ep = malag cos(θ1) +mbg(l cos(θ1) + lb cos(θ1 + θ2))
(22)

• Reaction wheel pendulum:

Ek =
1

2
θ̇21(mpl

2
p +mwl

2
w + Ip) +

1

2
(θ̇1 + θ̇2)2Iw

Ep = malag cos(θ1) +mbg(l cos(θ1)

+ lb cos(θ1 + θ2))

(23)

Based on the computed expressions for energies, the La-
grange function is formed according to (3) and the equa-
tions of motion are obtained via (2).

The resulting equations of motion for the cart-pole are
given as

ẍ(mc +mp) − θ̇2mpl sin θ + θ̈mpl cos θ = Fc

θ̈(mpl
2 + Ip) + ẍmpl cos θ = mplg sin θ,

(24)

where Fc is the input force applied to cart.

Putting (2) and (3) together for the acrobot system results
in:

θ̈1(Q1 +Q2 + 2Q3 cos θ2) + θ̈2(Q2 +Q3 cos θ2)

−2θ̇1θ̇2Q3 sin θ2 − θ̇22Q3 sin θ2
=Q5g sin(θ1 + θ2) +Q4g sin θ1

θ̈1(Q2 +Q3 cos θ2) + θ̈2Q2 + θ̇21Q3 sin θ2
=Q5g sin(θ1 + θ2) − τ,

(25)

where Q1 = mbl
2+mal

2
a+Ia, Q2 = Ib+mbl

2
b , Q3 = mbllb,

Q4 = mbl +mala a Q5 = mblb and τ is the input torque.

The final motion equations for the reaction wheel pendu-
lum can be written as

θ̈1(mpl
2
p +mwl

2
w + Ip + Iw) + θ̈2Iw

= (mplp +mwlw) sin θ1

θ̈1Iw + θ̈2Iw = −τ,
(26)

where τ is the input torque.

This concludes the modeling section via the Lagrange
method. For now, we can declare that these results are
consistent with those found in frequently cited literature
such as (Aström et al., 2007; Liu et al., 2013; Fantoni,
2002) or (Tedrake, 2012).

3.2 Using Kane’s method

The starting point of the Kane’s method is to correctly
select positions and angular velocities. Positions were ob-
tained based on coordinate systems in Figure 1 and are
listed in Table 2 along with angular velocities derived
by (6), where rAc

is the position and NωAc is the an-
gular velocity of the cart/first pendulum/pendulum and
rBc

is the position and NωBc is the angular velocity of
the pendulum/second pendulum/reaction wheel. Then, by
applying the formulas (9), (12) and (13) to the position
vector and the angular velocity, we get the results that are
represented in the Table 3. Afterwards, it is necessary to
use for all angular velocities, which are nonzero, angular
moment principle of inertia, to be able to derive the total
moment of inertia for all system mass points.

For instance, we show how this is applied to a cart pole.

Since NωAc equals 0, it is pointless to derive NHA/Ac

because it would lead to zero as well. On the other hand,
for mass point Bc according to (14) we can write
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Table 2. The center of gravity of the systems and their angular velocities

Cart pole Acrobot Reaction wheel pendulum

rAc xnx laay lpay
rBc lay lbby lway

NωAc 0 �θ̇1az �θ̇1az
NωBc �θ̇az �(θ̇1 + θ̇2)bz �(θ̇1 + θ̇2)az

Table 3. Angular acceleration, linear velocity and acceleration of the pendulum system

Cart pole Acrobot Reaction wheel pendulum

NαAc 0 �θ̈1az �θ̈1az
NαBc �θ̈az �(θ̈1 + θ̈2)bz �(θ̈1 + θ̈2)az
NvAc ẋnx θ̇1laax θ̇1lpax
NvBc ẋnx + θ̇lax θ̇1lax + (θ̇1 + θ̇2)lbbx θ̇1lwax
NaAc ẍnx θ̈1laax � θ̇21laay θ̈1lpax � θ̇21lpay
NaBc ẍnx � θ̇2lay + θ̈lax θ̈1lax � θ̇21lay � bylb(θ̇1 + θ̇2)2 + bxlb(θ̈1 + θ̈2) θ̈1lwax � θ̇21lway

NHA/Bc =

[
Ixxaxax + Ixyaxay + Ixzaxaz
Iyxayax + Iyyayay + Iyzayaz
Izxazax + Izyazay + Izzazaz

]
(−θ̇az)

= −Ixz θ̇ax − Iyz θ̇ay − Izz θ̇az,

(27)

by deriving which we obtain the moments of inertia as

MAc = 0

MBc = (θ̇2Ixz − θ̈Iyz)ay − (θ̇2Iyz + θ̈Ixz)ax
−θ̈Izzaz

(28)

For the acrobot system, the angular momentum principle
of inertia yields

NHA/Ac = −Ixz θ̇1ax − Iyz θ̇1ay − Izz θ̇1az
NHB/Bc = −Ixz(θ̇1 + θ̇2)bx − Iyz(θ̇1 + θ̇2)by
−Izz(θ̇1 + θ̇2)bz

(29)

The angular momentum of all mass points of the acrobot
can be expressed as:

MAc = (θ̇21Ixz − θ̈1Iyz)ay − (θ̇21Iyz + θ̈1Ixz)ax − θ̈1Izzaz
MBc = ((θ̇1 + θ̇2)2Ixz − (θ̈1 + θ̈2)Iyz)by
−((θ̇1 + θ̇2)2Iyz + (θ̈1 + θ̈2)Ixz)bx − (θ̈1 + θ̈2)Izzbz

(30)
We get similar results for the reaction wheel pendulum:

NHA/Ac = −Ixz θ̇1ax − Iyz θ̇1ay − Izz θ̇1az
NHA/Bc = −Ixz(θ̇1 + θ̇2)ax − Iyz(θ̇1 + θ̇2)ay
−Izz(θ̇1 + θ̇2)az

(31)

If we implement the angular momentum principle for
reaction wheel pendulum, as the result we are given

MAc = (θ̇21Ixz − θ̈1Iyz)ay − (θ̇21Iyz + θ̈1Ixz)ax − θ̈1Izzaz
MBc = ((θ̇1 + θ̇2)2Ixz − (θ̈1 + θ̈2)Iyz)ay
−((θ̇1 + θ̇2)2Iyz + (θ̈1 + θ̈2)Ixz)ax − (θ̈1 + θ̈2)Izzaz

(32)

The resulting equations of motion are obtained by cal-
culating generalized active and inertia forces according
to (17) and (18), where Izz can be expressed as Ia(Ip)
or Ib(Iw) for mass points Ac or Bc respectively. Other
inertias are eliminated during the process of calculating
generalized forces, because az and bz are the rotating axes
perpendicular to plane and time invariant both inA andB.
The derived motion equations match the equations (24),
(25), and (26), which resulted from the method based on
Lagrange’s equations.

4. MATLAB IMPLEMENTATION

In this section, an application with graphical user interface
called Modeling Selected Underactuated Systems, which
generates the motion equations for a selected system and
then displays them in a user-friendly manner, is presented.
We used MATLAB and its Symbolic Math Toolbox to
implement the step-by-step process used by each modeling
method described in previous sections.

The application features a menu in the top left corner
where the user can choose a system whose equations of
motion are required (the three systems described in this
paper are available to choose from so far). In addition, the
method (Lagrange’s/Kane’s) is selected by which the equa-
tions need to be derived. When the user presses the Derive
EoM button, the interface behavior is triggered by calling
either the Lagrange method.m or the Kane method.m
function according to the user’s choice. After executing
the selected function, the resulting equations of motion of
the system are displayed. On the right, the schematic of
the system is depicted for better understanding.

Since both methods produce the same equations of motion,
we also added steps to track the difference in the procedure
of obtaining them. In the case of Lagrange method, we
chose x and y-coordinates of the system rx and ry, and
linear velocities vx and vy, from which the kinetic Ek and
potential Ep energy of the whole system can be calculated.
On the other hand, if the user selects Kane’s method,
the generated result includes the positions r, angular w
and linear v velocities, from which accelerations alpha,
a and finally moments Ma, Mb are obtained. As it can
be seen from Figure 2, the final equations of motion of
the presented system (acrobot) are equivalent for both
methods and they are also identical to (25), as derived
in Section 2.

5. CONCLUSION

The aim of this paper was to analyze two methods of math-
ematical modeling of mechanical systems – Lagrange’s and
Kane’s method – and to apply them to selected underac-
tuated benchmarks, all based on the inverted pendulum.
Due to the need to compensate for a missing actuator, an
accurate mathematical model is necessary for any control
algorithm design involving an underactuated system.
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Fig. 2. Derivation of motion equations via Lagrange’s and Kane’s method, respectively

The conclusion of this analysis is that while the resulting
equations are the same for these basic benchmarks, Kane’s
method is less laborious, which could prove especially
useful for complex systems, such as multi-body systems
constituting a spatial configuration with a higher number
of degrees of freedom. We also see the advantage of the
Kane’s method in greater systematicity, better represen-
tation of the system’s physical nature and computationally
undemanding steps. In a majority of cases, computations
include dot or cross product, while the Lagrange method
requires mostly partial derivations or time derivations -
therefore, even in terms of computational load, Kane’s
method is less demanding.

For all the reasons mentioned above, we consider Kane’s
method to be a more appropriate alternative to be used
in mathematical model derivation for advanced systems.
Therefore, we plan to use it in our upcoming research
by applying it to spatial systems such as the rotary
inverted pendulum and the three-dimensional overhead
crane, followed by systems consisting of multiple bodies
with a greater number of degrees of freedom, such as
robotic arms or the mechatronic cube composed of three
reaction wheels, balancing on the edge or the corner.
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