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Abstract: Nowadays, epidemic models provide an appropriate tool to describe the propagation
of biological viruses in human or animal populations, rumors and misinformation in social
networks, and malware in both computer and ad hoc networks. It is common that there are
multiple types of malware infecting a network of computing devices, and different messages
can spread over the social network. Information spreading and virus propagation are interde-
pendent processes. To capture their independencies, we integrate two epidemic models into one
holistic framework, known as the modified Susceptible-Warned-Infected-Recovered-Susceptible
(SWIRS) model. The first epidemic model describes the information spreading regarding the risk
of malware attacks and possible preventive procedures. The second one describes the propagation
of multiple viruses over the network of devices. To minimize the impact of the virus spreading
and improve the protection of the networks, we consider an optimal control problem with two
types of control strategies: information spreading among healthy nodes and the treatment of
infected nodes. We obtain the structure of optimal control strategies and study the condition of
epidemic outbreaks. The main results are extended to the case of the network of two connected
clusters. Numerical examples are used to corroborate the theoretical findings.
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1. INTRODUCTION

Recent advances in information technologies have wit-
nessed an exponential growth in the number of devices
connected to the Internet and the rapid expansion of the
use of social networks. The proliferation of devices creates
opportunities to spread information more conveniently.
Still, it has also created a large attack surface for the
malware to exploit existing vulnerabilities of the devices
and spread malicious codes over the Internet. The channels
of malware spreading nowadays are not just limited to
computer networks but also include mobile networks and
online social networks. Moreover, the wide applications
of networks generate an increasing amount of security
threats. Computer virus or malware spread and attack
a large number of nodes as the network connectivity
increases. It can disrupt computer functionalities, collect
sensitive, confidential information, and gain illegal access
to private computer networks at a much larger scale.
Therefore, it is critical to design preventive and effective
treatment strategies.
The control of malware spreading can be considered as
an optimal control problem that defines a trade-off solu-
tion between the cost of fast and periodic development of
patches and the value of the recovery of the devices. At the

same time, information propagation of the vulnerability
of the computing devices and personal accounts in social
networks, as well as the knowledge of the effective protec-
tion measures, can help raise the awareness of the security
threats and their solutions to reduce the number of in-
fected devices. Generally, multiple types of viruses co-exist
at the same time. Hence, we model the malware spread-
ing as Susceptible-Infected-Recovered-Susceptible (SIRS)
dynamics in which the population of devices is grouped
into several subpopulations, i.e., the susceptible (S), the
infected (I) and recovered (R). In addition, a group of
infected nodes is also divided into several subgroups. The
SIRS dynamics describe the evolution of the population
size that can be controlled using special patching and
recovery. Spreading of information is also described by
the modified SIR model, which includes susceptible (S),
warned (W), and recovered (R) nodes. Here, warned nodes
are informed of the necessity of protection of their accounts
and devices from their neighbors.
The goal of the work is to combine the two epidemic
processes in one model. One epidemic process describes
the dissemination of the information, and the other
one is the spreading of viruses. We consider a gener-
alized Susceptible-Warned-Infected-Recovered-Susceptible
(SWIRS) model, which extends the model for information
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spreading by incorporating the SIRS model that describes
the propagation of two types of malware. In the paper,
we formulate a controlled SWIR and SWIRS model and
show the structure of the optimal policies of spreading
information about virus protection and optimal treatment.
Moreover, we carry out a series of numerical simulations
to corroborate the results.
Recent literature has seen a surge of interest in using
optimal control and stability equilibrium analysis to study
malware protection in computer networks, social networks,
and ad-hoc networks (See Fedyanin (2011); Wu (2013);
Sharma (2015); Zuzek (2015); Taynitskiy (2015, 2017);
Farooq and Zhu (2019); Moon (2019); Huang and Zhu
(2019a)). Moreover, the clusters of the population play an
important role. Several waves of the viruses propagation
might occur due to sequential propagation information
from one cluster to another, even when a single cluster
model might predict just a monotone spreading.
In this paper, we establish a control-theoretic model to
design optimal quarantining and immunization strategies
to mitigate the impact of epidemics on our society. The
recent spreading of ransomware (e.g., CryptoLocker, Cryp-
toDefense, or CryptoWall) has spread using spam emails
to extort money from home users and businesses alike by
locking files on a PC or network storage (See Luo (2009);
Newman (2016)). Mean-field dynamical systems are used
to model the underlying evolution of the host subpopula-
tions. In Wang (2017), many variants of optimal control
models of SIR-epidemics are investigated in the context
of medical vaccination and health promotion campaigns.
Previous studies have shown the application of epidemic
frameworks to the models of network protection as in
Mieghem (2009); Sahneh (2013); Vespignani (2015);
Farooq and Zhu (2019); Taynitskiy (2017, 2018); Altman
(2019). Many different research works have provided vari-
ants of epidemic models in computer security. Spreading
information on social networks has been studied in Moore
(2002).
The rest of the paper is organized as follows. Section 2
presents the controlled SWIRS mathematical model. In
Section 2.1, we formulate the SWIRS model. Section 2.2
describes the optimal control problem and Section 2.3
presents the structure of optimal protection and informa-
tion spreading policies. In Section 3, theoretical results are
applied to the case of a clusterized population. Section
4 presents a series of numerical experiments. Section 5
concludes the paper.

2. DETERMINISTIC POPULATION MODEL

2.1 Model formulation

In this Section, we formulate a two-level modified SIRS
model (Susceptible-Infected-Recovered-Susceptible) with
two different types of viruses circulated in a population
of size N . This auxiliary partitioning allows capturing two
processes that occur in both computer and social networks.
The first process is the propagation of information about
harmful malware attacks and the protection of personal
data, documents, projects, etc. We consider this spreading
process as the first level hierarchy in the Susceptible-
Warned-Infected-Recovered-Susceptible (SWIRS) model.

The second process, which corresponds to the physical
propagation of antivirus software, is considered as the
second level of the model, which is a modified Susceptible-
Infected-Recovered-Susceptible (SIRS) model with two
competitive viruses. Thereby, in contrast to classical SIRS
models (Capasso (1993); Allen (2008)), where popula-
tions are divided into three groups: Susceptible (S), In-
fected (I), and Recovered (R), here the Infected subgroup
is divided into two subgroups: a subgroup of nodes infected
by the first type of virus V1 and the subgroup infected by
the second type V2. Spreading information on the first level
introduces a new group Warned (W ) into consideration.
This group consists of the nodes, which have received infor-
mation about the potential risks of virus attack/spreading
and methods of protection.

Fig. 1. The scheme of transitions between groups S, W ,
I1, I2, R.

We model the epidemic process as a system of nonlinear
differential equations. The total number of nodes in the
network during the entire process remains constant and
equal to nS +nW +nV1

+nV2
+nR = N . Let S(t) = nS(t)

N ,
W (t) = nW (t)

N , I1(t) =
nV1

(t)

N , I2(t) =
nV2

(t)

N , R(t) = nR(t)
N

as a fraction of the Susceptible, the Warned, the Infected,
and the Recovered nodes, respectively. At the beginning of
the epidemic, at time t = 0, the majority of the individuals
are in the Susceptible state, and a small fraction of
individuals are infected by different types of virus. Hence,
initial states are S(0) = S0 > 0, W (0) = W 0 ≥ 0,
I1(0) = I01 > 0, I2(0) = I02 > 0 and R(0) = R0 = 1 −
S0 −W 0 − I01 − I02 .

Behavior of the system is described by a system of nonlin-
ear differential equations:
dS/dt = −kWS − βS

1 SI1 − βS
2 SI2 + γR− u3S;

dW/dt = kWS − βW
1 WI1 − βW

2 WI2 + u3S − σ3W ;
dI1/dt = βS

1 SI1 + βW
1 WI1 − εI1I2 − σ1I1 − u1I1;

dI2/dt = βS
2 SI2 + βW

2 WI2 + εI1I2 − σ2I2 − u2I2;
dR/dt = σ1I1 + u1I1 + σ2I2 + u2I2 + σ3W − γR,

(1)

where βS
i are infection rates for susceptible nodes for virus

Vi, i = 1, 2 and βW
i are infection rates for the warned

nodes. On the second level of the epidemic process, we
can view a self-recovery rate σ1 for virus V1 or σ2 for virus
V2 as the probability that infected nodes from subgroups
I1 or I2 are recovered from the infection without incurring
any costs on our system. On the first level, nodes that are
informed of virus attacks have a recovery rate σ3. Without
loss of generality, we can say that the second virus V2 is
stronger than the first V1, and with the probability ε virus
V2 can supersede the first virus in the node infected by the
first virus.
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The application of antivirus patches reduces the number of
infected nodes. It can be interpreted as control parameters
by u1(t) and u2(t) in (1), where ui are the fractions of
the infected under treatment, u1(t), u2(t) ∈ [0, 1], for all t.
The warned nodes can avoid an epidemic by taking spe-
cial quarantine measures. Control parameter u3(t) is the
fraction of susceptible nodes that become warned of the
virus spreading at time t.

2.2 Optimal Control of Epidemics

Let the objective function J be the sum of two functionals,
which correspond to the two levels of the model. On the
first level, functional J1 describes the costs of the quaran-
tine measures, i.e., the costs of disseminating information
about the epidemics to susceptible nodes. On the second
level, functional J2 defines the cost of antivirus treatment
and includes the costs incurred by infected nodes, costs
of spreading antivirus, and the benefit from the recovered
nodes.
At any given t, f1(I1(t)), f2(I2(t)) are infection costs;
L(W (t)) is the utility of the warned nodes. Function
g(R(t)) defines the benefit rate for recovered nodes; func-
tions h1(u1(t)), h2(u2(t)) are costs for antivirus treatments
and h3(u3(t)) is cost of information spreading. Here func-
tions fi(Ii) are non-decreasing and twice-differentiable,
convex functions, fi(0) = 0, fi(Ii) > 0 for Ii > 0, i = 1, 2,
g(R) and L(W ) are non-decreasing and differentiable func-
tions, and hi(ui(t)) is twice-differentiable and increasing
function in ui(t) such as hi(0) = 0, hi(x) > 0, i = 1, 2, 3,
when ui > 0. Also costs of information spreading are
lower than costs for antivirus treatments h3(·) < h1(·)
and h3(·) < h2(·).
The aggregated system costs over the time interval [0, T ]
are defined as J = J1 + J2, where

J1 =

∫ T

0

h3(u3(t))− L(W (t))dt,

J2 =

∫ T

0

2∑
q=1

(
fq(Iq(t)) + hq(Iq(t))

)
− g(R(t)).

(2)

and the optimal control problem is to minimize these costs,
i.e., min{u1,u2,u3} J.

By using Pontryagin’s maximum principle (Pontrya-
gin (1962)), we construct the optimal control u(t) =
(u1(t), u2(t), u3(t)) of the problem described above in Sec-
tion 2. To simplify the presentation, we use short-hand
notations S, I1, u1, etc. in place of S(t), I1(t), u1(t), etc.
Define the associated Hamiltonian H and the adjoint func-
tions λS(t), λW (t), λI1(t), λI2(t), λR(t) as follows:
H = g(R)− f1(I1)− f2(I2) + L(W ) + (λW − λS)kWS+

(λI1 − λS)β
S
1 SI1 + (λI2 − λS)β

S
2 SI2+

(λI1 − λW )βW
1 WI1 + (λI2 − λW )βW

2 WI2+
(λI2 − λI1)εI1I2 + (λR − λI1)σ1I1+
(λR − λI2)σ2I2 + (λS − λR)γR+
(−h1(u1) + φ1u1) + (−h2(u2) + φ2u2)+
(−h3(u3) + φ3u3),

(3)
where functions φi(t) are defined as follows:

φq(t) = (λR(t)− λIq (t))Iq(t), q ∈ {1, 2},
φ3(t) = (λW (t)− λS(t))S(t).

(4)

The adjoint system is defined as follows:
λ̇S(t) = (λS − λW )kW + (λS − λI1)β

S
1 I1+

(λS − λI2)β
S
2 I2 + (λS − λW )u3;

λ̇W (t) = −L′(W ) + (λS − λW )kS + (λW − λI1)β
W
1 I1+

(λW − λI2)β
W
2 I2 + (λW − λR)σ3;

λ̇I1(t) = f ′1(I1) + (λS − λI1)β
S
1 S + (λW − λI1)β

W
1 W+

(λI1 − λI2)εI2 + (λI1 − λR)(σ1 + u1);

λ̇I2(t) = f ′2(I2) + (λS − λI2)β
S
2 S + (λW − λI2)β

W
2 W+

(λI1 − λI2)εI1 + (λI2 − λR)(σ2 + u2);

λ̇R(t) = −g′(R) + (λR − λS)γ,
(5)

with the transversality conditions given by
λS(T ) = λW (T ) = λI1(T ) = λI2(T ) = λR(T ) = 0. (6)

According to Pontryagin’s maximum principle, there exist
continuous and piece-wise continuously differentiable co-
state functions λr(t), r ∈ {S,W, I1, I2, R} that satisfy (5)
and (6) for t ∈ [0, T ] together with continuous functions
u∗1(t), u∗2(t) and u∗3(t):

(u∗1, u
∗
2, u

∗
3) ∈

arg max
u1,u2,u3∈[0,1]

H(λ, S,W, I1, I2, R, u1, u2, u3). (7)

2.3 Structure of Optimal Control

In this subsection, we construct the structure of the
optimal control u∗(t) = (u∗1(t), u

∗
2(t), u

∗
3(t)).

Proposition 1. The following statements hold for the
optimal control problem described in Section 2:

• When hi(·) are concave functions, then there exists
t0 ∈ [0, T ] such that for any i = 1, 2, 3 :

u∗i (t) =

{
1, for 0 ≤ t ≤ t0;
0, for t0 < t ≤ T.

• When hi(·) are strictly convex functions, then there
exist the time t0, t1, 0 < t0 < t1 < T such that for
any i = 1, 2, 3 (α(t) ∈ (0, 1)):

u∗i (t) =

{
1, 0 ≤ t ≤ t0;
α(t), t0 < t ≤ t1;
0, t1 < t ≤ T.

To prove Proposition 1, we consider the following auxiliary
lemma.
Lemma 1. Functions φi, i = 1, 3 are decreasing func-
tions of t for t ∈ [0, T ].

We can divide this maximization problem into three sub-
problems and find optimal control u∗1(t), u∗2(t) and u∗3(t),
separately:

max
u1

[−h1(u1) + φ1u1] + max
u2

[−h2(u2) + φ2u2]+

max
u3

[−h3(u3) + φ3u3].
(8)

We obtain the following derivatives:
∂H

∂ui
= −ḣi(ui) + ψi = 0, i = 1, 3. (9)

As hi(ui) are increasing functions and Iq ≥ 0 and S ≥
0, then the Hamiltonian reaches its maximum if ψi =
ḣi(ui) ≥ 0, i = 1, 2, 3. We can find such ui if and only
if the following conditions are satisfied: λR(t)−λI1(t) ≥ 0,
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λR(t) − λI2(t) ≥ 0 and λW (t) − λS(t) ≥ 0. To complete
the proof of proposition, we consider the auxiliary lemma.
Lemma 2. For all t ∈ [0, T ], we have λR(t)− λI1(t) ≥ 0,
λR(t)− λI2(t) ≥ 0 and λW (t)− λS(t) ≥ 0.

The proof of Lemma 2 consists of two parts: firstly, we
consider the case when t = T and show that derivatives of
the functions λR(t) − λI1(t), λR(t) − λI2(t) and λW (t) −
λS(t) are non-positive; secondly, we prove by contradiction
that on the whole interval [0, T ] these functions are non-
negative. The complete proofs of Proposition 1, Lemma
1 and Lemma 2 follow the same technique as in Altman
(2011); Taynitskiy (2018).

Functions hi(·) are concave
Let hi(·) be a concave functions (h′′i (·) < 0), then ac-
cording to (3) the Hamiltonian is a convex function of
ui, i = 1, 3. There are two different options for ui ∈ [0, 1]
that maximimize the Hamiltonian. If −hi(0) + φi · 0 >
−hi(1)+φi ·1 or hi(1) > φi, then optimal control is ui = 0
(see Fig. 2 (left)); otherwise – ui = 1 (see Fig. 2 (right)).

Fig. 2. Hamiltonian if functions hi(·) are concave.

For i = 1, 3, the optimal control parameters ui(t) are
defined as follows:

u∗i (t) =

{
0, φi(t) < hi(1),
1, φi(t) ≥ hi(1).

(10)

Functions hi(·) are strictly convex
Let hi(·) be a strictly convex functions (h′′i (·) > 0), then
Hamiltonian is concave function. Consider the following
derivative:

∂

∂x
(−hi(x) + φix) |x=xi= 0, (11)

where x ∈ [0, 1], u∗i (t) = xi. There are three different types
of points at which the Hamiltonian reaches its maximum
(Fig. 3). To find them, we need to consider the derivatives
of the Hamiltonian at ui = 0 and ui = 1. If the derivatives
(11) at ui = 0 are non-increasing (−h′i(0) + φi ≤ 0), then
the value of the control that maximizes the Hamiltonian
is less than 0, and according to our restrictions (ui ∈
[0, 1]) optimal control will be equal to 0 (Fig. 3a). If the
derivatives at ui = 1 are increasing (−h′i(1) + φi > 0), it
means that the value of the control that maximizes the
Hamiltonian is greater than 1. Hence the optimal control
will be 1 (Fig. 3c); otherwise, we can find such value
u∗i ∈ (0, 1) (see Fig. 3b):

u∗i (t) =

 0, φi ≤ h′i(0), i = 1, 2, 3;
h′−1(φi), h′i(0) < φi ≤ h′i(1), i = 1, 2, 3.
1, h′i(1) < φi, i = 1, 2, 3.

(12)
Functions φi(t), h′i(t), u∗i (t) are continuous at all t ∈ [0, T ].
In this case hi is strictly convex and h′i is strictly increasing

Fig. 3. Hamiltonian when functions hi(·) are convex.
functions, so h′(0) < h′(1). Thus there exist points t0 and
t1 (0 < t0 < t1 < T ) so that conditions (12) are satisfied,
and according to φi are decreasing functions.

3. SWIRS MODEL ON META-POPULATION
NETWORK

The clustering of the nodes in the network can be con-
sidered as a natural extension of the SWIRS model from
Section 2. We assume that all nodes inside the one cluster
follow the same behavioral rules. However, the infection
can be transferred among clusters. For this reason, we
consider a case of a network with N nodes, which can be
divided into several clusters. Here, the matrix A = {aτµ}
is the adjacency matrix of the first level of SWIRS model,
where information about possible consequences of malware
attacks is spreading, and B = {bτµ} is the adjacency
matrix of the second level, where special antivirus patches
are applied. Denote as kaτµ the probability that a node
from cluster τ of size Nτ and a node from a cluster µ of size
Nµ change their states from S to W at every time instant.
The probability that a susceptible node from cluster τ will
be infected due to the contact with a node from a cluster µ,
infected by virus Vl, l ∈ {1, 2} is equal to βS

Vl
bτµ. A warned

node from cluster τ will be infected by virus Vl, l = {1, 2}
through the contact with the node from a cluster µ with
probability βW

Vl
bτµ.

Vector Xj(t) = (Sj(t),Wj(t), I1j(t), I2j(t), Rj(t)) defines
the proportions distribution of being in each of the states
for the cluster j = 1, . . . ,M at t. For any t ∈ [0, T ],
the sum of the probabilities for any node j is equal to
Sj(t) +Wj(t) + I1j(t) + I2j(t) + Rj(t) = 1. All other pa-
rameters in the system remain the same as in Section 3.1.
This simultaneous process of information spreading and
patching is described by a system of nonlinear differential
equations:
dSj(t)/dt = −kSj(t)

∑
l

ajlWl(t)− βS
1 Sj(t)

∑
l

bjlI1l(t)−

βS
2 Sj(t)

∑
l

bjlI2l(t) + γRj(t)− u3j(t)Sj(t);

dWj(t)/dt = kSj(t)
∑

l

ajlWl(t)− βW
1 Wj(t)

∑
l

bjlI1l(t)−

βW
2 Sj(t)

∑
l

bjlI2l(t) + u3j(t)Sj(t)− σ3Wj(t);

dI1j(t)/dt = βS
1 Sj(t)

∑
l

bjlI1l(t) + βW
1 Wj(t)

∑
l

bjlI1l(t)−

εI1j(t)
∑

l

bjlI2l(t)− σ1I1j(t)− u1j(t)I1j(t);

dI2j(t)/dt = βS
2 Sj(t)

∑
l

bjlI2l(t) + βW
2 Wj(t)

∑
l

bjlI2l(t)+

εI1j(t)
∑

l

bjlI2l(t)− σ2I2j(t)− u2j(t)I2j(t);

(13)
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dRj(t)/dt = σ1I1j(t) + u1j(t)I1j(t) + σ2I2j(t)+

u2j(t)I2j(t) + σ3Wj(t)− γRj(t),

where
∑

l defines the sum from 1 to M . Initial states are
Sj(0) > 0, Wj(0) ≥ 0, I1j(0) > 0, I2j(0) > 0, Rj(0) = 1−
Sj(0)−Wj(0)− I1j(0)− I2j(0) for all clusters j.
The aggregated system costs on the time interval [0, T ] are
defined as J = J1 + J2, where

J1 =

∫ T

0

h3

(∑
j

(u3j(t))

)
− L

(∑
j

Wj(t)

)
dt,

J2 =

∫ T

0

2∑
q=1

(
fq
(∑

j

(Iqj(t))
)
+ hq

(∑
j

(Iqj(t))
))

−

g(
∑
j

Rj(t))dt.

(14)

and the optimal control problem is to minimize these
costs, i.e., min{u1j ,u2j ,u3j} J.

We focus on a case when both malware can cause extreme
damages, and there is a need to lock down the entire sys-
tem to prevent future destruction. To avoid this lockdown
or other expensive security activity, we have to construct
a constant control such that any malware will be instantly
eliminated, even though the time when the viruses attack
the system cannot be precisely identified. We assume that

max (h1(u1j), h2, (u2j), h3(u3j), L(Wj), g(Rj)) <<

min (f1(I1j), f2(I2j))) ,

∀j, u1j , u2j , u3j ,Wj , Rj , I1j , I2j > 0.

We have to define the condition for u which remains system
in disease free state with minimum costs. We assume that
h1(u1j) = h2(u2j) = h3(u3j) = u. The initial state of the
system is the equilibrium point E2 from the Section 3.2.
(13) can be reformulated as:

βS
q S0

j

∑
l

bjlI
0
ql + βW

q W 0
j

∑
l

bjlI
0
ql + (−1)qεI01j

∑
l

bjlI
0
ql−

σqI
0
qj − uqj(0)I

0
qj ≤ 0, q ∈ {1, 2}.

(15)

It is assumed that viruses can infect only one node at one
time moment, then the system can be transformed in the
following way:

βS
q S0

j bjm + βW
q W 0

j bjm − σq − uqj(t) ≤ 0, q = 1, 2, (16)

where m is a node which was infected by a virus.
Inequalities (16) can be rewritten as

uqj(0) ≥ (βS
q S0

j + βW
q W 0

j )bjm − σ1, q = 1, 2. (17)

We find control strategies that maintain the disease
free state in the the worst case of epidemics. This value
provides an estimation on system costs when hj = uj(t) on
the time interval [0, T ]. Summing the control parameters
gives: ∑

j

(u1j(0) + u2j(0)) ≥(
(βS

1 + βS
2 )
∑
j

S0
j + (βW

1 + βW
2 )
∑
j

W 0
j

)
bjm−

M(σ1 + σ2) = U,

(18)

where uij(t) is the control of a type i ∈ {1, 2, 3} in a cluster
µ at time t. As a result, we obtain

J → T ·
(
min(h1(U), h2(U))− L(W (0))− g(R(0))

)
. (19)

4. NUMERICAL EXPERIMENTS

In this section, we present numerical case studies to corrob-
orate our results. For the experiments, we use the following
costs functions: infection costs – f1(I1(t)) = 30I1(t) and
f2(I2(t)) = 40I2(t); treatment costs – h1(u1(t)) = 20u21(t),
h2(u2(t)) = 25u21(t); vaccination cost – h3(u3(t)) =
10u23(t); and utility functions are L(W (t)) = 2W (t) and
g(R(t)) = 5R(t). The time interval in the first two exper-
iments is equal to [0,20].

Fig. 4. Experiment I: Behavior of the system in the uncon-
trolled case (left), the controlled case (middle) and the
structure of the optimal control(right). Parameters
are: k = 0.3, βS

1 = 0.35, βS
2 = 0.45, βW

1 = 0.25,
βW
2 = 0.35, σ1 = 0.05, σ2 = 0.03, σ3 = 0.01, γ = 0.2,
ε = 0.5).

Experiment I shows the behavior of the SWIRS-model
in two different cases: controlled and uncontrolled ones
(see Fig. 4). In the uncontrolled cases, at T = 20 the
majority of nodes are infected by virus V2 (I2(20) =
0.77). The values of the two cost functionals are equal
to J1 = −2.86 and J2 = 10.41. After the treatment
and information dissemination about possible epidemic
outbreaks, all infected nodes are cured. Here, all nodes
are in the disease-free state (S(20) = 0.29, W (20) = 0.23,
R(20) = 0.48) and the values of the two cost functionals
are equal to J1 = −11.12 and J2 = 0.58, respectively.
Comparing the aggregated costs in the uncontrolled case
(Juncntl = 7.55) and the controlled case (Jcntl = −10.54),
we can see that information spreading and the applied
treatment are beneficial.

Fig. 5. Experiment II: Behavior of the system in two
different clusters of the population. Parameters are:
k = 0.15, βS

1 = 0.25, βS
2 = 0.3, βW

1 = 0.2, βW
2 = 0.25,

σ1 = 0.3, σ2 = 0.4, σ3 = 0.3, γ = 0.3, ε = 0.5).

Experiment II presents the SWIRS model on a meta-
population network. The behavior of the system (13) in
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two different clusters is represented in Fig. 5. Matrices
A,B indicate the strong connections between these clus-
ters, hence the epidemic which has been started in the first
cluster continue in the second one:

A = B =

(
1 0
1 1

)
. (20)

Initial parameters are X1(0) = (0.4, 0.4, 0.1, 0.1, 0) and
X2(0) = (1, 0, 0, 0, 0). Final states are X1(30) = (0.97, 0, 0,
0, 0.03) and X2(30) = (0.9, 0, 0.02, 0.02, 0.06).

5. CONCLUSIONS

This paper presents a modified Susceptible-Warned-
Infected-Recovered-Susceptible (SWIRS) model of simul-
taneous spreading of the virus protection information and
the malware over a large population of nodes. We have
obtained the structure of the optimal control as well as
the properties of feasible controls for a special class of cost
functions. Numerical examples have been used to corrob-
orate the results. We would further explore the extension
of the SWIRS model to an epidemic model over complex
networks with different topologies and design the optimal
control strategies in the meta-population SWIRS model.
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