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1. INTRODUCTION

1.1 Problem formulation

We consider semi-linear 2× 2 hyperbolic systems on the form
yt(x, t) + azx(x, t) =φT1 (y(x, t), x)θ1 (1a)

zt(x, t) + byx(x, t) =φT2 (z(x, t), x)θ2. (1b)
where a, b ∈ R and φ1 : R × [0, 1]→ Rp, φ2 : R × [0, 1]→ Rq

are known and θ1 ∈ Rp, θ2 ∈ Rq are unknown constants with
p, q ∈ N. The distributed state y : [0, 1]× R+ → R is assumed
measured for all x ∈ [0, 1] while z : [0, 1]×R+ → R is assumed
unknown for x ∈ (0, 1), but we assume that both z(0, t) and
z(1, t) are measured. In addition, we assume the following.
Assumption 1. System (3) with appropriate boundary and initial
conditions has a unique bounded solution (y(·, t), z(·, t)) ∈
L2([0, 1]) for all t ≥ 0.
Assumption 2. ||y|| ∈ L∞ ⇒ ||φ1(y, ·)|| ∈ L∞, ||z|| ∈ L∞ ⇒
||φ2(z, ·)|| ∈ L∞, and φ2 satisfies the sector condition

(φT2 (z1, x)− φT2 (z2, x))θ2(z1 − z2) ≤ 0. (2)
for any z1, z2 ∈ L2([0, 1])

The goal is to estimate the unknown state z(x) as well as the
unknown parameters θ1, θ2.

The method presented in this paper can be extended to general
hyperbolic systems with (y(x), z(x)) ∈ Rn+m for m,n ∈ N
and any coefficient matrix having distinct real eigenvalues.
However to simplify the presentation we let m = n = 1 and
only require ab > 0, which implies that (1) is strictly hyperbolic.

1.2 Motivation and previous work

The system (1) can be used to model single-phase fluid flow
systems (among others, see Bastin and Coron (2016)) and is
? Economic support from The Research Council of Norway and Equinor ASA
through project no. 255348/E30 Sensors and models for improved kick/loss
detection in drilling (Semi-kidd) is gratefully acknowledged.

derived by considering the mass and momentum balances in an
open fluid system. In the following we will therefore refer to
(1a) as the mass balance and (1b) as the momentum balance. An
example is oil & gas drilling where a drilling fluid called mud is
circulated down the hollow drill-string, through the drilling bit
down-hole and up in the annulus surrounding the drill-string all
the way to the top of the well. The fluid is used to carry cuttings
to the top and provide pressure control in the well. Inadequate
pressure control might lead to uncontrolled flows of fluid to or
from the surrounding oil or gas reservoir. A reservoir pressure
exceeding the well pressure leading to a flow of oil or gas into
the well, called a kick, might have severe consequences if the
reservoir fluids reach the surface. The opposite situation where
the well pressure exceeds the reservoir pressure by a sufficiently
high margin and the drilling fluid flows into the reservoir, which
is called a loss, is also undesirable as the integrity of the reservoir
might weaken, and the pressure drop caused by a loss might lead
to a subsequent kick.

Due to the long length of the well which can be up to 10 km, and
even though the sound of speed for a typical drilling fluid can
be as high as 1000 m s−1, the distributed effects caused by the
compressibility of the fluid is sometimes significant and should
not be neglected (Berg et al., 2019; Landet et al., 2013). In this
paper, we utilize the information in the fast traveling pressure
waves to estimate unknown states and parameters in a general
PDE model. We assume that part of the sate vector is known
and design an adaptive observer to estimate the remaining state.
The method developed in this paper is an extension of Holta
and Aamo (2019) where we only consider uncertainties in the
momentum balance of a 2 × 2 semi-linear hyperbolic system,
and not in the mass balance. The method in Holta and Aamo
(2019) is an extension to PDEs of the method developed for non-
linear ODEs in Stamnes et al. (2008, 2009) where stability of the
observer design is proved by assuming that the non-linearities
satisfy a sector condition similar to the condition proposed in
Arcak and Kokotovic (1999). Utilizing this special structure
avoids the use of canonical transformations (see Marino and
Tomei (1992)) which requires that the system is persistently
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excited (PE) (Marino and Tomei, 1995). For non-linearities that
satisfy Lipschitz conditions, another approach is to use high-
gain to dominate the non-linearities. See e.g. Besanon et al.
(2004) for ODEs and the recent result in Kitsos et al. (2018) for
hyperbolic PDEs.

In the drilling system, a kick or loss is by definition an
unexpected event caused by inadequate knowledge about system
states and properties. In particular, the reservoir pressure and
the flow rate at any single point in the well is often unknown.
However, using so-called wired-pipe technology where the
pressure inside the well is measured, and under a certain
excitation criterion, both flow rate and the properties of the
reservoir can be estimated . A local inflow of fluid from the
reservoir into the well will likely result in an increase in the local
frictional pressure drop, and a local loss of fluids from the well
into the reservoir will likely lead to a decrease in friction. So by
adapting the observer by estimating local frictional coefficients
we can both detect and locate kicks or losses. However, a local
increase in frictional momentum loss might also be caused by a
pack-off of cuttings, or a wash-out between the drill-string and
the annulus. To classify an event as a kick or loss we also need
to model in- or out-flow of mass from and to the reservoir and
acknowledge that parameters governing the mass balance are
dependent on the reservoir properties and therefore uncertain.
As the method in Holta and Aamo (2019) assumes that all
parameters in the mass balance are perfectly known, the method
cansnot be applied to distinguish between a in- or out-flow and
other incidents. However, in this paper we show that if additional
flow rate measurements at the top-side boundary are available, a
simple parametric model can be used to estimate uncertainties in
the mass balance, thus significantly increasing the applicability
of the method first proposed in Holta and Aamo (2019).
Remark 1. Strictly speaking, the system described above with
local inflows might require a model where the uncertain parame-
ters are spatially varying. That is,

yt(x) + azx(x) =ϕ1(y(x), x)ϑ1(x) (3a)
zt(x) + byx(x) =ϕ2(z(x), x)ϑ2(x) (3b)

for some uncertain functions ϑ1, ϑ2 : [0, 1] → R. However, in
most practical applications ϑ1, ϑ2 will be piece-wise constant
(for example due to a geological fault) and we can define

φi1(y(x), x) = χi(x)ϕ(y(x), x) (4)
where φi1 is an element in φ1 and χi(x) = 1 in some subset of
[0, 1] and zero otherwise,

θi = χiθ(xi) (5)
for any xi such that χi(xi) = 1, and similarly for φ2. However,
from a mathematical point-of-view the method can straight
forwardly be extended to handle spatially varying uncertainties
θ2(x). That being said, due to implementational concerns
regarding robustness and to keep the presentation comparable to
Holta and Aamo (2019) we keep the formulation in (1).

1.3 Notation

We avoid arguments in time and write e.g. y(x) for a variable
y : [0, 1]× R+ → R, where R+ denotes the set of non-negative
real numbers. For f : R+ → R, we use the spaces

f ∈ Lp ↔
(∫ ∞

0

|f(t)|pdt
) 1

p

<∞ (6)

for p ≥ 1 with the particular case f ∈ L∞ ↔ supt≥0 |f(t)| <
∞. A function u : [0, 1]→ R is said to be in L2([0, 1]) if

||u|| :=

√∫ 1

0

u2(x)dx <∞. (7)

The partial derivative of a function is denoted with a subscript,
for example ut(x, t) = ∂

∂tu(x, t). For a function of one variable,
the derivative is denoted using a prime, that is f ′(x) = d

dxf(x).
The dot notation is reserved for the derivative of functions of
time only; ḟ(t) = d

dtf(t).

An operator Ξ : L2(0, 1) → R is called Fréchet differentiable
at u ∈ L2([0, 1]) if there exists a bounded linear operator
DuΞ : L2([0, 1])→ R such that

lim
h→0

|Ξ[u+ h]− Ξ[u]−DuΞ[h]|
||h||

= 0 (8)

for h ∈ L2([0, 1]). If such a bounded linear operator exists, it is
unique and we call DuΞ the Fréchet derivative of Ξ at u.

2. OBSERVER DESIGN

Let ζ(x) = ly(x) + z(x) for some l such that λ := la > 0. We
have
ζt(x) + λζx(x) =(l2a− b)yx(x)

+ lφT1 (y(x), x)θ1 + φT2 (z(x), x)θ2 (9)
ζ(0) =ly(0) + z(0) (10)

To estimate the unknown state ζ, consider the observer

ζ̂t(x) + λζ̂x(x) =(l2a− b)yx(x)

+ lφT1 (y(x), x)θ̂1 + φT2 (ẑ(x), x)θ̂2 (11a)

ζ̂(0) =ζ(0) (11b)

where ẑ(x) = ζ̂(x) − ly(x) and θ̂1, θ̂2 are estimates of θ1, θ2.
The error dynamics ζ̃(x) = ζ(x)− ζ̂(x) then satisfies

ζ̃t(x) + λζ̃x(x) =lφT1 (y(x), x)θ̃1 + φT2 (ẑ(x), x)θ̃2

+ φ̃T2 (z(x), ẑ(x), x)θ2 (12a)

ζ̃(0) = 0 (12b)

where φ̃2(z(x), ẑ(x), x) := φ(z(x), x) − φ(ẑ(x), x) and θ̃i =

θi − θ̂i, i = 1, 2.

The adaptive law generating θ̂1 is derived in Section 2.1. Stability
of the error system (12), which is the main result (Proposition 2),
is proved in Section 2.2 under the assumption of an ideal
adaptive law for θ̂2 which at first glance cannot be implemented.
Finally, an implementable adaptive law for θ̂2 is designed in
Section 2.3 and shown to asymptotically converge to the ideal
adaptive law.

2.1 Estimating the uncertainty in the mass balance

We utilize both the distributed state measurements y(x), x ∈
[0, 1] and boundary measurements z(0), z(1) and design a
swapping-based parameter estimation scheme.

Let the operators Ψ, Ω and ∆ be defined as

Ψ[y] :=

∫ 1

0

y(x)dx (13a)

Ω[y] :=

∫ 1

0

φ1(y(x), x)dx (13b)

∆[z] :=− a(z(1)− z(0)) (13c)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7744



We have

Ψ̇[y] =
d

dt

∫ 1

0

y(x)dx =

∫ 1

0

yt(x)dx

− a
∫ 1

0

zx(x)dx+

∫ 1

0

φT1 (y(x), x)dxθ1

=∆[z] + ΩT [y]θ1. (14)
Consider the filters

ν̇ =− ςν + Ω[y] (15a)
ρ̇ =− ς(ρ−Ψ[y]) + ∆[z] (15b)

for some ς > 0 and let
Ψ̄ := ρ+ νT θ1. (16)

Then the error e := Ψ[y]− Ψ̄ satisfies

ė =∆[z] + ΩT [y]θ1

− (−ς(ρ−Ψ[y]) + ∆[z]− ςνT θ1 + ΩT [y]θ1) (17)
=− ςe (18)

showing that e ∈ L2 and Ψ̄→ Ψ[y] exponentially fast.
Lemma 1. For some Γ1 = ΓT1 � 0, let

˙̂
θ1 = Γ1ε1ν (19)

where ε1 := Ψ[y]− ρ− νθ̂1. Then,

(1) ε1, θ̂1,
˙̂
θ1 ∈ L∞.

(2) ε1,
˙̂
θ1 ∈ L2 .

(3) ΩT [y]θ̃1 ∈ L2 ∩ L∞.

If in addition Ω[y] satisfies the PE condition

α0I �
1

T

∫ t+T

t

Ω[y]Ω[y]T dτ � α1I, (20)

for some α0, α1, T > 0, then θ̃1 → 0 exponentially fast.

Proof. Since φ1 and therefore ν is bounded by assumption,
Property (1) and (2) follow from Ioannou and Sun (2012, Th.
4.3.2). For Property (3), we have ε1 = νθ̃1 + e, so that

ε̇1 =ν̇θ̃1 − ν ˙̂
θ1 + ė

=− cε1 + Ω[y]θ̃1 − ε1γ1ννT − ςe
=− ε1(c+ γ1νν

T ) + Ω[y]θ̃1 − ςe, (21)
so that

(Ω[y]θ̃1)2 ≤2ε̇21 + 2ε21(c+ γ1νν
T )2

≤2
d

dt
(ε1ε̇1)− 2ε1

d2ε1
dt2

+ 4ε21(c+ γ1νν
T )2

+ 4ς2e2 (22)
Therefore,∫ t

0

(Ω[y]θ̃1)2dτ ≤2

∫ t

0

d

dτ
(ε1ε̇1)dτ + 2ε̄1

∫ t

0

d2ε1
dτ2

dτ

+ 2(c+ γ1ν̄
2)2
∫ t

0

ε21dτ + 4ς2
∫ t

0

e2dτ

≤4ε̄1(ε̇1(t)− ε̇1(0)) + 2(c+ γ1ν̄
2)2
∫ t

0

ε21dτ

+4ς2
∫ t

0

e2dτ (23)

where ε̄1 = supt≥0 |ε1| and ν̄ = supt≥0 ||ν|| (the latter exists
by assumption). Letting t → ∞ on both sides of the above
inequality and using the fact that ε1, e ∈ L2 ∩L∞ and ε̇1 ∈ L∞

shows that the left hand side is bounded which concludes the
proof of Property (3). If Ω[y] is PE, it trivially follows that ν is
PE (Ioannou and Sun, 2012, Lemma 4.8.3 (ii)) and exponential
convergence of θ̂1 to θ1 follows again from Ioannou and Sun
(2012, Th. 4.3.2). �

2.2 Main result and stability proof

To study the stability of (12) consider the Lyapunov function
candidate

V0 =
1

2

∫ 1

0

W (x)ζ̃2(x)dx (24)

for some W (x) > 0 satisfying W ′(x) ≤ −cW (x) for some
c > 0, e.g. W (x) = e−cx. Differentiating (24) with respect to
time and inserting the dynamics (12a) yield

V̇0 =− λ
∫ 1

0

W (x)ζ̃(x)ζ̃x(x)dx

+

∫ 1

0

W (x)ζ̃(x)lφT1 (y(x), x)θ̃1dx (25)

+

∫ 1

0

W (x)ζ̃(x)φT2 (ẑ(x), x)θ̃2dx

+

∫ 1

0

W (x)ζ̃(x)φ̃T2 (z(x), ẑ(x), x)θ2dx. (26)

Using integration by parts, splitting the second term using
Young’s inequality and applying the sector condition in As-
sumption 2 to the last term, keeping in mind that ζ̃(x) = z̃(x),
yield

V̇0 ≤− (cλ− 1)V0 +
1

2

∫ 1

0

W (x)(lφT1 (y(x), x)θ̃1)2dx (27)

+

∫ 1

0

W (x)ζ̃(x)φT2 (ẑ(x), x)θ̃2dx. (28)

To deal with the parametric uncertainties we augment the
function (24) as follows.

V = V0 + a1V1 + V2. (29)
where

Vi =
1

2
θ̃Ti Γ−1i θ̃i (30)

for i = 1, 2, a1 > 0 and Γ2 = ΓT2 � 0. Differentiating with
respect to time and inserting (19) and (27) yield

V̇ ≤− (cλ− 1)V0 + θ̃T2 Γ−12

(
˙̂
θ∗2 −

˙̂
θ2

)
− θ̃T1 H1θ̃1 (31)

where
H1 :=a1(ννT )

− l2

2

∫ 1

0

W (x)φ1(y(x), x)φT1 (y(x), x)dx (32)

and
˙̂
θ∗2 := Γ2

∫ 1

0

W (x)φ2(ẑ(x), x)ζ̃(x)dx. (33)

We conclude the above discussion by stating the main result.
Proposition 2. Consider the state estimation error system (12)
with θ̂1 generated by the adaptive law in Lemma 1 and θ̂2
satisfying

˙̂
θ2 =

˙̂
θ∗2 (34)

with any initial estimates

θ̂2(0) = θ̂
∗
2(0). (35)
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Then, the state estimation error ||ζ̃|| is bounded. Moreover, if
PE condition (20) is satisfied, then

||ζ̃|| → 0. (36)

Proof. Selecting c such that c0 := cλ − 1 > 0 and inserting
(34) into (31) yield

V̇ ≤− c0V0 − θ̃T1 H1θ̃1. (37)
For any c2 > 0 and all

V0 ≥ c−10 (c2 − θ̃T1 H1θ̃1) (38)
we have V ≤ −c2V0. By (Khalil, 1996, Th 4.18), V and
consequently ||ζ̃||, θ̂1, θ̂2 are bounded. Furthermore, if the PE
condition (20) holds, then it can be shown that (Ioannou and
Sun, 2012, Sec. 4.8.3)∫ t+T

t

θ̃T1 (ννT )θ̃1dτ ≥ h1V1 ≥ 0 (39)

for the same T > 0 specifying (20) and some h1 > 0. Since φ1
is bounded by assumption, we can lower bound the second term
in (32) which together with (39) for sufficiently large a1 > 0
give the lower bound∫ t+T

t

θ̃T1 H1θ̃1dτ ≥
∫ t+T

t

(a1h1 − h2)V1dτ > 0. (40)

for some h2 > 0. Selecting a1 > h2h
−1
1 in (29) yields

V̇ ≤ −c0V0 (41)
so that

c0

∫ ∞
0

V0dτ ≤ V (0)− V (∞) (42)

which since the right hand side is bounded and V0 ≥ 0, implies
V0, ||ζ̃||2 ∈ L1. By (Liu and Krstic, 2001, Lemma 3.1) it then
follows that V0 → 0 and consequently (36). �

2.3 Estimating the uncertainty in the momentum balance

The ideal adaptive law θ̂∗2 defined by (33) is not implementable
as ζ̃ is a-priori unknown. Instead, we heuristically seek an
adaptive law resembling the non-implementable law in the sense

˙̂
θ2 → ˙̂

θ∗2 (43)
as t→∞. Simplifying the notation by defining

Φ[ẑ](x) := −
∫ 1

x

W (ξ)φ2(ẑ(ξ), ξ)dξ, (44)

we have
˙̂
θ∗2 = Γ2

∫ 1

0

Φ′[ẑ](x)ζ̃(x)dx. (45)

Utilizing that Φ[ẑ](1) = ζ̃(0) = 0 and using integration by
parts, we equivalently have

˙̃
θ∗2 = Γ2

∫ 1

0

Φ[ẑ](x)ζ̃x(x)dx. (46)

Proposition 3. Consider the signal σ̂ : R→Rq defined by

˙̂σ =

∫ 1

0

η[ẑ](x)
(
−byx + φT2 (ẑ(x), x)θ̂2

)
dx (47a)

σ̂(0) =θ̂∗2(0) (47b)
where

η[ẑ] = λ−1Γ2Φ[ẑ], (48)

the operator Ξ : L2([0, 1])→ Rq satisfying

DẑΞ[h] =

∫ 1

0

η[ẑ](x)h(x)dx (49a)

Ξ[ẑ(·, 0)] =0, (49b)
and let

θ̂2 = σ̂ − Ξ[ẑ]. (50)
If the PE condition (20) in Lemma 1 is satisfied and ||η[ẑ]|| ∈
L∞, then

˙̂
θ2 → ˙̂

θ∗2 (51)
exponentially fast.

Proof. Consider the auxiliary signal σ : R+ → Rq defined as
σ := θ2 + Ξ[ẑ]. (52)

It is evident that σ − σ̂ =: σ̃ = θ̃2 and therefore ˙̃σ =
˙̃
θ2. We

thus need to show that ˙̃σ → ˙̃
θ∗2 . Differentiating (52) with respect

to time yields

σ̇ =
d

dt
Ξ[ẑ] = DẑΞ[ẑt]. (53)

Inserting (49) gives

σ̇ =

∫ 1

0

η[ẑ](x)ẑt(x)dx

=

∫ 1

0

η[ẑ](x)
(
ζ̂t(x) + λzx(x)− lφT1 (y(x), x)θ1

)
dx.

(54)
Subtracting (47a) from (54) yields

˙̃
θ2 = ˙̃σ =

∫ 1

0

η[ẑ](x)
(
λz̃x(x)− lφT1 (y(x), x)θ̃1

)
dx (55)

which in view of (46) and (48) and the fact that ζ̃(x) = z̃(x), is
equivalent to

˙̃σ =
˙̃
θ∗2 −

∫ 1

0

η[ẑ](x)
(
lφT1 (y(x), x)θ̃1

)
dx. (56)

If and ||η[ẑ]|| ∈ L∞ and the PE condition (20) is satisfied,
||η[ẑ]||||lφT1 (y, ·)θ̃1|| → 0 and we obtain the desired result (51).
From (47b) and (49b) we have that (35) is satisfied. �

To implement the adaptive law (50) at any single time t1, we
need to evaluate Ξ at ẑ(·, t1). We proceed by computing the
incremental value Ξ[ẑ(·, t1)]− Ξ[ẑ(·, t0)] for any t1 > t0 > 0.
Let S(γ) = ẑ(·, t0) + γ [ẑ(·, t1)− ẑ(·, t0)]. Evaluating Ξ at
S(γ) and differentiating with respect to γ yield

d

dγ
Ξ[S(γ)] =DS(γ)Ξ[S′(γ)]

=DS(γ)Ξ[ẑ(·, t1)− ẑ(·, t0)]

=

∫ 1

0

η[S(γ)](x) (ẑ(x, t1)− ẑ(x, t0)) dx (57)

Integrating both sides from γ = 0 to γ = 1 and using
S(1) = ẑ(·, t1) and S(0) = ẑ(·, t0) yield

Ξ[ẑ(·, t1)] =

∫ 1

0

∫ 1

0

η[S(γ)](x) (ẑ(x, t1)− ẑ(x, t0)) dxdγ

+ Ξ[ẑ(·, t0)] (58)
Remark 2. Using the adaptive law suggested in Proposition 3,
the condition (34) in Proposition 2 is only satisfied asymptoti-
cally. Consequently, we have not formally established the bound-
edness and convergence properties of ||ζ̃|| and θ̃2. However,
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(a) State y(x, t). (b) State z(x, t).

Fig. 1. Case 1. System states.

the two intermediate results in Proposition 2 and 3 suggest an
adaptive observer for system (1) that can be tested in simulations
or with experimental data. In the next section, the observer is
tested in two case simulations.

3. SIMULATION

We simulate two cases. Case 1 where the PE condition (20) is
satisfied and Case 2 where it is not. The system (1), observer
(11), adaptive law (19), filter (47) and operator (58) are simulated
in MATLAB for 10 seconds. The PDEs are discretized using 100
spatial discretization points and solved using the method of lines
by first transforming the hyperbolic system (1) to a Riemann
invariant form. In both cases, the system parameters where

a =b = 4 (59a)

φT1 (y(x), x) =

{[
−5y(x) 0

]
, x < 0[

0 −5y(x)
]
, x ≥ 0

(59b)

φT2 (z(x), x) =

{[
−z(x) 0

]
, x < 0[

0 −z(x)
]
, x ≥ 0

θ1 = [2 4] (59c)

θ2 = [5 7] . (59d)
Observe that the chosen φ2 satisfies Assumption 2. For case 1,
we used the boundary conditions

z(0, t) = sin(
t

2
) (60a)

y(1, t) = sin(2t) (60b)
while for case 2, we used

z(0, t) =0 (61a)
y(1, t) = sin(2t). (61b)

Compatible initial conditions were selected as
y(x, 0) =y(1, 0) + 2(1− x) (62a)
z(x, 0) =2x+ z(0, 0). (62b)

Finally, the design parameters are
L =0.8 (63a)

θ̂1(0) =θ̂2(0) = 0 (63b)

Γ1 =Γ2 =

[
20 0
0 20

]
(63c)

W (x) =2− x. (63d)

For case 1, with states shown in Figure 1, the PE condition (20) is
satisfied and θ̃1 → 0 as can be seen in Figure 4. The conditions

of Proposition 3 is satisfied and for ˙̂
θ2 =

˙̂
θ∗2 it follows from

Proposition 2 that ||ζ̃|| → 0 which can be seen in Figures 2
and 3. The parameter estimates θ̂2 also converge to their true
value as can be seen in Figure 5.

For case 2, with states shown in Figure 6, the PE condition
(20) is not satisfied and θ̂1 converge to a constant θ̄1 6= θ1 as

Fig. 2. Case 1. State estimation error z̃(x, t).

Fig. 3. Case 1. State estimation error ||z̃||.

(a) θ̂1,1 vs. θ1,1. (b) θ̂1,2 vs. θ1,2.

Fig. 4. Case 1. Parameter estimates θ̂1 (red dotted) vs. true
parameters θ1 (solid black).

(a) θ̂2,1 vs. θ2,1. (b) θ̂2,2 vs. θ2,2.

Fig. 5. Case 1. Parameter estimates θ̂2 (red dotted) vs. true
parameters θ2 (solid black).

(a) State y(x, t). (b) State z(x, t).

Fig. 6. Case 2. System states.

can be seen in Figure 9. Still, as shown in Figures 7 and 8 the
estimation error ||ζ̃|| is bounded and converge to a set close

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7747



Fig. 7. Case 2. State estimation error z̃(x, t).

Fig. 8. Case 2. State estimation error ||z̃||.

(a) θ̂1,1 vs. θ1,1. (b) θ̂1,2 vs. θ1,2.

Fig. 9. Case 2. Parameter estimates θ̂1 (red dotted) vs. true
parameters θ1 (solid black).

(a) θ̂2,1 vs. θ2,1. (b) θ̂2,2 vs. θ2,2.

Fig. 10. Case 2. Parameter estimates θ̂2 (red dotted) vs. true
parameters θ2 (solid black).

to zero, as guaranteed by Proposition 2. Figure 10 shows that
parameter convergence is not achieved or at least is very slow.

4. CONCLUDING REMARKS

We have designed an adaptive observer estimating the distributed
state of a semi-linear 2× 2 hyperbolic system and uncertainties
appearing in both state equations by relying on partial distributed
state measurement and boundary measurements. The scheme
can be used to estimate the flow rate in a single-phase fluid
flow system where the in-/out-flow of mass and momentum
gain/loss are parametrically uncertain by relying on distributed
pressure measurements. With no mass in- or out-flux, any
uncertain local gain or loss of momentum can be estimated

using pressure measurements only. With mass in or out-flux,
we use boundary measurements of the flow rate in addition to
the pressure measurements to estimate net gain or loss of mass.
Remark that for any single point in time, only the aggregate
net in-/out-flow can be estimated. Situations with flow-loops,
that is inflow in one region and an outflow of equal size in
another region, is not detectable using boundary measurements
only. However, if the local inflow varies in a certain way and
is sufficiently distinct compared to other regions, it is possible
to also estimate local in- or out-flow phenomena, and not only
the aggregate net flow. These conditions are all covered by the
persistence of excitation criterion guaranteeing convergence of
the parametric uncertainties in the mass balance.
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