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Abstract: Motivated by vibration state estimation of a deep-sea construction vessel used to install
oil drilling equipment on the seafloor, this paper presents state observer design of a 4× 4 coupled
heterodirectional hyperbolic PDE-ODE system, characterized by spatially-varying coefficients and a
time-varying domain. The exponential stability of the observer error system is proved via Lyapunov
analysis. Effective estimation of lateral-longitudinal coupled vibration states of the deep-sea construction
vessel is verified in numerical simulation.
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1. INTRODUCTION

In deep-sea oil exploration, a deep-sea construction vessel (D-
CV) shown in Fig. 1 is an important device used to install
equipment such as a subsea manifold, a subsea pump station,
flowlines and so on, at the designated locations around the drill
center on the seafloor Stensgaard et al. (2010); Standing et al.
(2002). A dominant component in the DCV is a long cable
with time-varying length, of which the top is attached to a ship-
mounted crane and the bottom is attached to the equipment (re-
ferred to as payloads hereafter). Undesired vibration is usually
easy to be aroused in such a compliant cable system Wang el al.
(2018a), and a real-time vibration estimator of the distributed
vibrations in cable is helpful for designing boundary vibration
control strategies of DCV where the distributed vibration states
along cable are unmeasurable.

According to the dynamic modelling of DCV in Wang et al.
(2019a), two-dimensional vibrations of DCV can be described
by a coupled wave PDE model. Therefore, the vibration estima-
tor design of DCV requires developing state-observer design
of a class of wave PDE model. It is a good way to reduce
the order of PDEs by introducing Riemann transformations
to convert the plant to coupled transport PDEs Roman et al.
(2019); Wang el al. (2020). Observer design for such a cou-
pled transport PDE system can be found in Hu et al. (2016);
Anfinsen et al. (2017a,b); Deutscher (2017b); Deutscher et al.
(2019); Deutscher (2017a). However, the above works focus
on coupled transport PDEs on a constant domain while the PDE
model of DCV is on a time-varying domain because of the cable
of time-varying length. An observer for 2×2 coupled transport
PDEs on a time-varying domain was proposed in Wang el al.
(2018b) where only one-dimensional vibration is considered.
In this paper, we propose a state observer for a 4× 4 coupled
transport PDEs on a time-varying domain with application of
two-dimensional vibration estimation for DCV, where only a
two-direction accelerometer at the ship-mounted crane is used.

This paper is organized as follows. The concern plant is de-
scribed in Section 2. A state observer is designed in Section
3 and the exponential convergence to zero of observer errors

Fig. 1. Deep-sea Construction Vessel.

is proved in Section 4. In Section 5, the theoretical result is
applied in the specific model of the DCV and the performance
on vibration estimation of DCV is tested. In Section 6, the
conclusion is provided.

2. PROBLEM FORMULATION

The concern plant, i.e., a general form of the two-dimensional
vibrations of the deep-sea construction vessel (DCV) derived in
Section II.B in Wang et al. (2019a), is

wtt(x, t) = d1(x)wxx(x, t)+d2(x)wx(x, t)+d3(x)ux(x, t)
+d4(x)wt(x, t)+d5(x)ut(x, t), (1)

utt(x, t) = d6(x)uxx(x, t)+d7(x)wx(x, t)+d8(x)ux(x, t)
+d9(x)wt(x, t)+d10(x)ut(x, t), (2)
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wtt(0, t) = d11wt(0, t)+d12wx(0, t)+d13ut(0, t)
+d14ux(0, t), (3)

utt(0, t) = d15ut(0, t)+d16ux(0, t)+d17wt(0, t)
+d18wx(0, t), (4)

ux(l(t), t) = d19(l(t))U1(t), (5)
wx(l(t), t) = d20(l(t))U2(t), (6)

∀(x, t) ∈ [0, l(t)]× [0,∞). Wave PDEs w and u are coupled with
each other both in the domain and at the dynamic boundary,
which can physically describe longitudinal-lateral coupled vi-
brations. Control inputs U1(t),U2(t) designed here are related
to longitudinal and lateral control forces provided by the hy-
draulic motor and cylinder at the ship in practice. The assumed
measurements are ut(l(t), t),wt(l(t), t). Note that in practice,
the available measurements actually are acceleration signals
utt(l(t), t),wtt(l(t), t) obtained by accelerometers placed at the
crane, because measuring vibrational acceleration rather than
velocity/displacement is a more convenient way in vibrational
mechanical system. The velocity signals ut(l(t), t),wt(l(t), t)
can then be obtained by integrations of the measured acceler-
ation signals under known initial conditions.

System coefficients d12,d11,d13, d16,d17, d15,d18,d14 are arbi-
trary constants and d19(l(t)),d20(l(t)) are nonzero. The time-
varying domain, i.e., moving boundary l(t) and the spatially-
varying coefficients d1(x), d2(x), d3(x), d6(x), d7(x), d8(x),
d4(x), d5(x), d9(x), d10(x) are under the following assumptions:
Assumption 1. l(t) is bounded by 0 < l(t)≤ L, ∀t ≥ 0.
Assumption 2. l̇(t) is bounded by [M,M], where M satis-
fies M < min0≤x≤L{

√
d1(x),

√
d6(x)}, and M is arbitrary in

(−∞,M).
Assumption 3. The spatially-varying coefficients d1(x), d2(x),
d3(x), d4(x), d5(x), d6(x), d7(x), d8(x), d9(x), d10(x) are bound-
ed, ∀x ∈ [0,L].
Assumption 4. d1(x),d6(x)∈C1 are positive and d1(x) 6= d6(x),
∀x ∈ [0,L].
Remark 1. Assumptions 1-4 about the spatially-varying coeffi-
cients and the time-varying spatial domain of (1)-(6) are fully
satisfied in the application of the DCV, which can be easily
checked by the specific expressions of d1, . . . ,d20 (84)-(90) and
parameter values in Tab. 1 of the DCV in the simulation.

3. OBSERVER DESIGN

3.1 Reformulation of the plant (1)-(6)

The observer design would be conducted based on a equivalent
reformulated system where the PDE order is reduced by intro-
ducing Riemann transformations:

z(x, t) = wt(x, t)+
√

d1(x)wx(x, t), (7)

v(x, t) = wt(x, t)−
√

d1(x)wx(x, t), (8)

k(x, t) = ut(x, t)+
√

d6(x)ux(x, t), (9)

y(x, t) = ut(x, t)−
√

d6(x)ux(x, t). (10)
Defining

X(t) = [w(0, t),wt(0, t)], Y (t) = [u(0, t),ut(0, t)], (11)
and

p(x, t) = [y(x, t),v(x, t)]T , (12)

r(x, t) = [k(x, t),z(x, t)]T , (13)

W (t) = [X(t),Y (t)]T , (14)

(1)-(6) can be reformulated as
pt(x, t)+Q(x)px(x, t) = Ta(x)r(x, t)+Tb(x)p(x, t), (15)
rt(x, t)−Q(x)rx(x, t) = Ta(x)r(x, t)+Tb(x)p(x, t), (16)
p(0, t) =C3W (t)− r(0, t), (17)
Ẇ (t) = (Ā− B̄C3)W (t)+2B̄r(0, t), (18)
r(l(t), t) = R(l(t))U(t)+ p(l(t), t) (19)

where U(t) = [U1(t),U2(t)]T and

R(l(t)) = 2diag(
√

d6(l(t))d19(l(t)),
√

d1(l(t))d20(l(t))),

Q(x) = diag{Q1(x),Q2(x)}= diag{
√

d6(x),
√

d1(x)}.
Ā,C3, B̄ are

Ā =

[
A1 d13B1C2

d17B1C2 A2

]
,C3 = 2

[
0 C2

C2 0

]
, (20)

B̄ =
1
2


B1d14√

d6(0)
B1d12√

d1(0)
B1d16√

d6(0)
B1d18√

d1(0)

=
1
2


0 0

d14√
d6(0)

d12√
d1(0)

0 0
d16√
d6(0)

d18√
d1(0)


(21)

where

A1 =

[
0 1
0 d11

]
,A2 =

[
0 1
0 d15

]
,B1 =

(
0
1

)
,C2 = ( 0 1 ) .

Ta(x) = {Tai j(x)}1≤i, j≤2, Tb(x) = {Tbi j(x)}1≤i, j≤2 are shown as
follows

Ta(x) =

 s1(x)+
d10(x)

2
d7(x)

2
√

d1(x)
+

d9(x)
2

d3(x)

2
√

d6(x)
+

d5(x)
2

s2(x)+
d4(x)

2

 , (22)

Tb(x) =


d10(x)

2
− s1(x)

d9(x)
2
− d7(x)

2
√

d1(x)
d5(x)

2
− d3(x)

2
√

d6(x)

d4(x)
2
− s2(x)

 , (23)

where s1(x) =
d8(x)− 1

2 d6
′(x)

2
√

d6(x)
, s2(x) =

d2(x)− 1
2 d1
′(x)

2
√

d1(x)
.

The following assumption is required by state estimation of
ODE (18).
Assumption 5. (Ā− B̄C3,C3) is observable .

Assumption 5 holds in the application of the DCV, which can
be easily checked by the specific parameters of the DCV in the
simulation.

3.2 Observer structure

The sensors only are placed at the actuated boundary and the
available measurements are ut(l(t), t), wt(l(t), t), i.e., p(l(t), t)
being known through a convertor as

p(l(t), t) =[ut(l(t), t)−
√

d6(l(t))d19(l(t))U1(t),

wt(l(t), t)−
√

d1(l(t))d20(l(t))U2(t)] (24)
recalling (5)-(6), (12), (7) and (10).

Using the known signal p(l(t), t), the observer for the coupled
wave PDE plant (1)-(6) is constructed, which consists of two
parts. The first part:
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p̂t(x, t)+Q(x)p̂x(x, t) = Ta(x)r̂(x, t)+Tb(x)p̂(x, t)
+Γ1(x, t)(p(l(t), t)− p̂(l(t), t)), (25)
r̂t(x, t)−Q(x)r̂x(x, t) = Ta(x)r̂(x, t)+Tb(x)p̂(x, t)
+Γ2(x, t)(p(l(t), t)− p̂(l(t), t)), (26)
p̂(0, t) =C3Ŵ (t)− r̂(0, t), (27)
˙̂W (t) = (Ā− B̄C3)Ŵ (t)+2B̄r̂(0, t)
+Γ3(t)(p(l(t), t)− p̂(l(t), t)), (28)
r̂(l(t), t) = R(l(t))U(t)+ p(l(t), t) (29)

where p̂ = [ŷ(x, t), v̂(x, t)]T , r̂ = [k̂(x, t), ẑ(x, t)]T , Ŵ (t) =
[X̂(t),Ŷ (t)]T = [ŵ(0, t), ŵt(0, t), û(0, t), ût(0, t)]T , and the sec-
ond part:

ŵt(x, t) =
1
2
(ẑ(x, t)+ v̂(x, t)), (30)

ŵx(x, t) =
1

2
√

d1(x)
(ẑ(x, t)− v̂(x, t)), (31)

ût(x, t) =
1
2
(k̂(x, t)+ ŷ(x, t)), (32)

ûx(x, t) =
1

2
√

d6(x)
(k̂(x, t)− ŷ(x, t)). (33)

Note:

1. (25)-(29) in the sense of a copy of plant (15)-(19) plus
output injections is built to estimate the reformulated plant
p(x, t),r(x, t);

2. Once p(x, t),r(x, t) are estimated successfully by (25)-(29),
the estimations of the original plant are straightly obtained as
(30)-(33) considering the transformations (7)-(14).

Next, the observer gains Γ1(x, t), Γ2(x, t) and Γ3(t) will be
determined to achieve the exponential stability of the observer
error system. A difference from the traditional ones should be
noted that Γ1, Γ2 not only depend on the spatial variable x but
also depends on time t because of the time-varying domain.

3.3 Observer error system

The observation problem is essentially to ensure the observer
errors (differences between the estimated and real states) are re-
duced to zero, by choosing observer gains. Denote the observer
errors as

w̃t(x, t) = wt(x, t)− ŵt(x, t), (34)
w̃x(x, t) = wx(x, t)− ŵx(x, t), (35)
ũt(x, t) = ut(x, t)− ût(x, t), (36)
ũx(x, t) = ux(x, t)− ûx(x, t), (37)
W̃ (x, t) =W (x, t)−Ŵ (t)

= [X(t),Y (t)]− [X̂(t),Ŷ (t)]

= [w(0, t),wt(0, t),u(0, t),ut(0, t)]T

− [ŵ(0, t), ŵt(0, t), û(0, t), ût(0, t)]T

= [X̃(t),Ỹ (t)]

= [w̃(0, t), w̃t(0, t), ũ(0, t), ũt(0, t)]T , (38)
p̃(x, t) = p(x, t)− p̂(x, t) = [ỹ(x, t), ṽ(x, t)], (39)
r̃(x, t) = r(x, t)− r̂(x, t) = [k̃(x, t), z̃(x, t)]. (40)

Recalling (15)-(19), (7)-(10) and (25)-(33), the resulting ob-
server error dynamics is given by

w̃t(x, t) =
1
2
(z̃(x, t)+ ṽ(x, t)), (41)

w̃x(x, t) =
1

2
√

d1(x)
(z̃(x, t)− ṽ(x, t)), (42)

ũt(x, t) =
1
2
(k̃(x, t)+ ỹ(x, t)), (43)

ũx(x, t) =
1

2
√

d6(x)
(k̃(x, t)− ỹ(x, t)), (44)

p̃t(x, t)+Q(x)p̃x(x, t) = Ta(x)r̃(x, t)+Tb(x)p̃(x, t)
+Γ1(x, t)p̃(l(t), t), (45)
r̃t(x, t)−Q(x)r̃x(x, t) = Ta(x)r̃(x, t)+Tb(x)p̃(x, t)
+Γ2(x, t)p̃(l(t), t), (46)
p̃(0, t) =C3W̃ (t)− r̃(0, t), (47)
˙̃W (t) = (Ā− B̄C3)W̃ (t)+2B̄r̃(0, t)+Γ3(t)p̃(l(t), t), (48)

r̃(l(t), t) = 0, (49)

where the subsystem (45)-(49) describing dynamics of the ob-
server error of the system (15)-(19), determines the observer
error of the plant (1)-(6) via (41)-(44). Therefore, the exponen-
tial stability of (45)-(49) is the core to make sure the proposed
observer can be exponentially convergent to the actual states of
the original plant (1)-(6).

3.4 Observer backtepping design

To find the observer gains Γ1(x, t),Γ2(x, t),Γ3(t) that guarantee
that (45)-(49) is exponentially stable, we use a transformation
to map (45)-(49) to a target observer error system whose
exponential stability result is straightforward to obtain. The
transformation is introduced as

p̃(x, t) =α̃(x, t)−
∫ l(t)

x
ϕ̄(x,y)α̃(y, t)dy, (50)

r̃(x, t) =β̃ (x, t)−
∫ l(t)

x
ψ̄(x,y)α̃(y, t)dy, (51)

W̃ (t) =S̃(t)+
∫ l(t)

0
K̄(y)α̃(y, t)dy, (52)

where kernels ϕ̄(x,y) = {ϕi j(x,y)}1≤i, j≤2, ψ̄(x,y) =
{ψi j(x,y)}1≤i, j≤2 on a triangular domain D1 = {0 ≤ x ≤ y ≤
l(t)} and K̄(y) = {K̄i j(y)}1≤i≤4,1≤ j≤2 are to be determined.

The target observer error system is set up as

α̃t(x, t)+Q(x)α̃x(x, t) = Ta(x)β̃ (x, t)+ T̄b(x)α̃(x, t)

+
∫ l(t)

x
M̄(x,y)β̃ (y, t)dy, (53)

β̃t(x, t)−Q(x)β̃x(x, t) =
∫ l(t)

x
N̄(x,y)β̃ (y, t)dy

+Ta(x)β̃ (x, t), (54)

α̃(0, t) =C3S̃(t)− β̃ (0, t)+
∫ l(t)

0
H(y)α̃(y, t)dy, (55)

β̃ (l(t), t) = 0, (56)

˙̃S(t) = ǍS̃(t)+ Ěβ̃ (0, t)+
∫ l(t)

0
G(y)β̃ (y, t)dy (57)

where Ǎ = Ā− B̄C3 − L0C3 is a Hurwitz matrix by choosing
L0 = {L0i j}1≤i≤4,1≤ j≤2 recalling Assumption 5, and M̄(x,y),
N̄(x,y) satisfy
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M̄(x,y)=
∫ y

x
ϕ̄(x,z)M̄(z,y)dz+ ϕ̄(x,y)Ta(y), (58)

N̄(x,y)=
∫ y

x
ψ̄(x,z)M̄(z,y)dz+ ψ̄(x,y)Ta(y). (59)

Note that H(y) = {hi j(y)}1≤i, j≤2 in (55) is a strict lower trian-
gular matrix as

H(y) =
(

0 0
ψ̄2,1(0,y)+ ϕ̄2,1(0,y)+ K̄21(y) 0

)
, (60)

and G(y) = {Gi j(y)}1≤i≤4,1≤ j≤2, Ě = {Ěi j}1≤i≤4,1≤ j≤2 in (57)
are equal to −K̄(0,y)T̄a(y)−

∫ y
0 K̄(0,z)M̄(z,y)dz and L0 + 2B̄

respectively. The exponential stability of the target system (53)-
(57) will be seen in Lemma 2.

By matching (45)-(49) and (53)-(57) through the transforma-
tion (50)-(52), the conditions on the kernels in (50)-(52) and
observer gains in (25), (26), (28) are obtained as follows. Ker-
nels ϕ̄(x,y), ψ̄(x,y), K̄(y) should satisfy the matrix equations:
− ϕ̄y(x,y)Q(y)−Q(x)ϕ̄x(x,y)− ϕ̄(x,y)Q′(y)
+Ta(x)ψ̄(x,y)+Tb(x)ϕ̄(x,y)− ϕ̄(x,y)T̄b(y) = 0, (61)
− ψ̄y(x,y)Q(y)+Q(x)ψ̄x(x,y)− ψ̄(x,y)Q′(y)
+Ta(x)ψ̄(x,y)− ψ̄(x,y)T̄b(y)+Tb(x)ϕ̄(x,y) = 0, (62)
Q(x)ϕ̄(x,x)− ϕ̄(x,x)Q(x) = Tb(x)− T̄b(x), (63)
Q(x)ψ̄(x,x)+ ψ̄(x,x)Q(x)=−Tb(x), (64)
ψ̄(0,y)+ ϕ̄(0,y)+C3K̄(y) = H(y), (65)
− K̄′(y)Q(y)+(Ā− B̄C3−L0C3)K̄(y)− K̄(y)[Q′(y)+ T̄b(y)]
−L0ϕ̄(0,y)− (2B̄+L0)ψ̄(0,y) = 0, (66)

K̄(0) = L0Q(0)−1 (67)
and the observe gains are obtained as

Γ1(x, t) = l̇(t)ϕ̄(x, l(t))− ϕ̄(x, l(t))Q(l(t)), (68)
Γ2(x, t) = l̇(t)ψ̄(x, l(t))− ψ̄(x, l(t))Q(l(t)), (69)

Γ3(t) = l̇(t)K̄(l(t))− K̄(l(t))Q(l(t)). (70)
Lemma 1. After adding an additional artificial boundary con-
dition for the element ϕ̄21 in the matrix ϕ̄ , the matrix equa-
tions (61)-(67) have a unique solution ϕ̄, ψ̄ ∈ L∞(D1), K̄ ∈
L∞([0, l(t)]).

Proof. Please see Wang et al. (2019a) for the proof.

Following similar steps as above, the inverse transformation of
(50)-(52) can be determined as

α̃(x, t) =p̃(x, t)−
∫ l(t)

x
ϕ̌(x,y)p̃(y, t)dy, (71)

β̃ (x, t) =r̃(x, t)−
∫ l(t)

x
ψ̌(x,y)p̃(y, t)dy, (72)

S̃(t) =W̃ (t)+
∫ l(t)

0
Ǩ(y)r̃(y, t)dy, (73)

where ϕ̌(x,y) ∈ R2×2, ψ̌(x,y) ∈ R2×2 and Ǩ(y) ∈ R4×2 are
kernels on D1 and 0≤ y≤ l(t), respectively.

4. STABILITY ANALYSIS OF OBSERVER ERROR
SYSTEM

Before showing the performance of the proposed observer on
tracking the actual states in the original plant (1)-(6) in the next
theorem, the stability result of the observer error subsystem
(45)-(49) which dominates the observer errors of the original
plant (1)-(6) is given in the following lemma.

Lemma 2. Consider the observer error subsystem (45)-(49),
there exist positive constants ϒ3,σ3 such that(

‖ p̃(·, t)‖2 +‖r̃(·, t)‖2 +
∣∣W̃ (t)

∣∣2) 1
2

≤ ϒ3

(
‖ p̃(·,0)‖2 +‖r̃(·,0)‖2 +

∣∣W̃ (0)
∣∣2) 1

2
e−σ3t . (74)

Proof. Expanding (53)-(57) as α̃ = [α̃1, α̃2]
T , β̃ = [β̃1, β̃2]

T ,
one obtains

α̃it(x, t)+Qi(x)α̃ix(x, t) =
2

∑
j=1

Tai j(x)β̃ j(x, t)

+ T̄bi(x)α̃i(x, t)+
∫ l(t)

x

2

∑
j=1

M̄i j(x,y)β̃ j(y, t)dy, (75)

β̃it(x, t)−Qi(x)β̃ix(x, t) =
∫ l(t)

x

2

∑
j=1

N̄i j(x,y)β̃ j(y, t)dy

+
2

∑
j=1

Tai j(x)β̃ j(x, t), (76)

α̃i(0, t) =C3S̃(t)− β̃i(0, t)+(i−1)
∫ l(t)

0
h21(y)α̃1(y, t)dy,

(77)

β̃i(l(t), t) = 0 (78)

for i = 1,2, and S̃(t) is governed by
˙̃S(t) =ǍS̃(t)+ Ě[β̃1(0, t), β̃2(0, t)]T

+
∫ l(t)

0
G(y)[β̃1(y, t), β̃2(y, t)]T dy. (79)

In (75)-(79), β̃i(·, t) are independent and β̃i(·, t) = 0 is achieved
in a finite time because of (78). Thus S̃(t) is exponentially
convergent to zero because Ǎ is Hurwitz. β̃1,2(·, t) flow into
α̃1(·, t), α̃2(·, t) subsystems. α̃1(·, t) are exponentially conver-
gent to zero because of the exponential convergence of α̃1(0, t)
considering (77) for i = 1. α̃1(·, t) flow into α̃2(0, t) through
the boundary (77), where exponential convergence of α̃2(0, t)
also can be obtained for i = 2 because all signals at the right
hand side of the equal sign are exponentially convergent to zero.
It follows that α̃2(·, t) are exponentially convergent to zero as
well.

The exponential stability result would be seen more clearly by
using the following Lyapunov function as

Ve(t) =
řb1

2

∫ l(t)

0
e−δ̌1x

α̃1(x, t)
T Q1(x)−1

α̃1(x, t)dx

+
řa1

2

∫ l(t)

0
eδ̌2x

β̃1(x, t)
T Q1(x)−1

β̃1(x, t)dx

+
řa2

2

∫ l(t)

0
eδ̌2x

β̃2(x, t)
T Q2(x)−1

β̃2(x, t)dx+ S̃(t)T P2S̃(t)

+
řb2

2

∫ l(t)

0
e−δ̌1x

α̃2(x, t)
T Q2(x)−1

α̃2(x, t)dx, (80)

where a positive definite matrix P2 = PT
2 is the solution to the

Lyapunov equation P2Ǎ+ ǍT P2 =−Q̂2, for some Q̂2 = Q̂T
2 > 0,

and řa1, řa2, řb1, řb2, δ̌1, δ̌2 are positive constants. The following
inequality holds

µe1Ωe(t)≤Ve(t)≤ µe2Ωe(t) (81)
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for some positive µe1,µe2, where Ωe(t)= ‖α̃(·, t)‖2+‖β̃ (·, t)‖2

+|S̃(t)|2. Note that ‖α̃(·, t)‖2 =
∫ l(t)

0 α̃1(·, t)2dx+
∫ l(t)

0 α̃2(·, t)2dx.

Taking the derivative of (80) along (75)-(79), choosing appro-
priate řa1, řa2, řb1, řb2, δ̌1, δ̌2, of which the detailed process is
shown in Wang et al. (2019a), we can obtain

V̇e(t)≤−ηeVe(t) (82)
for some positive ηe which is associated with L0. It follows that
the exponential stability result in the sense of(

‖α̃(x, t)‖2 +‖β̃ (x, t)‖2 + |S̃(t)|2
) 1

2

≤ξe

(
‖α̃(x,0)‖2 +‖β̃ (x,0)‖2 + |S̃(0)|2

) 1
2

e−ηet , (83)

for some positive ξe and ηe.

Recalling the direct and inverse backstepping transformations
(50)-(52), (71)-(73), and applying Cauchy-Schwarz inequality,
the proof of Lemma 2 is completed.

Applying the exponential stability result of the observer error
subsystem (45)-(49) in Lemma 2 and recalling the relation-
ships (41)-(44), we obtain the following theorem about the
performance of the observer on tracking the actual states in the
original plant (1)-(6).
Theorem 1. Considering the observer error system (41)-(49)
with the observer gains Γ1(x, t) (68), Γ2(x, t) (69), Γ3(t) (70),
for any initial data (ũ(x,0), ũt(x,0)) ∈ H2(0,L) × H1(0,L),
(w̃(x,0), w̃t(x,0)) ∈ H2(0,L)× H1(0,L), there exist positive
constants ϒ4,σ4 such that

Φ4(t)≤ ϒ4Φ4(0)e−σ4t ,

where Φ4(t)= (‖ũt(·, t)‖2+‖ũx(·, t)‖2+‖w̃t(·, t)‖2+‖w̃x(·, t)‖2

+w̃(0, t)2 + w̃t(0, t)2 + ũ(0, t)2 + ũt(0, t)2)
1
2 . It means the ob-

server states in (25)-(33) can be exponentially convergent to the
actual values in (1)-(6) according to (34)-(37).

Proof. Recalling Lemma 2 and (38)-(40), the following in-
equality holds

Φ4a(t)≤ ϒ4aΦ4a(0)e−σ4at ,

where
Φ4a(t) =

(
‖ỹ(·, t)‖2 +‖ṽ(·, t)‖2 +‖k̃(·, t)‖2 +‖z̃(·, t)‖2

+
∣∣X̃(t)

∣∣2 + ∣∣Ỹ (t)∣∣2 ) 1
2

for some positive constants ϒ4a,σ4a.

According to (41)-(44), of which the inverse transforma-
tion where ũt(·, t), ũx(·, t), w̃t(·, t), w̃x(·, t) are represented by
z̃(·, t), ṽ(·, t), k̃(·, t), ỹ(·, t) is straightforward to obtain, the proof
of Theorem 1 is then completed recalling (38).

5. SIMULATION TEST ON VIBRATION ESTIMATION OF
DCV

The two-dimensional vibration dynamics of DCV Wang et al.
(2019a) is a specific case of the general plant (1)-(6) with
setting the coefficients as

d1(x) =
3
2 EAaφ̄(x)2 +T (x)

mc
, (84)

d2(x) =
EAaε̄ ′(x)+ρg

mc
, d3 =

−EAaφ̄ ′(x)
mc

, (85)

d4 =
−cv

mc
, d5 = 0, d6 =

EAa

mc
, d7(x) =

−EAaφ̄ ′(x)
mc

, (86)

Table 1. Physical parameters of the DSV.

Parameters (units) values
Final cable length L (m) 1210
Initial cable length l(0) (m) 250
Maximum descending velocity M̄ (m/s) 10
Operation time t f (s) 120
Cable cross-sectional area Aa (m2) 0.47×10−3

Cable effective Youngs Modulus E (N/m2) 7.03×1010

Cable linear density mc (kg/m) 8. 95
Payload mass ML (kg) 8000
Payload volume Vp (m3) 5
Gravitational acceleration g (m/s2) 9.8
Drag coefficient Cd 1
Stream velocity Vs (m/s) 2
Seawater density ρw (kgm−3) 1024
Longitudinal damping coefficient in cable cu 0.5
Lateral damping coefficient in cable cv 0.3
Longitudinal damping coefficient at attached payload ch 0.5
Lateral damping coefficient at attached payload cw 0.3

d8 = d9 = 0, d10 =
−cu

mc
, d11 =

−cw

ML
, d12 =

−EAaφ̄(0)2

2ML
,

(87)

d13 = 0, d14 =
−EAaφ̄(0)

ML
, d15 =

−ch

ML
,d16 =

−EAa

ML
, (88)

d17 = 0, d18 =
EAaφ̄(0)

2ML
, d19 =

1
EAa

, (89)

d20(l(t)) =
1

EAaε̄(l(t))+ EAa
2 φ̄(l(t))2 +T (l(t))

, (90)

where T (x), ε̄(x) and φ̄(x) are

T (x) = ρgx+Mg, ε̄(x) =
1

EAa

√
(ρgx+Mg)2 +F2

0 ,

φ̄(x) = ϑ̄(x)−θ = arctan
(

F0

ρgx+Mg

)
−θ ,

F0 =
ρw
2 CdV 2

s being the water-stream caused drag force Bohm
et al. (2014), ρ = mc−ρwAa, M = ML−ρwVp considering the
effect of buoyancy, and the angles φ̄(x),θ , ϑ̄(x) being shown in
Fig. 1. The values of the physical parameters are shown in Table
1. x in (84)-(90) can be represented by ι via (91). Note that the
time-varying domain plant with pre-determined time-varying
functions l(t) and l̇(t) shown in Fig. 2, is converted to the one
on the fixed domain ι = [0,1] with time-varying coefficients
related to l(t), l̇(t), l̈(t) via introducing

ι =
x

l(t)
, (91)

i.e., representing u(x, t) by u(ι , t) as

ux(x, t) =
1

l(t)
uι(ι , t), uxx(x, t) =

1
l(t)2 uιι(ι , t), (92)

ut(x, t) = ut(ι , t)−
l̇(t)ι
l(t)

uι(ι , t), (93)

utt(x, t) = utt(ι , t)−
2l̇(t)ι
l(t)

uιt(ι , t)−
l̇(t)2ι2

l(t)2 uιι(ι , t)

− (l(t)l̈(t)−2l̈(t)2)ι

l(t)2 uι(ι , t), (94)

and then the simulation is conducted using the finite difference
method with time step and space step as 0.001 and 0.05 respec-
tively. The initial conditions of the plant are defined according
to the steady state, as ux(·,0) = ε̄(·), ut(·,0) = 0 and wx(·,0) =
−φ̄(·), wt(·,0) = 0. With defining u(0,0) = 0 and w(l(0),0) =
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Fig. 2. Descending trajectory and velocity, i.e., the time-varying
cable length l(t) and the changing rate l̇(t).

Fig. 3. Observer error of lateral vibrations w̃(x, t).

Fig. 4. Observer error of longitudinal vibrations ũ(x, t).

0. All initial conditions k̂(·,0), ŷ(·,0), ẑ(·,0), v̂(·,0),Ŵ (0) of
the observer (25)-(33) are set as zero. The performance of
the observer on tracking the actual states can be seen in
Figs. 3-4, which show the observer errors of both lateral
and longitudinal vibrations are convergent to zero. Note that
the following equations are used to obtain û, ŵ from k̂, ŷ, ẑ, v̂,
û(ι , t) =

∫
ι

0
1

2
√

d6(ς)
(k̂(ς , t) − ŷ(ς , t))dς + C̄1Ŵ (t), ŵ(ι , t) =∫

ι

0
1

2
√

d1(ς)
(ẑ(ς , t)− v̂(ς , t))dς +C̄2Ŵ (t), according to (30)-(33)

and (38), where C̄1 = [0,0,1,0] and C̄2 = [1,0,0,0].

6. CONCLUSION AND FUTURE WORK

This work is motivated by estimation of longitudinal-lateral
coupled vibrations of a deep-sea construction vessel of which
the dynamics is described by a 4× 4 coupled heterodirec-
tional hyperbolic PDE-ODE system characterized by spatially-
varying coefficients and on a time-varying domain. The ob-
server designs are conducted via the backstepping method and
the exponential stability result of the observer error system
is proved by Lyapunov analysis. The simulation verifies that
the proposed vibration observer can effectively estimate the
longitudinal-lateral vibrations in DCV.

REFERENCES

O. M. Aamo, “Disturbance rejection in 2×2 linear hyperbolic
systems”, IEEE Trans. Autom. Control, 58(5), pp.1095-1106,
2013.

H. Anfinsen and O. M. Aamo, “Disturbance rejection in general
heterodirectional 1-D linear hyperbolic systems using col-
located sensing and control”, Automatica, 76, pp.230-242,
2017a.

H. Anfinsen and O. M. Aamo, “ Adaptive output-feedback
stabilization of linear 2× 2 hyperbolic systems using anti-
collocated sensing and control”, Systems & Control Letters,
104, pp.86-94, 2017b.

M. Bohm, M. Krstic, S. Kuchler and O. Sawodny, “Mod-
eling and boundary control of a hanging cable immersed
in water”, Journal of Dynamic Systems, Measurement, and
Control,136, pp. 011006, 2014.

J. Deutscher, “Finite-time output regulation for linear 2× 2
hyperbolic systems using backstepping”. Automatica, 75,
pp.54-62, 2017a.

J. Deutscher, “Output regulation for general linear heterodi-
rectional hyperbolic systems with spatially-varying coeffi-
cients”. Automatica, 85, pp.34-42, 2017b.

J. Deutscher, N. Gehring and R. Kern “Output feedback
control of general linear heterodirectional hyperbolic PDE-
ODE systems with spatially-varying coefficients”, Int. J.
Control, 92, pp.2274-2290, 2019.

B. How, S.S. Ge and Y. S. Choo “Control of Coupled Vessel,
Crane, Cable, and Payload Dynamics for Subsea Installation
Operations”. IEEE Transactions on Control Systems Tech-
nology 19, pp. 208-220, 2011.

L. Hu, F. Di Meglio, R. Vazquez and M. Krstic, “Control of
homodirectional and general heterodirectional linear coupled
hyperbolic PDEs”, IEEE Trans. Autom. Control, 61(11),
pp.3301-3314, 2016.

F. Di Meglio, F. Bribiesca, L. Hu and M. Krstic, “Stabilization
of coupled linear heterodirectional hyperbolic PDE-ODE
systems”, Automatica, 87, pp.281-289, 2018.

C. Roman, D. Bresch-Pietri, C. Prieur and O. Sename, “Robust-
ness to in-domain viscous damping of a collocated boundary
adaptive feedback law for an anti-damped boundary wave
PDE”, IEEE Trans. Autom. Control, 64(8), pp.3284-3299,
2019.

T. Stensgaard, C. White and K. Schiffer, “Subsea Hardware
Installation from a FDPSO”. In Offshore Technology Con-
ference, 2010.

R.G. Standing, B.G. Mackenzie and R.O. Snell, “Enhancing the
technology for deepwater installation of subsea hardware”.
In Offshore Technology Conference,2002.

J. Wang and M. Krstic, “Vibration suppression for coupled
wave PDEs in deep-sea construction”, avaliable on Arx-
iv,2019a.

J. Wang, S.-X. Tang and M. Krstic, “Adaptive
output-feedback control of torsional vibration in
off-shore rotary oil drilling systems”, Automati-
ca,10.1016/j.automatica.2019.108640,2020.

J. Wang, S. Koga, Y. Pi and M. Krstic, “Axial vibration
suppression in a PDE Model of ascending mining cable
elevator”, J. Dyn. Sys., Meas., Control., 140, pp. 111003,
2018a.

J. Wang, Y. Pi and M. Krstic, “Balancing and suppression
of oscillations of tension and cage in dual-cable mining
elevators”, Automatica, 98, pp. 223-238, 2018b.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7736


