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Abstract: This paper considers the path planning problem in multirobot systems with an
unknown environment. The robots’ mission is given as a Boolean formula on the final states.
We assume that the robots have partial knowledge of the environment and they are able to
estimate the environment using a recursive Bayes estimator. Furthermore, they communicate
between them if they are at a distance smaller than a given threshold in order to improve their
own estimation. Each robot will solve an optimization problem based on the Petri net model of
the environment and it will move accordingly. We provide an algorithm to be iterated by each
robot and we evaluate the results by simulation.
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1. INTRODUCTION

Planning the path of mobile robots is an actual problem
that continues to receive a lot of attention. Starting
from various methods for solving the classical planning
of one robot in a known environment cluttered with
obstacles (Latombe, 1991; Choset et al., 2005; LaValle,
2006; Mahulea et al., 2020), researchers have proposed
different scenarios that prove useful as mobile robots get
involved in multiple applications. A few examples of such
scenarios include high level specifications that express the
desired mission to be accomplished (Belta et al., 2007;
Fainekos et al., 2009) or planning teams of multiple robots
in centralized or decentralized manners (Mahulea and
Kloetzer, 2018; Guo et al., 2014). In many scenarios,
the robotic workspace is partitioned in a finite number
of regions (or cells) by using existing techniques (Berg
et al., 2008; Choset et al., 2005), and the problem can
be solved on an implied discrete-event representation for
example using methods characteristic to discrete systems
or Harmonic functions Garrido et al. (2010).

In case of workspaces that are not fully known, the pro-
posed problems range from static environments with prob-
abilistic information on the existence of regions or obsta-
cles (Ding et al., 2014; Svorenova et al., 2012; Kloetzer and
Mahulea, 2015; Kavraki et al., 1996) to simultaneous lo-
calization and mapping in dynamic environments (Huang
et al., 2005; Zamora and Yu, 2014). An important scenario
is the one in which the robots have a limited communi-
cation range and whenever possible they exchange their
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information regarding the environment with the purpose
of eventually attaining a collective desired behavior.

In this line of work, this paper combines an approach where
a team of robots is planned based on a Boolean formula,
Mahulea and Kloetzer (2018), together with a distributed
inference algorithm, Julian et al. (2012), and a polynomial-
based consensus method, Montijano et al. (2013). The
method from (Mahulea and Kloetzer, 2018) assumes an
initially fully-known environment where some regions of
interest exists and a centralized team of cooperating mo-
bile robots. A Boolean-based formula is imposed for the
whole team, expressing a desired behavior on both robot
trajectories and on their final positions, and the individual
plans for the robots are found by using a Petri net model
of the team and mathematical programming techniques
that embed this model and the formula. The method
from Julian et al. (2012) presents a distributed inference
algorithm to compute the probability distribution of the
class associated to each region. Since the algorithm relies
on a consensus iteration, in order to reduce the number
of communication rounds we use the consensus algorithm
described in Montijano et al. (2013) to exploit the good
convergence properties of Chebyshev polynomials. The
combination of these techniques allows the team of robots
to satisfy the Boolean formula without requiring complex
synchronization and/or communication mechanisms.

In short, this paper assumes a static but initially unknown
environment in which some regions of interest exist, a
team of robots with restricted communication radius, and
a Boolean formula on the set of regions of interest. For sim-
plicity of exposition, the formula expresses a requirement
on the final (stopping) position of the robots, e.g., in what
regions the robots should or should not stop, by ignoring
requirements on trajectories. Moreover, the environment
is assumed already partitioned, such that the robots are
regarded as moving on a graph-like discrete event model.
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Each robot can obtain noisy observations of the state
(observation) of the partition cells and uses a consensus
method to improve the estimation, exploiting other robots
information. These estimations are used as input of an
optimization problem that provides the motion commands
to the robots. The whole team repeats the estimation and
planning steps until satisfaction of the Boolean formula, a
condition that is locally verified.

The rest of the paper is structured as follows. Section 2
presents the notation and formulates the problem. Sections
3 and 4 include some aspects related to Boolean-based
planning in known environments and to estimation of the
environment based on local information, respectively. Sec-
tion 5 combines these methods, obtaining a new planning
and estimation algorithm applicable to initially unknown
environments. Section 6 shows simulation results, while
section 7 draws some concluding remarks.

2. PROBLEM DEFINITION

Let us assume a partitioned environment such that P =
{p1, p2, . . . , p|P|} is the set of disjoint regions (cells) com-
posing the environment, where | · | denotes the cardi-
nality of a set, i.e., the number of elements. Let Π =
{π1, π2, . . . , π|Π|} be a set of atomic propositions such that
πi ∈ Π is the label corresponding to the region of interest
i, e.g., color i. Each cell of the environment is labeled
with at most one label from the set Π through a function
h : P → {Π ∪ {∅}}. For all pi ∈ P , h(pi) is the label of
region pi and we say that pi is a free-space and not a region
of interest if h(pi) = ∅, i.e., if it is labeled by the empty
symbol.

In this environment, a number of |R| identical robots
evolve, where R = {r1, r2, . . . , r|R|} is the set of robots.
The robots know the set P of partitions elements and
the adjacency of the regions in this set, but they do not
know the labels of the regions, i.e., they do not know
the function h. We assume that they have a probabilistic
sensing measurement of the environment and they are
capable of estimating for each region pi its label. Moreover,
if a robot is in a region pi we assume that it can identify
with probability 1 the type of region.

The specification for the robots is given as a Boolean
formula defined over the variables from set Π. The speci-
fication is global and should be satisfied in the final team
position.

Local communications between robots occur when they
are at a distance less than a given threshold. They inter-
change the information of the probabilistic estimation of
the function h. After communicating, each robot solves
locally a path planning problem and moves to the next
region. If the path planning problem is unfeasible, due to
the incomplete knowledge of the environment, it chooses
randomly an adjacent region and moves. We assume that
in each region at most one robot may exist at a given time.

The problem we want to solve in this paper is to ensure
the fulfilment of the Boolean formula at the final states,
i.e., when all robots stop.

3. BOOLEAN BASED PLANNING

For solving the path planning problem, Petri nets models
will be used (Mahulea and Kloetzer, 2018) that provide,
in general, solutions for teams with more robots than the
standard approaches based on transition system or Markov
Decision Process models (Kloetzer and Mahulea, 2020).
Assuming the sets in Section 2, the Petri net model is
defined as follows.

Definition 1. A Robot Motion Petri Net (RMPN) system
is a tuple N = 〈P, T,Pre,Post,Π, h,m0〉, where

• P = {p1, p2, . . . , p|P |} is a finite set of places, each
place pi ∈ P is modeling the region pi ∈ P .

• T = {t1, t2, . . . , t|T |} is a finite set of transitions. If
regions pi and pj are adjacent, then there exists two
transitions ti,j and tj,i in T modeling the movement
from pi to pj and from pj to pi, respectively.

• Pre ∈ N|P |×|T | is the pre incidence matrix containing
the weights of the arcs connecting places to transi-
tions. In particular, Pre[pi, tj ] = 1 if there exists an
arc from pi to tj of weight 1.

• Post ∈ N|P |×|T | is the post incidence matrix contain-
ing the weights of the arcs connecting transitions to
places. In particular, Post[pi, tj ] = 1 if there exists
an arc from tj to pi of weight 1.

• Π ∪ {∅} is the set of output symbols (observations),
where ∅ denotes the empty observation.

• h : P → {Π ∪ {∅}} is the observation function where
h(pi) is the output of place pi ∈ P .

• m0 ∈ N|P | is the initial marking such that m0[pi] is
the number of robots initially located in pi.

For a node x ∈ P ∪ T , •x denotes the set of input nodes
while x• denotes the set of output nodes of x. Formally,
for pi ∈ P , •pi = {tj ∈ T |Post[pi, tj ] > 0} and pi

• =
{tj ∈ T |Pre[pi, tj ] > 0} while for a tj ∈ T , •tj = {pi ∈
P |Pre[pi, tj ] > 0} and tj

• = {pi ∈ P |Pre[pi, tj ] > 0}
respectively.

The marking (state) of the RMPN may change by firing
the transitions. A transition tj may fire at a given marking
mk if it is enabled: ∀pi ∈ •tj , mk[pi] ≥ Pre[pi, tj ]. If
transition tj is fired at mk, the new marking that is
obtained is given by,

ml = mk +C[·, tj ],
where C = Post − Pre is the incidence matrix and
C[·, tj ] is the column corresponding to tj . We say that the
markingml is reachable from markingmk. If a sequence of
transitions σ is fired from mk, defining the Parikh vector
σ ∈ N|T |×1 in which each element count the number
of firings of each transition in the sequence σ, then the
reachable markingm that is reached after firing σ satisfies,

m = mk +C · σ, (1)

Equation (1) is called state or fundamental equation of the
RMPN. Notice that (1) is only a necessary condition for
the reachability of a marking m. A solution 〈m,σ〉 satis-
fying (1) for a given initial markingmk is not necessarily a
reachable markingm, neither σ corresponds to a sequence
of transitions that can be fired.

For a given observation πi ∈ Π, let us define its character-
istic vector vi ∈ N1×|P | such that, vi[pk] = 1 if h(pk) = πi
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and vi[pk] = 0 otherwise. Notice that for a given reachable
marking m, if vi ·m ≥ 1, then observation πi is active at
m, i.e., there is at least one robot in a region labeled as πi
at m. From a given initial marking m0, if we would like
to compute a final marking m in which observation πi is
active, the following constraints should be satisfied:{

m = m0 +C · σ
vi ·m ≥ 1

Let us denote by ϕ the Boolean formula that the robots
should fulfill at the final states and let us define for each
atomic proposition πi ∈ Π a Boolean variable xi such that
xi = 1 is πi is active, otherwise xi = 0. Furthermore,
let x ∈ {0, 1}|Π|×1 be a vector containing all variables
xi. It is possible to define a set of linear inequalities
using variables x such that if a vector x is a solution,
i.e., it satisfies the inequalities, then the corresponding
active regions according to x satisfy ϕ. In (Mahulea and
Kloetzer, 2018), an algorithm is presented such that for a
given Boolean formula ϕ, the set of linear inequalities is
computed. Let us denote these inequalities as,

Atask · x ≤ btask. (2)

Furthermore, for a given solution x of (2), if xi = 1,
then observation πi should be active at the final marking.
Assuming that m is the final marking, the following rule
should be satisfied:

If xi = 1 then vi ·m ≥ 1 else vi ·m = 0

This can be tackled by introducing the following two
constraints (in which N is a big number):{

N · xi ≥ vi ·m
xi ≤ vi ·m (3)

Notice that, if xi = 1, the first inequality is always satisfied
(N ≥ vi · m being N a big number) while the second
inequality forces vi ·m to be greater than or equal to 1
implying that πi is active at m. On the contrary, if xi = 0,
the second constraint is always satisfied (since vi and m
are positive vectors) while the first one becomes 0 ≥ vi ·m
that is satisfied only if vi ·m = 0 and πi will not be active
at m.

Putting (1), (2) and (3) together, in order to compute a
final statem where the formula ϕ is satisfied, the following
Mixed Integer Linear Programming (MILP) optimization
problem can be solved:

min1T · σ

s.t.


m = m0 +C · σ

Atask · x ≤ btask
N · x ≥ V ·m

x ≤ V ·m

(4)

where 1 is a vector of dimension equal to the number of
transitions having all elements equal to one, while V is a
matrix, each row corresponding to a characteristic vector
of an observation, i.e., the first row is v1 (the characteristic
vector of π1), the second row is v2 etc.

Using a σ solution of (4), the sequence of regions that
should be crossed by the robots can be easily obtained.
As we mentioned, state equation is not a necessary and
sufficient condition for the reachability of a marking but, in

this case, the RMPN belongs to the class of state-machines
Petri nets and in order to fulfill the task it is not necessary
to perform cycles. In this case, we show in (Mahulea and
Kloetzer, 2018) that the sequence of transitions can be
easily found from the vector σ.

Example 2. Let us consider the environment in Fig. 1(a)
containing three regions of interest (p7, p9 and p11) and
two robots initially located in p8 (robot r1) and p6 (robot
r2). The RMPN system is shown in Fig. 1(b) and it is
composed by a set of 12 places, P = {p1, p2, . . . , p12} and
a set of 28 transitions, T = {t11,12, t12,11, . . .}. The set of
output symbols is Π = {π1, π2, π3} while the observation
function is h(p11) = π1; h(p9) = π2; h(p7) = π3 and
h(pi) = ∅ for all pi ∈ P \ {p7, p9, p11}. The initial marking
m0 is a vector having all elements equal to zero except
m0[p6] = m0[p8] = 1, since there is a robot initially located
in p6 and another one in p8.

Assume that the team should fulfill the following Boolean
formula at the final state: ϕ = π1∧π2∧¬π3, meaning that
a robot should stop in p11 (since h(p11) = π1), one robot
should stop in p9 (since h9 = π2) and no robot should be
in p7 (since h(p7) = π3).

By solving the MILP (4), the following plan is obtained
for each robot:

• robot 1: p8p3p1p12p11,
• robot 2: p6p10p5p9.

However, the solution has been obtained assuming that the
environment map is known by the robots. In the following
section we provide an approach for the case in which the
robots have only partial knowledge of the environments
and each one is separately computing an individual plan
by locally solving an instance of problem (4) based on its
current belief on the locations of regions of interest.

4. DISTRIBUTED REGION ESTIMATION

Let us assume now that the robots do not know a priory
the labeling of the different regions, pi, but they are able
to obtain noisy observations, or(pi) ∈ Π, r ∈ R, depending
on the region where they are. Let P(πk), be the probability
of a given region p ∈ P being labeled as πk ∈ Π. Then,
given a set of observations, or(pi), the objective of the
team is to obtain a probability distribution, P(Π), taking
into account the limited communications of the network.

In order to do this, we combine the distributed inference
algorithm described in Julian et al. (2012) together with
the fast consensus iteration of Montijano et al. (2013).
For simplicity, we will describe the algorithm for a single
region, p ∈ P , noting that the same algorithm will be
replicated for all the regions in the map.

First of all, assume that the robots know the calibration
of their sensors, so that they know the likely-hood of
obtaining a given observation given the label, P(πk1|πk2).
For example, if the robot is located in region p, we already
know that P(h(p)|h(p)) = 1 whereas it will be zero for any
other πk 6= h(p). On the other hand, if p is far away from
the robot, we assume that P(πk|h(p)) = 1/|Π| for all πk,
which basically means that the robot can measure every
label with the same probability.
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(a) An environment. (b) Corresponding RMPN.

Fig. 1. Example of an environment and the Petri net model

Let Pri
t (Π), be the prior distribution that robot ri has of

the region at planning round t. Applying Bayes rule for a
single robot, given the observation ori(p), the posterior is

Pri
t (πk|ori(p)) =

Pri
t (πk)P(ori(p)|πk)∑

k∈|Π| P
ri
t (πk)P(ori(p)|πk)

. (5)

Recalling that we assume that the labeling of the regions
does not change over time, the prior at the next planning
time is simply Pri

t+1(Π) = Pri
t (Π|ori(p)).

Assuming no correlation between the observations of the
different robots, Julian et al. (2012) proposes to approx-
imate the combined likely-hood, P(O(p)|πk) by the prod-
uct,

P(O(p)|πk) =
∏

r∈|R|

P(or(p)|πk). (6)

This quantity can be obtained in a distributed manner by
means of a consensus iteration, which needs to be run until
convergence. Since this iteration can require many commu-
nication rounds to converge, in this paper we exploit the
polynomial solution presented in Montijano et al. (2013)
to accelerate the process. Let xi(0) = log (Pri

t (ori(p)|πk))
be the initialization that robot ri makes to estimate (6).
Then, the following distributed algorithm

xi(1) =
1

T1(c)

∑
j∈Ni∪i

w′ijxj(0), (7a)

xi(n) = 2
Tn−1(c)

Tn(c)

∑
j∈Ni∪i

w′ijxj(n− 1)

− Tn−2(c)

Tn(c)
xi(n− 2),

(7b)

is used to estimate the average of the initial conditions of
the whole set of robots. In the algorithm, Tn(c) denotes
the Chebyshev polynomial of the first kind of degree n,
computed recursively by Tn(c) = 2Tn−1(c)c−Tn−2(c), the
parameter c > 1 is a design parameter and 0 < wij < c is
the weight associated to the exchange between neighboring
robots ri and rj , denoted by Ni. This matrix needs to be
balanced with row-sum equal to c for all ri. Finally, the
value in (6) is obtained locally by

P(O(p)|πk) =
exp (xi(n))

|R|∑
exp (xi(n))

|R| . (8)

5. COMBINED ALGORITHM

Let us now describe how the planning and estimation algo-
rithms work together. Initially, the environment partition
P is available to each robot, and the formula ϕ is read
and converted to a set of linear inequalities as (2). Based
on P , each robot ri constructs a RMPN model as in Def.
1, except the observation function h. This model will be
iteratively adjusted after each robot movement, as follows.

The initial marking is chosen based on the known actual
position of robot ri and on the estimate that ri has on the
other robot’s current positions. For constructing the ob-
servation function h, robot ri estimates the probability of
each cell from P belonging to a region from Π. To this end,
ri communicates with all the robots in its communication
range and adjusts its estimations as in Sec. 4. After that,
ri chooses a deterministic output function h by simply
considering the maximum probability of observing a region
from Π in each place, h(p) = maxk Pri

t (πk), and then
it constructs the matrix V containing the characteristic
vectors of observations. Having this information, robot ri
formulates and solves MILP (4).

If the optimization problem does not have a feasible
solution, the robot will randomly choose an adjacent
partition region to move. Note that it is possible that
MILP (4) does not have a solution, because of the lack of
any information on some regions from Π, which triggers
some null characteristic vectors. If problem (4) returns
a solution, ri chooses the next region to move based
on its first transition in RMPN yielded by solution σ.
Now, robot ri executes a movement in the partition and
then it reiterates the whole procedure starting from the
adjustment of RMPN model.

Note that each robot movement is either enforced by
solution of MILP (4), or it is randomly chosen when
the optimization problem is infeasible. Of course, the
“movement” includes the possibility of remaining in the
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Algorithm 1. Iterative construction of solution for robot ri
Input: P = {p1, p2, . . . , p|P |} the set of regions composing

the environment, Π = {π1, π2, . . . , πΠ} the set of
atomic propositions, h : P → {Π ∪ {∅}} labelling
function, R = {r1, r2, . . . , r|R|} the set of robots
and their initial region in P ; RADIUS - the
communication radius; MAX ITER - maximum
number of iterations

Output: Sequence of cells traversed by the robot ri.
Construct the RMPN system Ni =
〈P, T,Pre,Post,Π, h,m0〉;
Read the formula ϕ and compute the corresponding set
of linear inequalities Atask · x ≤ btask;
while num iteration < MAX ITER do

Acquire a measurement of each cell of the map;
Communicate with all robots rj ∈ R, rj 6= ri located
within the communication radius RADIUS and com-
pute common estimations;
Update the initial marking m0 of ri the position of the
robots with which ri has been communicated;
Compute matrix V (characteristic matrix observation)
based on a deterministic output function h assuming
maximum probability in the robot estimation;
Solve MILP (4);
if MILP (4) is infeasible then

Chose a random move from the adjacent cells
including the one where the robot is;
Update m0 assuming the other robots are not
moving;

else
Advance to the next cell according to the solution
of MILP (4);
Update m0 assuming that the other robots are
moving according to the solution of MILP (4);

Wait until the maximum time of a step elapses.

current place, if MILP solution yields such a transition
or the random decision chooses the current partition
cell. All robots should complete their movements before
exchanging information within their communication range
and making new estimates on positions of regions Π
(outputs of RMPN). For this, after its movement, each
robot is required to wait such that all robots completed
their movements, and this can be accounted by imposing
a waiting time based on the maximum time required for
moving between any two adjacent cells from partition P .

The number of iterations where each robot estimates the
outputs and solves a MILP is upper-bounded by a user-
chosen value. The larger this value, the greater the chance
that all robots reach stopping positions where the team
satisfies the Boolean formula ϕ. Alg. 1 summarizes the
steps from this section, and this algorithm is run by every
robot ri.

6. SIMULATIONS

Let us consider first the environment in Ex. 2. By applying
Alg. 1, in 13 iterations both robots stop in the final regions
p9 and p11. Robot r1 does the following movements: p8, p3,
p7, p3, p1, p3, p1, p3, p8, p6, p10, p5 and then stops in p9.
Robot r2 performs the following movements p6, p10, p5,
p4, p2, p12, p11 and remains in p11. Fig. 2 illustrates some

belief maps of the robots along their runs, i.e. they show
where each robot thinks the regions from Π are located.
Notice that before the forth iteration, the belief map of the
second robot does not contain a ”red region” and robot r2

performs random moves, because its instance of MILP (4)
is infeasible.

The second simulation considers a more challenging envi-
ronment composed by 400 regions. There are three regions
of interest, e.g., |Π| = 3, 9 robots in the team and the
Boolean formula is given by ϕ = π1 ∧ π2. By using a Petri
Nets model, we are able to solve the 9 instances of the
MILP required at each planning iteration in approximately
0.4 seconds using a standard desktop computer (i7 at
3.4GHz with 32Gb of RAM). The trajectories followed by
the robots are given in Fig. 3, where we can observe that
in the end the Boolean formula is satisfied.

7. CONCLUSION

This paper has proposed a novel algorithmic solution for
planning a path for a distributed multirobot system in
an unknown environment. The robots should reach final
states such that the team satisfies an imposed Boolean
formula over a set of regions of interest that exist in the
environment, but whose positions are not initially known.
The environment is partitioned, while the robots can nois-
ily sense a surrounding area and can communicate in a
certain radius. The algorithm builds on a planning method
based on Boolean formulas and RMPN models in known
environments and on estimation and communication tech-
niques for agents that have probabilistic information of
the regions of interest. The developed solution consists in
an algorithm that is iterated by each individual robot. At
each iteration step, the robot updates its information on
the map, solves a MILP optimization problem and takes a
movement to a neighboring partition region. For the steps
when the optimization problem is infeasible, the robot
randomly moves in order to improve its environment esti-
mation. Future work will focus on changing these random
movements with guided strategies whenever the current
MILP is infeasible, and on investigating the influence of
a few parameters on the number of iterations needed for
fulfilling the specification.
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