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Abstract: Irreversible port-Hamiltonian systems (IPHS) are an extension of port-Hamiltonian
systems (PHS) for irreversible thermodynamics which encompass a large class of thermodynamic
systems that may contain reversible and irreversible phenomena. Energy shaping and damping
injection are standard structure preserving passivity based control approaches which have
proven to be very successful for the stabilization of PHS. However, in the case of irreversible
thermodynamics, the non-linear nature of the systems make it non-trivial to apply these
approaches for stabilization. In this paper we propose a systematic procedure to perform, in a
first control loop, energy shaping by state modulated interconnection with a controller in IPHS
form. Then, a second control loop guarantees asymptotic stability by the feedback of a new
closed-loop passive output. The approach allows to stabilize IPHS while preserving the IPHS
structure in closed-loop, allowing to interpret the closed-loop system as a desired thermodynamic
system. The example of the continuous stirred tank reactor is used to illustrate the approach.

Keywords: Port-Hamiltonian systems, Irreversible thermodynamics, Passivity based control,
Control by interconnection, Damping injection.

1. INTRODUCTION

The Port Hamiltonian system formulation (PHS) has been
used for control and modelling of electrical, mechani-
cal, and in general multiphysics systems (Maschke and
van der Schaft, 1992; Duindam et al., 2009; Van Der
Schaft, 2004). The framework of the PHS theory formalizes
the basic interconnection laws together with the power
preserving elements by a geometric structure, using the
energy between the elements as the interconnection, and
defines the Hamiltonian as the total energy stored in the
system. The formalism have been largely used for the
control of multiphysical systems (Van Der Schaft, 2004;
Duindam et al., 2009) through techniques like control by
interconnection and damping injection. The framework
of control by interconnection consists in designing a dy-
namical control system which allows to relate the states
of the controller and the process by a set of structural
invariants, called Casimir functions (van der Schaft, 2016;
Duindam et al., 2009; van der Schaft and Jeltsema, 2014).
The Casimir functions are then instrumental to shape the
closed-loop Hamiltonian function such that its minimum
is at the desired equilibrium. The asymptotic stability is
then achieved by the injection of damping.

The PHS formulation express the first principle of thermo-
dynamics, i.e, the conservation of the energy, but fails to

? This work was supported by the projects FONDECYT 1191544
and BASAL FB0008; and the Dirección de Postgrado y Programas
(DPP) of the UTFSM.

express the second principle of the thermodynamics, i.e.,
the irreversible creation of entropy although there have
been extensions of the PHS formulation which encompass
systems arising from the Irreversible Thermodynamics
(Eberard et al., 2005; Ramirez et al., 2013a). In Ramirez
et al. (2013a) a class of quasi PHS, namely irreversible
port-Hamiltonian systems (IPHS), has been proposed to
encompass a large class of thermodynamic systems. These
systems express as a structural property the first and
second principles of thermodynamics by adding a non
linear real function to the dynamic. By definition IPHS are
non-linear systems with a physically meaningful structure
and just as PHS systems, they are defined with respect to
the total energy of the system. This makes it possible to
interconnect them with other reversible or non-reversible
systems, or a combination of both (Ramirez et al., 2013b).
Some first approaches to control of IPHS have been given
in Ramirez et al. (2016) using the framework of an energy
based availability function as a candidate for a Lyapunov
function, based in the spirit of the works of Alonso and
Ydstie (2001); Ydstie (2002).

In this paper we propose a systematic control design
method for IPHS, specializing the control by interconnec-
tion and damping injection to IPHS. By using a controller
in IPHS form and a modulating interconnecting between
the process and the controller, a set of matching equations
for the generation of Casimir functions are proposed. Us-
ing the energy-based availability function as part of the
solution, the closed-loop Hamiltonian is designed to have
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a minimum at the desired dynamic equilibrium. Damping
with respect to the closed-loop conjugated output is then
added to guarantee asymptotic stability. The approach
allows to stabilize IPHS while preserving the IPHS struc-
ture in closed-loop, allowing to interpret the closed-loop
system as a desired thermodynamic system. The paper
is organized as follows. Section 2 presents the basics on
IPHS. In section 3 we derive an energy shaping plus
damping injection IPHS controller for an IPHS system.
As illustrative example a non-isothermal RLC circuit is
used. In Section 4 the example of the continued stirred
tank reactor (CSTR) is presented. Finally in section 5 we
present some conclusions and comments on future work.

2. IRREVERSIBLE PORT HAMILTONIAN SYSTEMS

IPHS have been proposed in Ramirez et al. (2013b) as an
extension of PHS. These systems represent not only the
energy balance but also the entropy balance associated
with the irreversible processes. Let us first define a Poisson
bracket (Maschke et al., 1992) with respect to a constant
skew symmetric matrix J = −J> acting on any two
smooth functions Z and G as

{Z,G}J =
∂ZT

∂x
(x)J

∂G

∂x
(x). (1)

Definition 1. An IPHS is defined by the dynamical equa-
tion

ẋ = Jir
(
x, ∂U∂x

) ∂U
∂x

+ g
(
x, ∂U∂x

)
u (2)

y = g
(
x, ∂U∂x

)> ∂U
∂x

(3)

where x(t) ∈ <n is the state vector, u(t) ∈ <m the input,
the smooth function U(x) : <n → < is the Hamiltonian
and g ∈ <n×m is the input map. The skew-symmetric
structure matrix Jir ∈ <n×n is defined as

Jir
(
x, ∂U∂x

)
= J0(x) +R

(
x, ∂U∂x

)
J (4)

with J = −JT , J0 = −JT0 and there exists a smooth
entropy like function S(x) : <n → < which is a Casimir
function of J0, i.e.,

∂S

∂x

>
J0 = 0. (5)

The non-linear modulating function R is defined as

R
(
x, ∂U∂x

)
= γ

(
x, ∂U∂x

)
{S,U}J (6)

where γ
(
x, ∂U∂x

)
: <n → <, γ ≥ 0, a non linear positive

function.

The balance equations of the entropy function S(x) and
the energy function U(x) of the IPHS express the first and
second principles of thermodynamics: the conservation of
the energy and the irreversible creation of entropy. Taking
the time derivative of the energy function gives

dU

dt
=
dUT

dx
(J0 +RJ)

dU

dx
+
dUT

dx
gu

= yTu

by skew-symmetry of Jir, expressing that the IPHS is a
lossless dissipative system with supply rate yTu. If we take
the time derivative of the entropy function, and set u = 0
for simplicity, it follows that

β(x)

IPHS

Controller

DI

x(t)

u(t) y(t)

ycl(t) = gt ∂Ucl

∂x

+

ui(t)

−

β(x)

uc(t)yc(t)

−
++

1

Fig. 1. Energy shaping plus damping injection control of
an IPHS.

dS

dt
=
dST

dx
J0
dU

dx
+R

dST

dx
J
dU

dx
= {S,U}J0 + γ

(
x, ∂U∂x

)
{S,U}2J

= γ
(
x, ∂U∂x

)
{S,U}2J = σ ≥ 0

where the term {S,U}J0 = 0 because of (5) and where σ
corresponds to the internal entropy production.

2.1 Example: non-isothermal RLC system

Consider a RLC system including the dynamics of the
thermal effects of its electrical components. So we can
consider that all electrical components are a function of the
temperature. The IPHS formulation of the thermodynamic
RLC circuit is (Ramirez et al., 2018)Q̇φ̇
Ṡ

 =

([
0 1 0
−1 0 0
0 0 0

]
+
r

T

φ

L

[
0 0 0
0 0 −1
0 1 0

])QCφ
L
T

+

[
0
1
0

]
u (7)

with the internal energy Ue(Q,φ, S) of the system being
the sum of the conservative energy plus some thermal
related energy function

Ue(Q,φ, S) =
1

2

Q2

C(S)
+

1

2

φ2

L(S)
+ Us(S) (8)

where the time variation of the internal energy is
dUe
dt

=
∂Ue
∂Q

Q̇+
∂Ue
∂φ

φ̇+
∂Ue
∂S

Ṡ

= −r(S)
(

φ
L(S)

)2
+
∂Ue
∂S

dS

dt
+ yTe ue

From Gibb’s relation (Callen, 1985) it is known that
∂Ue

∂S = T (S). Taking ue = 0 it follows that U̇e = 0 and
it goes that

dS

dt
=
r(S)

T (S)

(
φ

L(S)

)2

= σr. (9)

The term σr corresponds to the internal entropy produc-
tion of the system. Note that the RLC system (7) has
the structure of the Definition 1 with a structure matrix
composed of an irreversible part related to the dissipation
and a reversible part related to Kirchhoff’s law.

3. PASSIVITY BASED CONTROL

Passivity based control has been used as a model-based
non-linear control design method (van der Schaft and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11711



Jeltsema, 2014). PBC techniques such as energy shaping
plus damping injection aim at rendering the closed-loop
Hamiltonian function with asymptotically stability with
respect to some desired energy function. In this section we
synthesize an energy shaping plus damping injection con-
troller through a systematic design. Furthermore, we will
exploit Definition 1. This definition shows that an IPHS
system can be seen as a composition of a conservative part
and an irreversible part. The control by interconnection
is done following Figure 1. In the first loop the output
of the IPHS is interconnected with a control system in
IPHS form. This loop is used to shape the closed-loop
energy function such that its minimum is at the desired
equilibrium. The second loop is in charge of injecting
damping to the system to assure the asymptotic stability of
the closed-loop system. Notice that the damping injection
is performed with respect to the closed-loop output of
the system, i.e., the output conjugated to the closed-loop
Hamiltonian function. The final control input takes the
form u = ue + ui where ue is the input for energy shaping
and ui is the input for damping injection.

3.1 Energy Shaping for IPHS

Energy shaping has been used to modify the natural
equilibrium point of a Lyapunov candidate energy function
for PHS (van der Schaft, 2016; Ortega et al., 2001) using
Casimir functions which are structural invariants of the
system. This lead to a set of partial differential equations
which characterize the Casimir functions of the system.
Let us consider an IPHS controller

ξ̇ = R̄
(
ξ, ∂Uc

∂ξ

)
(Jc −Rc)

∂Uc
∂ξ

(ξ) + gc

(
ξ, ∂Uc

∂ξ

)
uc(t)

yc = gTc

(
ξ, ∂Uc

∂ξ

) ∂Uc
∂ξ

(ξ)

(10)
with ξ ∈ <l the state space vector; yc, uc ∈ <m with the
mapping gc(ξ) ∈ <l×m and Hamiltonian function Uc(ξ).
Define the state modulated power-preserving interconnec-
tion (

ue
uc

)
=

(
0 −β(x)

β(x) 0

)(
y
yc

)
(11)

where β(x) ∈ <. The closed-loop system then takes the
form(

ẋ

ξ̇

)
=

(
Jir −gβgTc

gcβg
T R̄(Jc −Rc)

)∂Ucl(x, ξ)∂x
∂Ucl(x, ξ)

∂ξ

+

(
g
0

)
ui

(12)
with 0 a null matrix of appropriate dimensions and closed-
loop Hamiltonian function Ucl(x, ξ) = U(x) + Uc(ξ).
We look for structural invariant functions of the form
Ci(x, ξi) = Fi(x) − ξi, i = 1, .., l with Ci the Casimir
function associated to the state ξi of the controller and
F (x) = [F1, ..., Fl] ∈ <l a collection of smooth well defined
functions Fi of x. If these invariant functions exist, then
on every invariant manifold the relation ξ − F (x) = κ
with κ = [κ1, ..., κl] ∈ <l a vector of constants that
depend on the initial states of the plant and the controller,
holds. The closed-loop Hamiltonian energy function can
then be expressed in terms of the states of the plant
Ucl(x, ξ) = U(x) +Uc(F (x) +κ), and the control action as
a state feedback

u = −β(x)yc (F (x) + κ) (13)

The Casimir functions are invariants of the structure of
the system, implying that ∂C>

∂x Jcl = 0, with

Jcl =

(
Jir −gβgTc

gcβg
T R̄(Jc −Rc)

)
This condition leads to the following set of partial differ-
ential equations

∂FT

∂x
(x)Jir = gcβg

T

−∂F
T

∂x
(x)gβgTc = R̄(Jc −Rc)

(14)

Following the same procedure as in van der Schaft (2016)
we get the set of matching equations

∂FT

∂x
(x)Jir = gcβg

T

Rc = 0

∂FT

∂x
Jir

∂F

∂x
= R̄Jc

(15)

These are the matching equations for an IPHS system with
a controller in IPHS form, using the state modulated inter-
connection (11). These matching equations are analogous
to the case of control by interconnection of PHS with the
difference that Jir depends on the modulating functions R
and that the control structure includes a modulating func-
tion R̄. Assuming that the smooth function F (x) exists,
the control law (13) renders the closed-loop Hamiltonian
function as Ucl(x) = U(x) + Uc(F (x) + κ). Furthermore,
the energy-input allows to interpret the closed-loop as an
IPHS system. In effect, notice that

dx

dt
= RJir

∂U

∂x
− g βgc

∂(Uc ◦ F )

∂ξ︸ ︷︷ ︸
ue

(16)

Using the first equation of (15) and the skew-symmetric
property of Jir, the relation (16) can be rewritten as

dx

dt
= RJir

∂U

∂x
+ Jir

∂F

∂x

∂(Uc ◦ F )

∂ξ

= RJir
∂U

∂x
+ Jir

∂Uc
∂x

Finally, by simple factorization and adding an input ui to
the closed-loop system, we get

ẋ = Jir
∂Ucl
∂x

+ gui (17)

ycl = g>
∂Ucl
∂x

(18)

where ycl is the passive output defined with respect to
Ucl(x). This approach allows to see the closed-loop system
as an IPHS; i.e, without destroying the structure of IPHS,
and therefore can be interconnected with others IPHS
systems and interpreted in the framework of the energy-
Casimir plus damping design for control purposes. Next,
we calculate the time derivative of the entropy in the
closed-loop system

dS

dt
=
dS>

dx
J0
dUcl
dx

+R
dS>

dx
J
dUcl
dx

= R
dS>

dx
J
dU

dx︸ ︷︷ ︸
σ(t)

+R
dS>

dx
J
dUc
dx︸ ︷︷ ︸

σc(t)
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where σ ≥ 0 is the internal entropy variation of the system
and σc is the external entropy variation due to the inputs
of the system. As the control objective is to set a desired
entropy, the rate σc = −σ in the stationary state.

The time variation of the closed-loop energy function is
now given by

U̇cl = y>clui (19)

Since the internal energy of irreversible thermodynamic
systems does not have a strict minimum, a now standard
candidate Lyapunov function for control is the availability
function (Alonso and Ydstie, 2001; Ydstie, 2002; Jillson
and Ydstie, 2007). The availability function uses the
convexity of the internal energy or the negativity of the
entropy, together with the assumption that one of the
extensive variables is fixed, to construct a strictly convex
extension which serves as Lyapunov function for a desired
dynamical equilibrium. This approach has been widely
used in the control of thermodynamic systems in the last
decade (Hoang et al., 2011, 2012; Ramirez et al., 2016).
We shall use the availability function as the target closed-
loop function for the irreversible part of the IPHS in the
energy-shaping design. Next we give one definition for this
function.

Definition 2. (Ramirez et al., 2016) The energy based
availability function is defined as

A(x, x∗) = U(x) + Ua(x, x∗) (20)

Where Ua(x, x∗) = −U(x∗)− ∂U
∂x (x∗)T (x−x∗), with U(x)

being the internal energy of the system and x∗ the desire
equilibrium point of an irreversible variable x.

3.2 Damping Injection for IPHS

The energy shaping input shapes the Hamiltonian of the
system and guarantees the closed-loop stability of the
system, but one have yet to guarantee the asymptotic
stability at the equilibrium point. Suppose that the closed-
loop IPHS (17) has a minimum at x∗. Set ui as

ui = −Kg>ycl = −Kg> ∂Ucl
∂x

(21)

with K = K> > 0. The closed-loop system is then given
by

ẋ(t) = (Jir − gKgT )
∂Ucl
∂x

. (22)

The time derivative of the closed-loop energy function is

dUcl
dt

=
dUTcl
dx

(Jir − gKgT )
∂Ucl
∂x

= {Ucl, Ucl}Jir − {Ucl, Ucl}M
= −{Ucl, Ucl}M < 0

since {Ucl, Ucl}Jir = 0 and where M = gKgT ≥ 0. By
Lasalle’s invariance theorem it is then showed that the
closed-loop system converges asymptotically to x∗.

3.3 Example: non-isothermal RLC system (continued)

We apply the results of the subsections 3.1 and 3.2 to
get an energy-shaping plus damping injection control.
We look for Casimir functions for the system (7) with
F (x) = F (Q,φ, S). Applying the third equation of (15) we

get Jc = 0 and gc = 1. The first equation of (15) results in
the following relations

−∂F
∂φ

= 0,
∂F

∂Q
+
rφ

TL

∂F

∂S
= β, − rφ

TL

∂F

∂φ
= 0

which have multiple solution. Taking

∂F

∂Q
= α1

∂F

∂φ
= 0

∂F

∂S
= α2

with β = α1 + α2
rφ
TL where α1, α2 ∈ <, we obtain

F = α1Q+ α2S

The corresponding Casimir function allows to shape the
coordinate of the capacitor and the entropy of the system.
We set as desired closed-loop Hamiltonian

Ucl(Q,φ, S) =
1

2

(Q−Q∗)2

C
+

1

2

φ2

L
+A(S, S∗)

where A(S, S∗) = Us(S) − [Us(S
∗) + T ∗(S − S∗)] is the

availability function (20) for the irreversible part of the
system. The closed-loop energy function is given by

Ucl(Q,φ, S) = U + Uc

where Uc is the energy provided by the controller and U
is the internal energy of the system. The simplest choice
for Uc is

Uc = −QQ
∗

C
+

1

2

(Q∗)2

C
− Us(S∗)− T (S∗)(S − S∗)

Taking α1 = −Q∗
C and α2 = −T ∗ with κ = 1

2
(Q∗)2

C −
Us(S

∗)+T ∗S∗ it follows that β = −Q∗
C −T

∗ rφ
TL . The control

input is then given by

ue = −β ∂Uc
∂ξ

= −β =
Q∗

C
+ T ∗

rφ

TL

We have the energy shaping control input so we have yet
to design the damping injection input in order for the
closed-loop system to converge to x∗. Following the result
presents in the subsection 3.2 we select ui(t) = −K φ

L . The
control law for the system then takes the form

u(t) =
Q∗

C
+ T ∗

rφ

TL
−K φ

L
which is a classic proportional plus integration control law.

4. EXAMPLE: THE CSTR SYSTEM

In this section we design an energy shaping plus damping
injection controller for a continuous stirred tank reactor
(CSTR). The IPHS model is presented in subsection 4.1
and a particular case of a reaction of two species is
considered. In subsection 4.2 the controller is designed.

4.1 IPHS Model

Let us consider a CSTR system with the following re-
versible reaction scheme:

m∑
i=1

ξiAi
r



m∑
i=1

ηiAi (23)

with ξi, ηi being the constant stoichiometric coefficients for
species Ai in the reaction. We will consider the following
assumptions for the standard operation of the reactor
(Aris, 1989; Favache and Dochain, 2009):

Assumption 3. The following holds
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1. The reactor operates in liquid phase.
2. The molar volume of each species are identical and

the total volume V in the reactor is constant through
the reaction.

3. The initial number of moles of the species in the
reactor is equal to the number of moles of the inlet of
the sames species.

4. For a given steady state temperature T and steady
state input, there is only one possible steady state
for the mass. This mean that each steady state
temperature is associated with a one unique steady
state temperature.

The IPHS model of the CSTR is (Ramirez et al., 2016).

ẋ(t) = RJ
∂U

∂x
(x) + gu(t)

with the state vector x = [n S]
T

, where n = (n1, ..., nm)T

with ni the number of moles of the species i inside the
reactor; S the total entropy of the system and U(x) the
internal energy function, and

J =


0 · · · 0 ν̄1

0 · · · 0
...

0 · · · 0 ν̄m
−ν̄1 · · · −ν̄m 0

 , ∂U∂x =


µ1

...
µm
T

 , R =
rV

T

where J is a constant skew-symmetric matrix whose el-
ements are the signed stoichiometric coefficients of the
chemical reaction ν̄i = ξi−ηi, a number which is positive or
negative depending on whether the species i is a product or
a reactant; ∂U∂x corresponds to the intensive variables with
T being the temperature in the reactor and µi the chemical
potential of the species i; R is the modulating function,
where r = r(n, T ) is the reaction rate which depends on
the temperature and on the reactant mole numbers vector
n. The input vector is u = [u1, u2]T with u1 = F/V the
dilution rate, where F is the volumetric flow rate, and
u2 = Q the heat flux from the cooling jacket; the input
map g is given by

g =

[
n̄ 0

φ(x) 1/T

]
with n̄ = ne − n, where ne = (ne1, ..., nem)T is the vector
containing the numbers of moles of species i at the inlet
and φ(x) =

∑m
i=1(neisei−nisi)+nei

T (hei−Tsei−µi), where
sei is the inlet molar entropy,si is the molar entropy and
hei is the inlet specific molar ethalpy of species i. As a
particular case, in order to control the system, we take
m = 2 and the reaction is

ξ1A1 + ξ2A2
r

 η1A1 + η2A2 (24)

This reaction is then characterized by the IPHS with

J =

[
0 0 ν̄1
0 0 ν̄2
−ν̄1 −ν̄2 0

]
∂U

∂x
=

[
µ1

µ2

T

]
g =

[
n̄1 0
n̄2 0
φ(x) 1/T

]
with φ(x) =

∑2
i=1(neisei − nisi) + nei

T (hei − Tsei − µi)

and with state space vector x(t) = [n1 n2 S]
T

; the input
of the system is u = (u1, u2)T .

4.2 Passivity based control of the CSTR

The system has by states n1, n2, S so we will parametrize
the design and look for Casimir functions of the form

C1(n1, ξ1) = F1(n1) − ξ1, C2(n2, ξ2) = F2(n2) − ξ2 and
C3(S, ξ3) = F3(S) − ξ3 such that ξ1 = F1(n1) + κ1,
ξ2 = F2(n2) +κ2 and ξ3 = F3(S) +κ3 with F (n1, n2, S) =

[F1 F2 F3]. Define the IPHS controller by xc = [ξ1 ξ2 ξ3]
T

,
Jc ∈ <3×3, β a scalar function and

gc =

[
g11 g21 g31
g12 g22 g32

]>
Since there is no reversible part, we set as desired closed-
loop Hamiltonian the availability function (20) Ucl =
U(x) − [U(x∗) + ∂U

∂x (x∗)T (x − x∗)], hence the energy of
the controller is chosen as

Uc = −[U(x∗) +
∂U

∂x
(x∗)T (x− x∗)]

= (−µ∗1n1 + µ∗1n
∗
1) + (−µ∗2n2 + µ∗2n

∗
2)+

(−T ∗S + T ∗S∗)− U(n∗1, n
∗
2, S
∗)

The choice of Casimir functions and controller Hamilto-
nian leads to following condition on F

∂F

∂x
=

[−µ∗1 0 0
0 −µ∗2 0
0 0 −T ∗

]
Applying the matching equations, from the first equation
of (15) we get

g11 = 0 g21 = 0 g31 =
T ∗ν̄2
n̄2

g12 = −µ∗1ν̄1T ∗ g22 = −µ∗2ν̄2T ∗ g31 =
T ∗ν̄1
n̄1

g32 = −g31φT ∗ β = R

The system has a solution if
n̄1
ν̄1

=
n̄2
ν̄2

(25)

In Prigogine and Defay. (1954) for batch reactors the
equality (25) is the expression of De Donder’s extent of
reaction

n0i − ni
ν̄i

= ξ

where this property can be extended to the CSTR under
Assumption 3. This result is a particular case of the one
obtained in Ramirez et al. (2016) where an IDA-PBC like
approach is used to design a controller for a class of CSTR.
The third equation of (15) gives

Jc = T ∗

[
0 0 µ∗1ν̄1
0 0 µ∗2ν̄2

−µ∗1ν̄1 −µ∗2ν̄2 0

]
with R̄ = T ∗ a real constant. The controller is then given
by

xc = T ∗

[
0 0 µ∗1ν̄1
0 0 µ∗2ν̄2

−µ∗1ν̄1 −µ∗2ν̄2 0

][−µ∗1
−µ∗2
−T ∗

]

+

 0 −µ∗1ν̄1T ∗
0 −µ∗2ν̄2T ∗
T ∗ξ −(T ∗)2ξφ

uc
yc = gTc

[−µ∗1
−µ∗2
−T ∗

]
The energy shaping control law is then given by

ue = −rV
T

[
−(T ∗)2ξ

−(µ∗1)2ν̄1T
∗ − (µ∗2)2ν̄2T

∗ − (T ∗)3ξφ

]

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11714



For the damping injection we chose a K ∈ <2×2 such that
M = gKgT ≥ 0. The simplest choice is K = α diag(0, T 2)
which gives M = diag(0, 0, α), for some tuning parameter
α > 0. The damping injection input takes the form

ui = −α
[

0
T (T − T ∗)

]
The closed-loop system is finally given by

ẋ = (−gKgT +RJ)
∂Ucl
∂x

with ∂Ucl

∂x = [µ1 − µ∗1 µ2 − µ∗2 T − T ∗]
T

. The asymptotic
stability follows from the time derivative of the closed-loop
energy function (subsection 3.2)

dUcl
dt

= −∂U
T
cl

∂x
M
∂Ucl
∂x

= −α(T − T ∗)2 ≤ 0

by applying La Salle’s invariance principle in a sufficient
small region of T = T ∗, under the conditions of Assump-
tion 3.

5. CONCLUSION

A systematic procedure to perform energy shaping and
damping injection, while preserving the IPHS structure
has been proposed. In a first control loop, energy shaping
is achieved by a stated modulated interconnection with
a controller in IPHS form. To this end, the existence of
Casimir functions are instrumental to relate the states of
the plant and the controller. Using the Casimir functions
a dynamic controller which shapes the closed-loop Hamil-
tonian into an energy based availability function with
minimum at the desired dynamic equilibrium is designed.
A second control loop is used to guarantee asymptotic
stability by the feedback of a closed-loop passive output
defined with respect the closed-loop Hamiltonian. The
approach allows to stabilize IPHS while preserving the
IPHS structure in closed-loop, allowing to interpret the
closed-loop system as a desired thermodynamic system
which can be connected with others IPHS systems, and
which can be interpreted in the framework of the energy-
Casimir method for control purposes. A non-isothermal
RLC circuit has been developed along the paper and
the non-trivial example of the continuous stirred tank
reactor has been used to illustrate the approach. Future
work will deal with the numerical implementation of the
controller and the study of non-trivial coupled mechanical-
thermodynamic systems.
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