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Abstract: Transitions from stable to unstable states occurring in dynamical systems can be
sudden leading to catastrophic failure and huge revenue loss. For detecting these transitions
during operation, it is of utmost importance to develop an accurate data-driven framework
that is robust enough to classify stable and unstable scenarios. In this paper, we propose deep
learning frameworks that show remarkable accuracy in the classification task of combustion
instability on carefully designed diverse training and test sets. We train our model with data
from a laboratory-scale combustion system showing stable and unstable states. The dataset is
multimodal with correlated data of hi-speed video and acoustic signals. We develop a labeling
mechanism for sequences by implementing Kullback–Leibler Divergence on the time-series
data. We develop deep learning frameworks using 3D Convolutional Neural Network and Long
Short Term Memory network for this classification task. To go beyond the accuracy and to
gain insights into the predictions, we incorporate attention mechanism across the time-steps.
This aids in understanding the time-periods which contribute significantly to the prediction
outcome. We validate the insights from a domain knowledge perspective. By exploring inside the
accurate black-box models, this framework can be used for the development of better detection
frameworks in different dynamical systems.
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1. INTRODUCTION

Developing highly accurate data-driven frameworks is im-
portant for the performance monitoring of dynamical sys-
tems leading to better control. The confidence in im-
plementing these frameworks can be enhanced further if
an accurate model can provide additional insights apart
from generating the prediction. For temporal data-based
systems, an explainable model highlighting the signifi-
cant time-periods of the input sequence can give a better
understanding when verified from the domain knowledge
perspective. In combustion dependent power generating
systems like land-based gas turbine engines, jet engines
for aviation and rocket engines, combustion is generally
operated in low-fuel states to achieve fuel economy and
reduce nitrogen oxides emissions. But during such low-
fuel operations, these systems become more susceptible to
instability. Developing accurate and insightful frameworks
is crucial for the detection of instability in combustion
systems.

The phenomenon of combustion instability can be more
frequent when the burning of fuel takes place in a confined
environment. During such scenarios, flow perturbations
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can result in fluctuating heat release rates leading to the
generation of sound waves. These sound waves could vary
the heat release rate when reflected from the walls. When
the heat release rate fluctuations are in phase with the
fluctuating acoustic pressure, a positive feedback loop can
be established resulting in large amplitude oscillations
(Rayleigh (1878); Dowling (1997)). During such intense
growth of pressure fluctuations, engines can develop large
levels of vibration causing catastrophic failure or drasti-
cally reducing the engine life (Fisher and Rahman (2009)).
This can result in huge revenue loss and other serious
consequences. Accurate detection of the stable and un-
stable states can lead to effective control and performance
monitoring of a combustion system.

Previous works of studying combustion instability in-
clude using computational fluid dynamics (CFD) mod-
els, physics-based modeling (Palies et al. (2011)) among
others. These models often have restrictions like simpli-
fying assumptions, inherent complexities, computational
restrictions, etc. Some data-driven methods such as proper
orthogonal decomposition (POD) (Berkooz et al. (1993);
LoCurto et al. (2018)), dynamic mode decomposition
(DMD) (Schmid (2010); Ghosal et al. (2016)) are com-
mon, but they demonstrate high parametric sensitivity for
detection of instability precursors. There are also other
applications of data-driven techniques specifically for com-
bustion systems (Nair and Sujith (2014); Sen et al. (2018,
2016)). However, implementing methods based on only
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acoustic data can sometimes be erroneous due to the hin-
dering effects of combustion noise. Detection frameworks
based on images can be more reliable, which we explore in
this paper.

Deep learning (DL) models are becoming increasingly pop-
ular with widespread applications as these models can
show highly accurate performance with no hand-designed
features as input. DL models are superior to other state-
of-the-art machine learning models (Hinton and Salakhut-
dinov (2006)). These DL models have initiated a rapid
development in the field of computer vision. Convolu-
tional Neural Network has become a popular architecture
in computer vision and has demonstrated state-of-the-
art results in learning meaningful features from images
(Krizhevsky et al. (2012)). Long Short Term Memory
(LSTM) can learn temporal dependencies effectively over
long sequences (Hochreiter and Schmidhuber (1997)). The
application of DL in the field of combustion instability
has started recently and has shown promising results. The
works include a neural-symbolic framework (Sarkar et al.
(2015)) and frameworks based on convolutional selective
autoencoder (Akintayo et al. (2016)), 2D CNN (Gan-
gopadhyay et al. (2018)), 3D CNN (Ghosal et al. (2017))
and 2D CNN LSTMs (Gangopadhyay et al. (2020)). Using
DL, the highest test accuracy scores reported earlier have
been in the range of 83% - 85%. For the DL model which
can provide insights (Gangopadhyay (2019)), there has
been no validation of the insights from a domain knowledge
perspective. Also, no previous work has explicitly shown
robustness by achieving high accuracy in conditions show-
ing different dynamics than that of the training set. In
this paper, we aim to overcome these shortcomings of the
previous works.

The contributions of this paper are:

• We propose an interpretable deep learning framework
demonstrating remarkable accuracy and robustness
to detect combustion instability in a test protocol
having different dynamics to that of the training set.

• The insights learned using the attention mechanism
of the framework are in accord with the domain
knowledge.

2. PROBLEM FORMULATION AND DATASET

2.1 Data Collection and Preprocessing

For data collection, we use an experimental laboratory-
scale setup (a vertically placed Rijke tube having two open
ends) similar to that used by Gangopadhyay et al. (2018).
We use two different lengths of the tube (2 ft, 4 ft), each
with a diameter of 3 inches. The hi-speed flame video (at
5000 frames/sec) and acoustic signal are both recorded
simultaneously. The acoustic length is varied by changing
the position of the burner tip alternating the x/L ratio
from 0.125 to 0.5, where x is the distance measuring from
the bottom end of the tube to the bluff body. For both
tubes (2ft, 4ft), data is collected at five different positions
with x = 0 in., 3 in., 6 in., 9 in., and 12 in.

At each position, we collect data twice independently
with a time gap. The one-time record length of data is
12 secs (60,000 images). To ensure that the flame has

Fig. 1. Figure showing sample FFT plots for “No Tube”,
“2 ft Tube” and “4 ft Tube” cases.

reached a steady-state, we wait for 10 seconds before
beginning data collection at each position. We perform
another experiment without the Rijke tube, which we label
as the “no tube” case (baseline dataset). We have a total
of 10 sets of data (5 different positions for each tube)
and each set has two recordings (run a, run b). For easier
experimental setup identification, we will address different
conditions using the following convention: for example, the
run a experiment using 4 ft tube, and with the position
x = 0 in., is denoted as 4ft 0 run a. After extracting the
region of interest, each flame chemiluminescence image
is resized to a resolution of 64 x 64. The resizing is
done due to the restriction imposed by the GPU memory
limits for training our 3D deep learning frameworks. The
degree of downsampling the videos is a hyper-parameter
in our modeling process which we will discuss more in the
following sections. For preprocessing the time series, we
implement a moving window approach (Sen et al. (2018))
with each time window of length 0.1 secs. Fast Fourier
transform (FFT) is computed for each window, based on
which we propose a labeling procedure.

2.2 Labeling Procedure

For our supervised learning model, we compute labels for
the flame video snippets (image sequences) by incorporat-
ing domain knowledge and proposing a Kullback–Leibler
(K-L) Divergence based metric. K-L Divergence is a sta-
tistical metric that measures the similarity between two
distributions. By using the FFT plot of the “no tube” case
(Fig. 1) as the baseline, we compute the K-L Divergence
for each of the windowed FFT plots. We choose a range
(+/- 50% of the fundamental frequency) considering that
the amplitudes around fundamental frequency in the FFT
plot is a strong indicator of instability from the domain
knowledge perspective. The frequency range for the 4ft
tube is therefore 75 - 225 Hz with 150 Hz as the fundamen-
tal frequency (Fig. 1). The results of the K-L Divergence
computed for the 4 ft tube are shown in Fig. 2. Each point
refers to a particular time window (0.1s) which in turn
corresponds to the correlated image sequence. We use the
two most separated clusters visible in the plot, labeling the
4 ft 0 run a, 4 ft 3 run a, 4 ft 6 run a as the stable cases
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Fig. 2. The figure shows the K-L Divergence of FFT plot
for each time window relative to the baseline FFT
plot.

(green box) and 4 ft 12 run a as the unstable case (red
box).

3. METHODOLOGY

3.1 CNN, LSTM, Temporal Attention

Convolutional Neural Network (CNN) is a neural network
architecture designed to capture the spatial correlation
across image data. A CNN scans over an image with
a receptive field (shared parameters) to first learn local
features and then aggregate the local features. As the
weights are shared, CNNs have less number of trainable
parameters compared to fully connected layers. This leads
to lower chances of overfitting and comparatively needs
less computational power. By extracting meaningful fea-
tures from images, CNNs have shown remarkable results in
different image recognition tasks outperforming all other
techniques (Krizhevsky et al. (2012); LeCun et al. (1998)).

Recurrent Neural Networks (RNNs) are capable of explic-
itly capturing temporal dependencies in sequences outper-
forming static networks (Bengio (1991)). To overcome the
problem of vanishing gradients of RNNs for long sequences
(Bengio et al. (1994); Gers et al. (1999)), Hochreiter and
Schmidhuber (1997) proposed an effective RNN architec-
ture Long Short Term Memory (LSTM). LSTM has input,
output, and forget gates which prevent the perturbation of
memory contents with irrelevant information. These gates
regulate the addition of any information to the cell state
of an LSTM block. Apart from input x<t> at time-step
t, an LSTM block takes in the cell state (C<t−1>) and
hidden state (a<t−1>) of the previous time-step as inputs.
The updated values of a<t> and C<t> act as inputs for
the LSTM block of the next time-step.

For long sequences, the concept of soft temporal attention
was introduced by Bahdanau et al. (2014) in the context of
neural machine translation to overcome the bottleneck of
the encoder-decoder model (Cho et al. (2014); Sutskever
et al. (2014)), which compresses all information into a
fixed-length vector. They fused the attention module be-
tween the encoder and decoder layers. However, in our
proposed model, a decoder LSTM is not required as we
are performing many-to-one classification. The temporal
attention block takes in a sequence of hidden states as
input and after aggregating the information, computes a

Fig. 3. The temporal attention mechanism.

Number of
trainable parameters

Training time
per epoch

CNN 649, 682 22 secs

CNN-LSTM 601, 458 28 secs

CNN-AtLSTM 601, 491 28 secs

Table 1. Details for the models with sample
hyper-parameter setting Tz = 32 & Ty = 4

context vector as shown in Fig. 3. It is trained jointly with
the network.

3.2 Models

We perform experiments with 3 models, out of which the
model 3D CNN is without any LSTM layers. We refer to
the ‘3D CNN’ model as the ‘CNN’ now onwards in this
paper to avoid clutter. The ‘3D CNN LSTMs’ model and
the ‘3D CNN LSTMs Attention’ model are referred to as
the ‘CNN-LSTM’ and ‘CNN-AtLSTM’ respectively.

Our CNN model (test accuracy of which is reported) has
a slightly different architecture than that of the 3D CNN
block illustrated in Fig. 4. The 3D CNN block is only used
as part of the other two models as shown in Fig. 5. We
develop the CNN model to keep its number of parameters
approximately on the same scale as the other two models
for ensuring an unbiased comparative study. For example,
if we have used the 3D CNN block of Fig. 4 as our model,
the number of trainable parameters would have been 4.2
million (For Tz = 32, Ty = 4) instead of 649, 682 (Table
1). This surge in the number of parameters occurs as the
3D CNN block operates on Ty frames whereas the CNN
model has Tz frames as input. To keep the parameters in
check, we reduce the dimension of the volume before using
the fully-connected (FC) block. To achieve this, we modify
the 3D CNN block (Fig. 4) using another layer of Conv 3D,
Maxpool 3D before the FC layer of 128 hidden units. That
becomes our CNN model which also has an extra FC layer
(128 units) before the softmax layer.

In the models CNN-LSTM and CNN-AtLSTM, the intu-
ition behind using 3D CNN is that the 3D CNN blocks
(each taking in a volumetric image sequence as input at
every time-step, Fig. 5) can filter the high-frequency noise
prevailing in the dataset. The encoding vectors computed
by the 3D CNN are then fed into stacked LSTM layers to
explicitly learn the temporal correlations on top of that.
This is the advantage compared to models using 2D CNN
LSTM (taking in an image input at every time-step before
LSTM layers) which are very sensitive to noise and thus
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Fig. 4. The details of the 3D CNN block used to encode volumetric image samples (Ty frames, each frame of dimension
64 x 64) into a 128-dimensional vector for the models CNN-LSTM & CNN-AtLSTM.

Fig. 5. From a sequence of Tz frames, Tx volumetric samples are formed and each volumetric sample consists of Ty

frames. The 3D CNN block (Fig. 4) computes a 128-dimensional embedding for each volumetric sample. The
sequence of these embeddings acts as input to the first LSTM layer. The hidden states of the first LSTM layer are
fed into the second LSTM layer to get the annotations.

Fig. 6. The CNN-LSTM model (with 3D CNN LSTMs)
and the CNN-AtLSTM model (with 3D LSTMs At-
tention) after the encoding part (common for both)

cannot generalize well leading to inaccurate predictions of
the test set. In the CNN-LSTM model (Fig. 6), the last
annotation of the encoding part is assumed to be the com-
pressed representation of the entire input sequence. The
CNN-AtLSTM model (Fig. 6) takes in all the annotations
as input to generate the context vector using the tem-
poral attention mechanism. The hyper-parameters of the
models are tuned with different experiments. Compared
to the CNN-LSTM model, there is only an increase of 33
learnable parameters for the CNN-AtLSTM Model, which
is insignificant compared to the total number of parame-
ters. The training time remains the same. We implement
the models using Keras (Chollet et al. (2015)) with the
TensorFlow backend (Abadi et al. (2016)). The models are

trained using NVIDIA GPUs. Categorical cross-entropy is
used as the loss function. We use Adam optimizer (Kingma
and Ba (2014)) with the learning rate of 3e− 4.

4. RESULTS

To demonstrate the robustness of our models, we carefully
prepare a dataset that has a balanced number of samples
of stable and unstable cases in the training set. We label
the dataset using the labeling procedure described in Sec-
tion 2.2. From Fig. 2, there are more stable conditions
than unstable ones. To balance the number of samples
between stable and unstable cases in the training dataset,
both 4ft 12 run a and 4ft 12 run b are used as unstable
conditions in the model training. In the test set, we choose
a condition from the “2ft Tube” which shows different
dynamics and one condition from the “4ft Tube” which is
unseen for the model. Table 2 shows the choices of experi-
mental conditions used for the model training and testing
process. From Fig. 7, we can see that the 2ft 3 run a
condition generally has the highest K-L Divergence values
among other conditions and thus, can be termed as an un-
stable condition (when referred to Fig. 2). From a domain
knowledge perspective, the fundamental frequency of the
2ft tube case is 300 Hz and we use the frequency range of
150 - 450 Hz (+/- 50% of the fundamental frequency) to
compute the K-L Divergence for the 2ft tube.

The performance of the models in terms of test accuracy
is shown in Table 3. We use a time window of 0.1s which
corresponds to 500 images (5000 frames/sec of the hi-
speed video). For each time window, the input to our
model is a volumetric sample of Tz frames. The video is,
therefore, down-sampled from 500 frames to Tz frames due
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Fig. 7. The K-L Divergence of FFT plots (for each time
window) for the 2ft tube relative to the baseline FFT.

Train Test

Stable
4ft 0 run a

4ft 6 run a
4ft 3 run a

Unstable
4ft 12 run a

2ft 3 run a
4ft 12 run b

Table 2. The training and test set chosen for
our experiments.

Hyperparameters Test Accuracy (%)

Tz Ty Tx CNN CNN-LSTM CNN-AtLSTM

32 4 8 100 100 100

32 8 4 100 100 100

48 4 12 100 99.58 100

48 8 6 100 100 100

64 4 16 100 100 99.58

64 8 8 100 100 100

Table 3. Test accuracy of 3 models for different
combinations of Tz and Ty, where Tx = Tz/Ty

to computation restrictions. We down-sample the video by
taking frames after certain intervals (depending on Tz).
The test set accuracy is almost 100% for all the hyper-
parameter combinations. This highlights that the models
can correctly classify the 2ft 3 run a as unstable, despite
being trained only on data from the 4ft tube. Fig. 7 also
confirms that 2ft 3 run a is actually an unstable condition.
Our proposed deep learning models are robust enough
to generalize well in detecting instability of an unseen
condition showing contrasting dynamics with different
dominant frequency modes.

Considering only the accuracy of the model ignores the
importance of interpretability in a deep learning model
(Varshney et al. (2018)). It is important to consider in-
terpretability for increased safety, better understanding,
error identification, and enhancing the confidence in im-
plementing DL models. We validate the insights learned
by our model from the domain knowledge perspective to
verify the interpretability. The attention weights indicate
the most relevant time-periods in generating a particular
prediction (Fig. 8). We observe from the results that the
model is not only focusing on the first or last few frames
arbitrarily. Our validation approach is shown in Fig. 8 for
a sample sequence of the 2ft 3 run a condition. We divide
the corresponding acoustic time series (0.1 secs) into Tx

(8 for the example) windowed time series (each of length

0.0125 secs). After computing the maximum amplitudes
from the FFT plots of each time window, we scale the
amplitudes to have a sum of 1. The maximum amplitude in
a time window occurs near the fundamental frequency (300
Hz for the 2ft tube) of the FFT plot and doesn’t capture
noise. It gives an estimation of the existing instability. The
distribution of the attention weights (including the peaks)
is almost similar to that of the maximum amplitude (which
highlights combustion instability), highlighting that the
CNN-AtLSTM model focuses correctly on the most im-
portant time-periods.

5. CONCLUSIONS

The transition from stable to unstable states in combus-
tion systems can happen quickly and can potentially lead
to a disastrous system failure. Hence, an accurate and
insightful instability monitoring model can be extremely
beneficial to prevent such an event. In this paper, we
propose an interpretable deep learning framework using
3D CNN, LSTM, and temporal attention mechanism that
not only achieves astounding instability classification ac-
curacy on the hi-speed combustion video but also provides
insights behind the predictions. The insights are found to
be in accord with domain knowledge. The performance
is compared with two other deep learning models using
3D CNN and 3D CNN LSTMs. This interpretable deep
learning framework can be used for the development of
accurate online detection frameworks in different dynami-
cal systems.
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