
Optimization-based Motion Planning and
Runtime Monitoring for Robotic Agent

with Space and Time Tolerances ?

Zhenyu Lin ∗ John S. Baras ∗

∗Department of Electrical and Computer Engineering and the Institute
for Systems Research, University of Maryland, College Park, MD

20742, USA (e-mail: zlin88@umd.edu, baras@umd.edu).

Abstract: We present an optimization-based approach for robot planning, monitoring and self-
correction problems under signal temporal logic specifications (STL). The STL specifications
are translated into mixed-integer linear constraints, and we generate the reference trajectory
by solving a mixed-integer-linear-programming (MILP) to maximize the overall space and
time tolerances. During runtime execution, a prediction module is constantly evaluating the
robustness degree of the predicted trajectory, and a self-correction module based on event-
triggered model predictive control (MPC) has been designed to predict and correct possible
future violations of the specifications. Simulation results show that with our approach, the
robotic agent is able to generate a path that satisfies the STL specifications while maximizing
space and time tolerances, and able to make corrections when there are possible violations of
the specifications during runtime execution.

Keywords: Motion Planning, Signal Temporal Logic, Space and Time Tolerances, Optimization

1. INTRODUCTION

Motion and task planning for autonomous robotic agents
is important in many real, physical world applications.
Robotic agents have been deployed for agriculture re-
search, surveillance, and search and rescue operations. In
recent years, a new approach to the task planning problem
for robotic agents has evolved by formulating system speci-
fications in temporal logics Smith et al. (2010) Bhatia et al.
(2011) Wolff et al. (2014). Linear temporal logic (LTL)
allows one to specify more complicated mission tasks that
are hard to express and to achieve by conventional meth-
ods Lamport (1994).

However, LTL specifications do not emphasize finite time
constraints. For real applications, a robot might be re-
quired to perform a specific task within a certain time
bound, rather than at some arbitrary time in the future.
Metric temporal logic (MTL) Alur et al. (1996) and Sig-
nal Temporal Logic (STL) Donze and Maler (2010) have
been introduced for motion planning with bounded time
constraints. Task planning with bounded time constraints
has been investigated in Zhou et al. (2015) and Vasumathi
et al. (2014) by solving a MILP problem. An automata
based approach for task planning with MTL specifications
has been considered in Lin and Baras (2019).

STL allows the specification of properties of dense-time
and real-valued signals. One main advantage of STL is the
quantitative semantics which, in addition to the yes/no
answer to the satisfaction question, provide a real number
that grades the quality of the satisfaction or violation. This

? This work was partially supported by the ONR grant N00014-17-
1-2622.

robustness information could be useful in motion planning,
since we normally want the robotic agents to stay far away
from the obstacles, and also to stay close to the center of
the locations of interest. Motion planning problems with
STL have been investigated in Plaku and Karaman (2016)
Lindemann et al. (2018), and authors in Vasumathi et al.
(2014) and Lindemann and Dimarogonas (2017) have used
STL for control synthesis together with Model Predictive
Control (MPC).

For autonomous systems operating in dynamic environ-
ments, the safety of motion and time requirements for
the task are critical. Due to the uncertainty in the en-
vironment, the planning results obtained with respect to
the system and environment models at design-time might
not be transferable to the system behavior at run time.
Therefore, allowing both space and time tolerances in the
planning phase, and the ability of runtime monitoring
and self-correction are essential. Monitoring problems for
STL have been discussed in Akazaki and Ichiro (2015),
Fainekos and Pappas (2009) and Donze and Maler (2010).
Vasumathi et al. (2014) discusses MPC for signal temporal
logic specifications, but their approach requires solving the
MILP problem at each time step, and is not able to address
the time robustness issue. Lindemann and Dimarogonas
(2017) considers the motion planning problem using STL
and introduces the Discrete Average Space Robustness to
maximize the space robustness. However, in their work
time robustness is not considered in the planning phase.
To address these issues, in this work we divide the problem
into the following two parts: (1) offline control synthesis,
(2) online monitoring and self-correction. We first generate
a path that considers both space and time robustness, and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1900

then we design a prediction module and event-triggered
MPC module for the monitoring and self-correction.

The contributions of this paper are as follows. First,
we transform the robot planning problem under signal
temporal logic specifications into a mixed-integer linear
programming problem, while considering both the time
tolerances and space tolerances. To the best of our knowl-
edge, this is the first work that considers both space and
time tolerances in the planning phase. Second, we have
designed a monitoring and self-correction framework for
the runtime execution. A predicted trajectory is generated
at each time step, and we propose an event-triggered model
predictive control framework such that the robot is able to
make self-corrections when there is predicted error during
runtime execution.

The rest of the paper is organized as follows. Section
2 provides some definitions and preliminaries related to
STL. Section 3 discusses the problem formulation and
our method for maximum space-time tolerance planning.
Section 4 presents the method of converting STL specifica-
tions into MILP. Runtime monitoring and self-correction
is discussed in section 5. Section 6 shows the case studies
and we conclude in section 7.

2. PRELIMINARIES

Definition 2.1. An atomic proposition is a statement
about the system variables (x) that is either True(>)
or False(⊥) for some given values of the state variables
Karaman et al. (2008).
Definition 2.2. (STL semantics) The syntax of Metric
Temporal Logic (MTL) formulas are defined according to
the following grammar rules:

ϕ ::= T |π | ¬ϕ1 |ϕ1 ∧ ϕ2 |�Iϕ1 |ϕ1 UI ϕ2 | (1)

where I ⊆ [0, ∞]. UI symbolizes the timed Until operator.
Sometimes we will represent U[0,∞] by U. Other Boolean
and temporal operators such as conjunction (∨), even-
tually within I (♦I) etc. can be represented using the
grammar described in the definition.

For any signal s, let st denote the value of s at time t
and let (s, t) = stst+1st+2 · · · be the part of the signal
that is a sequence of st′ for t′ ∈ [t,∞). Accordingly, the
Boolean semantics of STL is recursively defined as follows:

• (s, t) � (f(s) < d)⇔ f(st) < d,
• (s, t) � ¬(f(s) < d)⇔ ¬((s, t) � (f(s) < d)),
• (s, t) � ϕ1 ∧ ϕ2 ⇔ (s, t) � ϕ1 and (s, t) � ϕ2,
• (s, t) � ϕ1 ∨ ϕ2 ⇔ (s, t) � ϕ1 or (s, t) � ϕ2,
• (s, t) � �[a,b]ϕ⇔ (s, t′) � ϕ ∀t′ ∈ [t+ a, t+ b],
• (s, t) � ♦[a,b]ϕ⇔ ∃t′ ∈ [t+ a, t+ b] s.t (s, t′) � ϕ.

Definition 2.3. (Space Robustness) STL is endowed with
a metric called robustness degree Donze and Maler (2010)
(also called “degree of satisfaction”) that quantifies how
well a given signal s satisfies a given formula ϕ. The
robustness degree is calculated recursively according to the
quantitative semantic:

• r(s, (f(s) < d), t) = d− f(st),
• r(s,¬(f(s) < d), t) = −r(s, (f(s) < d), t),
• r(s, ϕ1 ∧ ϕ2, t) = min(r(s, ϕ1, t), r(s, ϕ2, t)),

• r(s, ϕ1 ∨ ϕ2, t) = max(r(s, ϕ1, t), r(s, ϕ2, t)),
• r(s,♦[a,b]ϕ, t) = max

t′∈[t+a,t+b]
r(s, ϕ, t′),

• r(s,�[a,b]ϕ, t) = min
t′∈[t+a,t+b]

r(s, ϕ, t′),

Definition 2.4. (Time Robustness) The left and right
time robustness of an STL formula ϕ with respect to a
trace s at time t are defined as follows

• θ−(s, f(s), t) = max(d ≥ 0 s.t.∀t′ ∈ [t − d, t], (s, t) �
ϕ⇔ (s, t′) � ϕ)

• θ+(s, f(s), t) = max(d ≥ 0 s.t.∀t′ ∈ [t, t + d], (s, t) �
ϕ⇔ (s, t′) � ϕ)

The time robustness indicates how much the signal could
be shifted to the left (right) such that the specification is
still satisfied.
Assumption 2.1. (Double Integrator dynamics) The
dynamics of the robot is assumed to be given by the
following model:

X(k + 1) = A ·X(k) +B · U(k) (2)

A =

 1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 B =

(∆t2/2) 0
0 (∆t2/2)

∆t 0
0 ∆t

 (3)

X(t) =
[
x(t) y(t) ˙x(t) ˙y(t)

]T
(4)

where x(t), y(t) are the cartesian position of the robotic

agent, and ˙x(t), ˙y(t) are the velocities on each direction
respectively. Let us denote the trajectory of the system
starting at t0 with initial condition x0 and input u(t) as

Xx0,u
t0 = {X(s)|s ≥ t0,X(t+ 1) = f(t,X(t), u(t)),X(t0) =

x0}. For brevity, we will use Xt0 instead of Xx0,u
t0 whenever

we do not need the explicit information about u(t) and x0.
Satisfaction of a temporal specification ϕ by a trajectory
Xt0 will be denoted as Xt0 � ϕ.

3. MAXIMUM SPACE-TIME TOLERANCES
PLANNING

Space and time tolerances are important for the planning
problem. With large space tolerances, the robot has a
higher chance to satisfy the temporal logic specifications
when the trajectory deviates from the planning path. With
large time tolerances, the robot could handle the situation
when the execution is slower or faster than the plan.
Therefore, it is important to take both space and time
tolerances into consideration. As shown in Fig 1, if space
and time tolerances are not taken into considerations, all
three signals are considered as satisfying ♦[a,b](x > 0) from
t = 0 at the same degree. However, it is clear that the space
tolerance of ω2 is small (the specification will be violated if
we disturb x a little) and the time tolerance for ω3 is small
(the specification will be violated if we shift the signal a
little to the right).

The planning problem considered in this paper is to
determine the optimal trajectories such that the given
temporal logic specifications are satisfied, and maximizing

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1901

Fig. 1. Limitations of the point-wise quantitative seman-
tics: signals ω1, ω2 and ω3 are considered as satisfying
♦[a,b](x > 0) from t = 0 at the same degree.

the space and time tolerances at the same time. The
optimization problem could be formulated as follows:
Problem 1.

max
X(t),u(t)

λ1r
ϕ
time(Xt0) + λ2r

ϕ
space(Xt0)

subject to X(t+ 1) = f(X(t), u(t))

umin ≤ u(t) ≤ umax
Xt0 � ϕ

(5)

• rϕtime(Xt0) and rϕspace(Xt0) are the time and space
tolerances for the trajectory Xt0 over specification ϕ.
• The system dynamics are given in equation (2), and

the control inputs are bounded to [umin, umax].
• Xt0 � ϕ is the constraint that the STL specifications

are satisfied.

The temporal logic constraints ϕ is transformed into linear
constraints and will be described in details in the next
section. The objective function we consider here is to
maximize the overall space and time tolerances, which is

rϕ(Xt0) =λ1 · rϕtime(Xt0) + λ2 · rϕspace(Xt0) (6)

where λ1 and λ2 are the weight coefficients, and λ1 + λ2 = 1.
rspace(Xt0) is the space tolerance, which is defined simi-
larly as the space robustness in Definition 2.3. rtime(Xt0) is
the time tolerance, and our goal is to generate a trajectory
that is robust to time shifting. Therefore, we propose to
extend the definition of time robustness as follows:

For eventually (♦a,bA) operator, the time tolerance is
defined as follows:

rϕtime(Xt0) =

tb∑
t=ta

· 1

σ
√

2π
e(t−

ta+tb
2)2/2σ2

· PAt (7)

where σ is a user-defined parameter indicating the stan-
dard deviation. Basically, we want to maximize the time
that the robotic agent is staying within the locations of
interests, and preferably in the middle of the allowed time
interval. PAt is a binary variable and the value is 1 when the
robot is within location A at time t and it is 0 otherwise.
More detail discussion on how to construct PAt will be
described in the next section.

For always (�[a,b]A) operator, the time tolerance is defined
as follows:

rϕtime(Xt0) =

tb∑
t=ta−τ

· 1

σ
√

2π
e(t−ta)

2/2σ2

· PAt

+

tb+τ∑
t=tb

· 1

σ
√

2π
e(t−tb)

2/2σ2

· PAt

(8)

where τ is a user-defined parameter and we want the robot
to also satisfy the specification before ta and after tb.
Note that the satisfaction of the specifications is already
enforced by the constraint Xt0 � ϕ, and we are maximizing
the space and time tolerances in the objective function
based on that.

4. MIXED INTEGER LINEAR PROGRAMMING

In this section, we demonstrate our approach to translate a
time-bounded temporal logic formula (constraint Xt0 � ϕ
in equation (1)) to mixed integer linear constraints on
state variables and inputs. Any convex polygon can be
represented as an intersection of several halfspaces. If the
area of interest has a non-convex shape, we could always
decompose the polygon to convex ones and link them
using disjunction operators. A halfspace is expressed by
a set of points, H = {x : hTi x ≤ ki}. Thus, x(t) ∈ P
is equivalent to x(t) ∈ ∩ni=1H(i). In order to translate
the temporal constraints with location atomic propositions
into mixed integer convex (linear) constraints, we use a
similar method as discussed in Zhou et al. (2015).

In a polygonal environment, atomic propositions (AP),
p ∈ Π, can be related to states of the system using
disjunction and conjunction of halfspaces. In other words,
the relationship between measured outputs such as the
location of the robotic agent and the halfspaces defines
the propositions used in the temporal logic. Consider the
convex polygon case and let zti ∈ {0, 1} be the binary
variables associated with halfspaces {x(t) : hTi x ≤ ki} at
time t = 0, · · · , N . We enforce the following constraint
zti = 1 if and only if hTi x ≤ ki by adding the convex
(linear) constraints,

hTi x ≤ ki +M(1− zti), hTi x ≥ ki −Mzti + ε (9)

whereM is a large positive number and ε is a small positive
number. If we denote PPt = ∧ni=1z

t
i , then PPt = 1 if and

only if x(t) ∈ P at time t, and 0 otherwise. Therefore,
PPt is the binary variable that indicates whether the
robotic agent lie in area P at time t. Let p and q denote
labels for some location in the environment. The following
Boolean operators, such as ¬, ∧, ∨, can be translated
into linear constraints. For t ∈ {0, 1, ..., N}, we denote
the variables associated with formula ϕ made up with
propositions p ∈ Π at time t as Pϕt . The next subsection
will discuss the construction of Pϕt for different temporal
logic specifications.

4.1 MTL to Mixed Integer Linear Constraints

Let p and q denote labels for some locations in the
environment.

• The negation operation, ϕ = ¬p is modeled as

Pϕt = 1− P pt (10)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1902

• The conjunction operation, ϕ = ∧mi=1pi is modeled as

Pϕt ≤ P
pi
t , i = 1, · · ·m, Pϕt ≥ 1−m+

m∑
i=1

P pit

(11)
• The disjunction operation, ϕ = ∨mi=1pi is modeled as

Pϕt ≥ P
pi
t , i = 1, · · ·m; Pϕt ≤

m∑
i=1

P pit (12)

Similarly, the temporal operators can be modeled using
linear constraints as well. Let t ∈ {0, 1, · · · , N − t2}, where
[t1, t2] is the time interval used in the MTL.

• Eventually: ϕ = ♦[t1,t2]p is equivalent to

Pϕt ≥ P pτ , τ ∈ {t+ t1, · · · , t+ t2}

Pϕt ≤
t+t2∑

τ=t+t1

P pτ
(13)

• Always: ϕ = �[t1,t2]p is equivalent to

Pϕt ≤ P pτ , τ ∈ {t+ t1, · · · , t+ t2}

Pϕt ≥
t+t2∑

τ=t+t1

P pτ − (t2 − t1)
(14)

• Until: ϕ = p U[t1,t2] q is equivalent to

atj ≤ P qj , j ∈ {t+ t1, · · · , t+ t2}
atj ≤ P pk , k ∈ {t, · · · , j − 1}, j ∈ {t+ t1, · · · , t+ t2}

atj ≥ P qj +

j−1∑
k=t

P pk − (j − t), j ∈ {t+ t1, · · · , t+ t2}

Pϕt ≤
t+t2∑
j=t+t1

atj , Pϕt ≥ atj , j ∈ t+ t1, · · · , t+ t2

(15)

For the until operator, we define extra slack variables
similar to Karaman et al. (2008) in order to make the
constraints linear in terms of the variables. The constraints
for the until operator could be interpreted as follows:

Pϕt =
t+t2∨
j=t+t1

(∧k=j−1k=t P pk) ∧ P qj)

Using this approach, we translate the given high level
specification in STL (Xt0 � ϕ) to a set of mixed integer
linear constraints. At the end, we add the constraint Pϕ0 =
1, i.e. the overall specification ϕ is satisfied. Since Boolean
variables are only introduced when halfspaces are defined,
the computation cost of MILP is at most exponential to
the number of halfspaces times the discrete steps N .

5. RUNTIME MONITORING AND
SELF-CORRECTION

Let N be the horizon of the planning trajectory, and let
Xr(t) and Ur(t) be the reference states and control inputs
for t ∈ [1, N] respectively. Note that Xr(t) and Ur(t)
could be obtained offline by solving the MILP in Problem
1. During runtime, two threshold parameters θspace and
θtime are defined to monitor the runtime execution. θspace
and θtime are the space and time tolerances we want
to maintain for the execution sequence. At time t′, we

denote the observed states as Xo(t), where t ∈ [1, t′]. The
predicted states Xp(t) of the robot is generated based on
the observed states and the reference inputs until the end
of the execution (t = N), i.e,

Xp(τ + 1) = f(Xp(τ), Ur(τ)), τ = t′, · · ·N − 1

Xp(τ) = Xo(τ) for τ = 1, · · · , t′ (16)

Let Xp
t denote the predicted trajectory at time t, we then

evaluate the tolerance rtime(X
p
t) and rspace(X

p
t) for the

predicted trajectory. If at time t we have rtime(X
p
t) ≥ θtime

and rspace(X
p
t) ≥ θspace, then it indicates the execution

sequence is able to satisfy the specification and there is
no need for correction. We simply use Ur(t) from offline
calculation as the control inputs at time t. Otherwise, the
event-trigger MPC module will be activated and correct
the execution.

5.1 Event-triggered Model Predictive Control

An event-triggered MPC is designed for runtime self-
correction, where we are constantly evaluating whether
the predicted trajectory still satisfies the given spec-
ification and maintains a specific tolerance degree. If
rspace(X

p
t) < θspace or rtime(X

p
t) < θtime at time t, it

suggests possible violations for the specifications in the
future and the MPC module will be triggered. The MPC
problem is formulated as follows:

min
X(t),u(t)

τ=t+T∑
τ=t

(Xr(τ)−X(τ))TQ(Xr(τ)−X(τ))

subject to X(τ + 1) = f(X(τ), u(τ)), τ ∈ [t, t+ T − 1]

X(t+ T) = Xr(t+ T)
(17)

where T is the horizon. By solving the MPC problem, we
try to bring the robot back to the reference trajectory.
Note that only the first step of the computed optimal
control strategy (denoted as u∗(t)) is implemented, i.e, at
time t, we use u∗(t) instead of Ur(t) as the control input.
We will re-evaluate the predicted states at the next time
step iteratively until the end of the planning trajectory.

6. CASE STUDIES

In this section, we consider two different case studies,
where the first one has tighter time constraints and the
second one has tighter space constraints. The experiments
are run through YALMIP-CPLEX on a computer with
2.8GHz processor and 8GB memory. The MPC has a
horizon T=10. For both examples, we use θspace = 0.3
and θtime = 4.
Example 6.1. We first consider a sequential task that the
robot needs to visit position A between 10 and 20 seconds,
and visit B between 21 and 31 seconds, visit C between 32
and 42 seconds, and never be in the yellow regions Ois
(i ∈ [1, k1], where k1 is the number of obstacles). The STL
specification is given as below.

ϕ1 = ♦[10,20]A∧♦[21,31]B∧♦[32,42]C∧(∧
i=1,···,k1

�¬Oi) (18)

Region A is represented as (x > 2∧x < 3∧ y > 6∧ y < 7)
and similarly for other regions. The optimization problem

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1903

Fig. 2. Resulting path with maximum space and time
tolerances for ϕ1. The blue text shows the time that
the robot enters each green region.

is formulated as in equation (1). We assume the velocity
information is perfect when we are generating the reference
trajectory offline, and is not perfect with a white noise
deviation added during runtime execution. The resulting
reference trajectory is shown in Fig 2. As can be seen from
Fig 2, the final path of the robot stays far away from the
yellow regions, and always goes through the center of the
green regions for maximum space robustness. The robot
also slows down when it enters green regions to maximize
time robustness. Fig 3 shows that when the disturbance
is small, the robot is able to still satisfy the specification
without any correction.

Fig. 3. Monitoring runtime sequence (blue line) with space
and time tolerances. The monitor indicates that the
runtime sequence also satisfies ϕ. No correction is
needed and MPC never turns on.

However, when the deviation is large, the MPC module
will be turned on and guide the robot to satisfy the
desired specification with self-corrections. Note that the
blue dashed line in Fig 4 is the predicted trajectory at
t = 8, and it is not able to reach position C thus violating
the specification. Fig 5 shows the triggering instances of
MPC, and the MPC module has been triggered for 4
seconds in total in this example.

Example 6.2. In the second example, we consider an
environment with more obstacles but with a relatively
looser time constraints. The specification is given as below,
where we require the robot to eventually visit position
A between 10 seconds and 20 seconds, and eventually
visit position C between 32 seconds and 42 seconds while
avoiding all k2 obstacles.

Fig. 4. Resulting trajectory for ϕ1 with self-correction. The
blue dashed line indicates the predicted path at t = 8.
The red line shows the path with self-corrections. The
reference trajectory is marked in black.

Fig. 5. Triggering instances for MPC. The MPC module
has turned on for 4 seconds in total.

ϕ2 = ♦[10,20]A ∧ ♦[32,42]C ∧ (∧
i=1,···,k2

�¬Oi) (19)

Fig. 6. Resulting path with maximum space and time
tolerances for ϕ2

Similarly, the offline planning is able to generate a path
that maximize the space and time tolerances as shown in
Fig 6. It is clearly visible in this case that the trajectory
tends to stay in green regions as long as possible during
the required time interval for maximum time robustness.
During runtime execution, the blue dashed line in Fig 7 is
the predicting trajectory at t = 6, and it reaches position
C at the last time step. The time robustness requirement
is thus violated and therefore MPC is triggered. Fig 8
shows the triggering instances of MPC, and MPC has
been triggered for 11 seconds in total in this example.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1904

Fig. 7. Resulting trajectory for ϕ2 with self-correction. The
blue dashed line indicates the predicted path at t = 6.
The red line shows the path with self-corrections.

Fig. 8. Triggering instances for MPC. The MPC module
has turned on for 11 seconds in total.

Compared to the first example, MPC has been triggered
more frequently due to the complexity of the environment
(It is more likely to hit an obstacle). Table 1 summarizes
the number of linear constraints and computation time for
each of the examples.

Table 1. Number of constraints and computa-
tion time

STL

Specifications

of

linear constraints

Computation

time (s)

ϕ1 3154 10123

ϕ2 2615 9673

7. CONCLUSIONS

In this paper, we have presented an optimization-based ap-
proach for robot planning, monitoring and self-correction
problems under STL specifications with finite time con-
straints. Our approach translates the STL specifications
into mixed-integer linear constraints, and the goal of the
optimization problem is to maximize the overall space and
time tolerances under double integrator dynamics of the
robotic agent. During runtime execution, we consider a
realistic situation where the velocity information is not
perfect. A prediction module and a self-correction module
with event-triggered model predictive control have been
designed to predict and prevent possible future violations
of the specifications. The simulation results show promis-
ing performance of our approach to find an optimal solu-
tion, and the robotic agent is able to make self-corrections

during runtime execution when the velocity information is
noisy.

Since we have used a binary variable (z) with each half-
space, the problem would be complex if the environment
contains too many halfspaces. Therefore, the future direc-
tions of this work could include task decomposition and
reduction of binary variables. Other aspects such as learn-
ing from the self-corrections, and multi-robot cooperative
planning could also be possible extension of this work.

REFERENCES

Akazaki, T. and Ichiro, H. (2015). Time robustness in mtl
and expressivity in hybrid system falsification. Interna-
tional Conference on Computer Aided Verification.

Alur, R., Feder, T., and Henzinger, T.A. (1996). The
benefits of relaxing punctuality. Journal of the ACM,
43, 116–146.

Bhatia, A., Maly, M.R., Kavraki, L.E., and Vardi, M.Y.
(2011). Motion planning with complex goals. IEEE
Robotics Automation Magazine.

Donze, A. and Maler, O. (2010). Robust satisfaction of
temporal logic over real-valued signals. International
Conference on Formal Modeling and Analysis of Timed
Systems.

Fainekos, G.E. and Pappas, G.J. (2009). Robustness of
temporal logic specifications for continuous-time signals.
Theoretical Computer Science.

Karaman, S., Sanfelice, R.G., and Frazzoli, E. (2008). Op-
timal control of mixed logical dynamical systems with
linear temporal logic specifications. IEEE Conference
on Decision and Control.

Lamport, L. (1994). The temporal logic of actions. ACM
Transactions on Programming Languages and Systems.

Lin, Z. and Baras, J. (2019). Planning and runtime
monitoring of robotic manipulator using metric interval
temporal logic. IEEE System Conference.

Lindemann, L. and Dimarogonas, D.V. (2017). Robust
motion planning employing signal temporal logic. Amer-
ican Control Conference.

Lindemann, L., Maity, D., Baras, J.S., and Dimarogonas,
D.V. (2018). Event-triggered feedback control for signal
temporal logic tasks. IEEE Conference on Decision and
Control.

Plaku, E. and Karaman, S. (2016). Motion planning with
temporal-logic specifications: Progress and challenges.
AI communication.

Smith, S.L., Tumova, J., Belta, C., and Rus, D. (2010).
Optimal path planning under temporal logic con-
straints. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems.

Vasumathi, R., Donze, A., Maasoumy, M., and Murray,
R.M. (2014). Model predictive control with signal
temporal logic specifications. 53rd IEEE Conference on
Decision and Control.

Wolff, E., Topcu, U., and Murray, R.M. (2014).
Optimization-based trajectory generation with linear
temporal logic specifications. International Conference
on Robotics and Automation.

Zhou, Y., Maity, D., and Baras, J.S. (2015). Optimal
mission planner with timed temporal logic constraints.
European Control Conference.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1905

