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Abstract: In this paper, an approach toward system theory for soft robotics is considered. An
overview of a theoretical scenario is presented by focusing on an elastic rod which is regarded as
one of the most essential objects for soft mechanical elements of soft robots. The presented topics
include geometry of its backbone curve, kinematics, shape, mechanics (mainly its statics), and
discretization, with emphasizing on some important system properties of an elastic rod which
will be useful for shape computation and stiffness identification.
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1. INTRODUCTION

1.1 Background and Purpose

Soft Robotics deals with robots including highly de-
formable continuum mechanical parts and having some
actuators and sensors for being controlled. Soft Robotics
is one of the branches in robotics, but a strongly inter-
disciplinary research field which gathers much attention
from the outside of robotics such as chemistry, material
science and biology. Soft robotics is not a new research
field. Actually, we can find many soft robots which were
invented by a quarter of a century ago (1; 2; 3). It is a
fact that the number of research papers on soft robotics is
rapidly increasing and soft robotics is one of main topics in
robotics recently. Now it is the time to consider to control
soft robots successfully so as to be useful for some practical
applications.

As a controlled system, a soft robot has the following
properties in general:

(1) The system is infinite dimensional, because it includes
a largely deformable continuum part which has infi-
nite kinematic degrees of freedom.

(2) The system is essentially under-actuated, because the
number of actuators to be attached is finite for this
infinite dimensional system.

(3) The system is essentially under-observable, because
the number of sensors to be attached is finite for this
infinite dimensional system.

(4) The system has non-trivial equilibrium points, be-
cause the static shape of a soft robots is determined
by statically balancing of an infinite dimensional me-
chanical system. 1

� This work was supported by JSPS KAKENHI Grant-in-Aid for
Scientific Research on Innovative Areas ”Science of Soft Robot”
project under Grant Number JP18H05466.
1 This property was pointed out by Prof. Masato Ishikawa of Osaka
University.

Looking these general system properties directly, it seems
quite challenging to consider a system theory for soft
robots. The purpose of this research is to establish a useful
system theory for soft robotics so as to make full use of the
functions of soft robots by controlling them appropriately.

1.2 Related Work

Control aspects of soft robots were discussed in some
comprehensive review papers (4; 5; 6) 2 . Historically, the
theory of robot control was built up based on some impor-
tant system properties (8). One famous good example is
that the task space PD feedback control law for a robot
manipulator successfully can be found by an energy-based
Lyanpunov function based on positive definiteness of the
inertia matrix and skew symmetry of the matrix related
to the Coriolis and centrifugal forces (9). However, system
properties of soft robots important for controlling them
have not been fully discussed yet.

1.3 Proposed Direction

It is reasonable to take a strategy to build up a theory
by focusing on a certain important class of soft object
which is a main part of typical soft robots, and then to
extend it to other classes. In spite of the hopeless general
system properties of soft robots shown above, there is a
possibility to control a soft robot system whose soft body
is characterized by an elastic rod, one of the most typical
objects frequently appeared in soft robotics, due to recent
advanced application of the elastic rod theory (10) to soft
robotics with utilize the system properties of an elastic
rod.

In this paper, a system theory for soft robotics based on an
elastic rod, a typical soft element and one of the simplest
continuum objects studied in the rod theory, is discussed

2 Recently, an excellent special issue on soft robot mechanisms
including many insightful articles was published, but it is available
only in Japanese so far (7).
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Fig. 1. A deformed elastic rod.

as an important step for the research purpose. An elastic
rod can be utilized to investigate flexibility of biological
trunk which is considered as one of important factors in
interacting with the environment successfully. The soft
robot system theory based on an elastic rod is expected
to become like a Linear Time-Invariant (LTI) system from
which a variety of branches of control theory stem.

2. ROD MODEL AND RELATED NOTIONS

In this section, a Kirchhoff elastic model is reviewed briefly
and related notions on an elastic rod are introduced with
geometric considerations.

2.1 Review of Elastic Rod Model

There are many methods to model an elastic rod. Here
a Kirchhoff elastic model 3 is utilized because the entire
shape of an elastic rod can be captured efficiently, and
important system properties can be extracted (10).

Consider an elastic rod with length L (Fig. 1). An elastic
rod deforms by applying forces to its both ends. Here this
situation can be represented by fixing the both ends to
certain places. One end of the rod is called the base while
the other end is called the tip. The longitudinal direction
of a rod is defined as the direction from the base to the
tip.

The shape of the rod can be captured by the spatial curve
obtained by continuously connecting the geometric centers
of the cross section perpendicular to the longitudinal
direction of a rod. This curve is called the backbone curve
3 In a Kirchhoff elastic rod, we assume an inextensible and unshear-
able rod with a linear constitutive equation.

(13). Without loss of generality, it is assumed that the
backbone curve of an elastic rod is straight if no external
forces/torques is applied on it.

A typical way to understand geometric aspects of an elastic
rod is to attach frames continuously to all the point on the
backbone curve (11). More details of the frame setting can
be seen in (12).

Let σ ∈ [0 L] be the arc length parameter of the backbone
curve. Let p(σ) ∈ �3 be the position vector of the point
on the backbone curve at σ. Let F (σ) ∈ SO(3) be the
orientation matrix of the frame attached to the point
on the backbone curve at σ. Then, the geometry of the
backbone curve, i.e., the kinematics of an elastic rod, can
be expressed by the following differential equations w.r.t.
the arc length parameter σ:

dF

dσ
(σ) =F (σ) [θ(σ)×] (1)

dp

dσ
(σ) =F (σ)ex (2)

where θ(σ) := [θt(σ) θn(σ) θb(σ)]
T ∈ �3, and variables

θt(σ), θn(σ), θb(σ)∈ � are the infinitesimal rotational
amount around three axes of the frame at σ, respectively.
Vector ex = [1 0 0]T is the unit vector in the x-direction.
Expression a × b denotes the outer product of vectors a
and b ∈ �3, and notation [·×] stands for the operator
from a three dimensional vector to a three dimensional
skew symmetric matrix such that a× b = [a×] b.

Assume that the base of an elastic rod is fixed to the
position pb ∈ �3 with the orientation Fb ∈ SO(3).
Moreover, assume that the tip of an elastic rod is fixed
to the position p∗ ∈ �3 with the orientation F ∗ ∈ SO(3).
Then, the boundary conditions for the rod ends can be
expressed by

p(0) = pb (3)

F (0) =Fb (4)

p(L) = p∗ (5)

F (L) =F ∗ (6)

2.2 Shape

A shape of an elastic rod, which is one of the most
important notions in order to capture motion of soft
robots, is introduced here.

It is appropriate to represent a shape of an elastic rod as
a set (or an order set) of the pairs each of which consists
of the position of a featured point and the orientation of
the associated frame in a three dimensional space because
humans can recognize its shape from the whole made
by placing each oriented frame at each position of the
associated point if a sufficient number of featured positions
with orientations are selected. It is geometrically desirable
to define the shape so as to be independent of the position
and orientation of an elastic rod. If humans recognize two
shapes of elastic rods are identical intuitively, those values
of the shapes must be equal, and vice versa. The backbone
curve itself seems one of the candidate as the shape
of an elastic rod, but it does not include the rotations
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around the longitudinal direction along the backbone,
and its representation depends on the rod position and
orientation. One way to represent the shape of an elastic
rod s is to define it as the following mapping:

s : [0 L] → �3 × SO(3) (7)

σ �→
(
Fb

T {p(σ)− pb} ,Fb
TF (σ)

)
(8)

where note that p(σ) and F (σ) have to satisfy the rod
kinematics (1) and (2). Therefore, the range of this map-
ping becomes a subset of �3 × SO(3). Hereinafter, the
space of all the possible shapes is denoted by S. Here we
define the straight shape s0 ∈ S as

s0(σ) := (σex, I3) (9)

Another way to represent a shape of an elastic rod s̄ is
to directly employ θ(σ) which expresses the amounts of
bendings and twisting of the rod:

s̄ : [0 L] → �3 (10)

σ �→ θ(σ) (11)

θ(σ) is a value corresponding to the curvature and tor-
sion of a curve, and thus it is not what we call a shape
intuitively, but this shape representation is easy to treat
because it does not confined to the rod kinematics. The
space of all the possible shape by this representation is
denoted by S̄. The straight shape of this shape represen-
tation ŝ0 ∈ S̄ corresponding to the straight shape in the
previous shape representation s0 is as follows:

s̄0(σ) := 0 (12)

3. MECHANICS

In this section, mechanics of an elastic rod is discussed.
The central topic is statics of an elastic rod.

3.1 Review of Rod Statics

Suppose that the both ends of an elastic rod is fixed
certain positions with orientations. In this situation, the
elastic rod is deformed forcibly, which means that some
external forces and torques are applied to the both ends
of an elastic rod. Let ft,mt∈ �3 be the external force and
torque applied to the tip of an elastic rod. If an elastic
rod is in statically balancing configurations, the following
equations hold:

fb = ft (13)

mb =mt + (p∗ − p(0))× ft (14)

where vectors fb andmb ∈ �3 are the force and torque ap-
plied from an elastic rod to the base ground, respectively.
The pair of these vectors is called the base wrench.

For an elastic rod in statically balancing configurations,
the following equations corresponding to the Euler equa-
tions for calculus of variation are satisfied with the base
wrench:

F (σ)diag{k(σ)} θ(σ) = {p(0)− p(σ)} × fb +mb

(15)

where k(σ) = [kt(σ) kn(σ) kb(σ)]
T

is the rod stiffness
vector at σ, and its non-negative real elements are the
twisting stiffness and the bending stiffnesses around the
axes of the frame at σ, respectively. This equations express
that the torque balance between the reaction of the joint
stiffness and the base wrench must hold at each point on
the backbone curve.

Here we only consider statically balancing situations, but
if we consider rod inertial and viscosity as well as elasticity,
we can obtain the differential equations w.r.t. time. The
obtained equations will includes parameter σ which takes
any real value in continuous interval [0 L], which shows
that the dynamical system of an elastic rod is infinite
dimensional.

Equations (1)-(6) and (15) are the set of equations which
must be satisfied by statically balancing shapes, and
the solution of the equations is not trivial. Therefore,
the dynamical system of an elastic rod has non-trivial
equilibrium states. Hereinafter, the space of the statically
balancing shapes is denoted by E ⊂ S or Ē ⊂ S̄.
3.2 Rod Stiffness

Rod stiffness is as important as rod shape. Here rod
stiffness is introduced in order to express the stiffness along
the rod trunk. Rod stiffness will be utilized for representing
flexibility of a biological trunk.

The stiffness of an elastic rod r is defined by the following
mapping:

r : [0 L] → �+
3 (16)

σ �→ k(σ) (17)

The space of the rod stiffness is denoted by R. The zero
rod stiffness r0 ∈ R is defined by the following expression:

r0 := 0 (18)

4. IMPORTANT SYSTEM PROPERTIES

In this section, we explain the two very important system
properties of an elastic rod in order to understand an
elastic rod as a system as a whole.

4.1 Wrench-Shape Bijectiveness

Suppose that the stiffness of an elastic rod is given. Except
the straight shape, the map from the base wrench to the
equilibrium shape is bijective (14). This is a very useful
system property of an elastic rod because any statically
balancing shape is characterized by some base wrench
which is a six dimensional vector.

The space of the base wrench is �6. The set of the base
wrenches corresponding to the straight shapes W0 can be
expressed by

W0 :=
{
(fb,mb) ∈ �6

∣∣∣Fb
Tfb = cex,mb = 0, c ∈ �

}

(19)
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Fig. 2. Demonstrating real-time shape estimation of an
elastic rod.

Therefore, this rod system property means that the map-
ping f : �6 −W0 → E − s0 is bijective.

4.2 Rod Integrability

Suppose that the stiffness of an elastic rod is given again.
Given a base wrench, the differential equations w.r.t. σ
(1) and (2) can be integrated from the rod base to the
rod tip with using (15). This system property is called the
rod integrability here. This property can be understood
from the Antman’s famous book on the elasticity (10)
or the formulation by Rucker and Webster (15), but was
not shown explicitly. The word ”Rod Integration” can
be seen in the paper by Till et al. (16). One of the
important remarks on this system property is that it is
possible to compute the rod integration fast even in real
time by taking a proper discretization method and some
approximation, which will be explain in the next section.
The author and his colleagues succeeded to implement a
real-time shape estimation algorithm for reconstructing a
rod shape from a six-axes force/torque sensor attached at
the base end of the rod without employing any convergence
calculation (17; 18).

Fig. 2 is a snapshot of demonstrating real-time shape es-
timation of an elastic rod by using a six-axes force/torque
sensor. The graphic rod shape drawn on the laptop PC
screen (right) is similar to the real rod shape deformed by
a human hand (left). This demonstration is an illustrative
example of understanding the rod integrability property as
well as the wrench-shape bijectiveness property intuitively.

5. DISCRETIZATION

Discretization of an elastic rod model is important not only
for computing some practical values on a rod system, but
also for understanding the system properties more deeply.

5.1 Review of Discretized Elastic Rod Model

It has been known that it is reasonable to approximate a
continuum elastic rod with a seral chain of n rigid bodies
connected with n there-degrees-of-freedom elastic joints.
This discretized version of an elastic rod model can be

expressed as follows (12). First, the difference equations
corresponding to the rod kinematics can be represented
by

Fi =Fi−1RJ(θi) (20)

pi = pi−1 + lFiex (21)

Second, the discretized Euler equations which express
torque balance at any position of the elastic joints can
be expressed by

Aidiag{kd,i}θi = (p0 − pi−1)× fb +mb, (22)

where i ∈ {1, · · · , n} is the index for rigid bodies or elastic
joints numbered from the base to the tip in turn. Vector
pi ∈ �3 is the position vector of the (i − 1)-th join while
matrix Fi ∈ SO(3) is the orientation matrix of the i-th
rigid body. Variables θt,i, θn,i, θb,i ∈ � are the relative
angles from the (i − 1)-th frame to the i-th frame around
the axes of the i − 1 frame, respectively. Vector θi ∈ �3

is made by arranging those variables in a column, i.e.,

θi := [θt,i θn,i θb,i]
T
. Constant l is the length of the rigid

body defined by l = L/n. Vector kd,i = [kdt,i kdn,i kdb,i]
T

is the discretized version of the stiffness vector which
consists of the three rotational spring constants around the
frame kdt,i, kdn,i, kdb,i. Matrix RJ ∈ SO(3) is the matrix
expressing the rotational action of the three-degrees-of-
freedom spring joint which can be defined by

RJ(θi) =R(ex, θt,i)R(ey, θn,i)R(ez, θb,i) (23)

Matrix Ai := [at,ian,iab,i] is the matrix obtained by
arranging the unit-length axis vectors of the i-th joint in
a row. Each axis vector can be defined by

at,i =Fi−1ex (24)

an,i =Fi−1R(ex, θt,i)ey (25)

ab,i =Fi−1R(ex, θt,i)R(ey , θn,i)ez (26)

where R(a, θ) ∈ SO(3) is the matrix expressing the
rotational action around the unit-length directional vector
with the amount of angle θ.

Third, the corresponding boundary conditions can be
written by

p0 = pb (27)

F0 =Fb. (28)

pn = p∗ (29)

Fn =F ∗. (30)

In this discretization, when the number of partition n
becomes large, Fi approaches to F (L · i/n), Fi−1 next
to Fi approaches to Fi, and then, R(ex, θt,i) approaches
to the identity matrix. Therefore, note that, at the limit
ofn → ∞, Ai converges to F (σ), and kd,i goes to k(L ·
i/n)/l.

5.2 Discretized shape and rod stiffness

Due to the discretization, the rod system becomes finite
dimensional, and it is possible to express the rod shape
using vectors and matrices.
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The discretized version of the rod shape sd∈
(�3 × SO(3)

)n
can be defined by

sd :=
{(

Fb
T {p1 − pb} ,Fb

TF1

)
,

· · · ,
(
Fb

T {pi − pb} ,Fb
TFi

)
,

· · · ,
(
Fb

T {pn − pb} ,Fb
TFn

)}
(31)

Alternatively, the rod shape s̄d∈ �3n can be defined by
another way as follows:

s̄d =

⎡
⎢⎢⎢⎢⎢⎣

θ1

...
θi

...
θn

⎤
⎥⎥⎥⎥⎥⎦

(32)

Moreover, the discretized version of the rod stiffness r̄d∈
�+

3n can be defined by

kd =

⎡
⎢⎢⎢⎢⎢⎣

kd,1

...
kd,i

...
kd,n

⎤
⎥⎥⎥⎥⎥⎦

(33)

5.3 Understanding System Properties from Discretization

It is possible to understand the system properties shown
in section 4 better from the discretized rod model.

The discretized Euler equations which represent the torque
balance at each joint can be rewritten as follows because
Ai ≈ Fi−1 when the number of partition n is sufficiently
large:

θi ≈ diag{kd,i}−1Fi−1
T {(p0 − pi−1)× fb +mb}

(34)

From these equations, it is easy to understand that, given
the rod stiffness and the base wrench, it is possible to
calculate θi from pi−1 and Fi−1, and furthermore, to
calculate pi and Fi due to the discretized rod kinematics.
This corresponds to the rod integrability. On the other
hand, from the structure of equation (34), it is not difficult
to show that, given the rod stiffness, as far as the shape
is not straight, a different base wrench yields a different
equilibrium shape, which proves that the mapping form
the base wrench to the equilibrium shape is injective.
Moreover, since θi which satisfies equation (22) means the
equilibrium shape, the mapping is proven to be surjective,
too. Therefore, from the discretized elastic rod model, we
can understand the bijective property of the mapping from
the base wrench to the equilibrium shape very easily.

5.4 System Properties on Rod Stiffness

It should be noted that the shape and the rod stiffness are
commutative, i.e., the following equation holds

diag{kd,i}θi =diag{θi}kd,i (35)

Thus, in the case of sufficiently large n, the discretize Euler
equations (22) can be rewritten by

kd,i ≈ diag{θi}−1
Fi−1

T {(p0 − pi−1)× fb +mb}
(36)

which shows that, given the equilibrium shape, in a sim-
ilar manner as the previous proof of the wrench-shape
bijectiveness, the mapping from the base wrench to the
rod stiffness which realizes the equilibrium shape is also
bijective.

Based on the rod system properties, we can consider
the analogy between an elastic rod and one-degree-of-
freedom linear spring f = kx (f : the force applied to
the linear spring, x: the extension of the spring, k: the
spring constant). The detail discussion of this analogy
can be found in (19). This analogy will be useful for
considering the problems of the shape computation and
stiffness identification properly.

6. CONCLUSION

In this paper, an approach for system theory for soft
robotics including kinematics, statics, shape computation,
stiffness identification was presented with emphasizing on
an elastic rod, one of the most typical largely deformable
object in soft robotics.

Essential future directions includes extension of the discus-
sion here along more general Cosserat rod theory, consid-
eration of system theory for other typical soft robots such
as soft pneumatic actuators, and treatment of dynamics
which is essential for successful physical interaction to the
environment.

REFERENCES

[1] Hirose, S., T. Kado, Y. Umetani: Tensor Actuated
Elastic Manipulator, Proc. of the Sixth World Congress
on Theory of Mechanisms, 978/981, 1983.

[2] K. Ikuta, M. Tsukamoto, and S. Hirose: Shape Memory
Arroy Servo Actuator System with Electric Resistance
Feedback and Application for Active Endoscope, Proc.
of the 1988 IEEE International Conference on Robotics
and Automation (ICRA), 427/430, 1988.

[3] Suzumori, K., S. Iikura and T. Tanaka: Development
of Flexible Micro-Actuator and Its Application to
Robot Mechanisms, Proc. of the IEEE International
Conference on Robotics and Automation, 1991.

[4] D. Rus and M. Tolley: Design, fabrication and control
of soft robots, Nature, 2015.

[5] C. Laschi, B. Mazzolai, M. Cianchetti: Soft robotics:
Technologies and systems pushing the boundaries of
robot abilities, Science robotics, 2016.

[6] T. G. Thuruthel, Y. Ansari, E. Falotico, C. Laschi:
Control strategies for soft robotic manipulators: A
Survey, Soft robotics, 2018.

[7] Special Issue on Origin and Development of Soft Robot
Mechanisms, K. Tadakuma and K. Suzumori ed., Jour-
nal of the Society of Instrument and Control Engineers,
2019. (in Japanese)

[8] The Zodiac, Theory of Robot Control, Springer, 1996.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9307



[9] M. Takegaki and S. Arimoto, A new feedback method
for dynamic control of manipulators, ASME J. of
Dynamic System, Measurement, and Control, 102, 119-
125, 1981.

[10] Antman, S.: Nonlinear problems of elasticity, 2nd Ed.,
Springer, 2004.

[11] O’Neill, B.: Elementary Differential Geometry, Re-
vised 2nd ed., Academic Press, 2006.

[12] H, Mochiyama: Model Validation of Discretized Spa-
tial Closed Elastica, Proc. of IEEE/RSJ IROS16,
5216/5223, 2016.

[13] Chirikjian, G.S. and J.W. Burdick: A modal ap-
proach to hyper-redundant manipulator kinematics,
IEEE Transactions on Robotics and Automation, 10-3,
343/354, 1994.

[14] Bretl, T. and Z. McCarthy, Quasi-Static Manipula-
tion of a Kirchhoff Elastic Rod based on a Geometric
Analysis of Equilibrium Configurations, The Int. J. of
Robotics Research, 33-1, 48/68, 2014.

[15] D.C. Rucker and R.J. Webster III: Statics and Dy-
namics of Continuum Robots with General Tendon
Routing and External Loading, IEEE ToR, 27-6,
1033/1044, 2011.

[16] Till, J., C.E. Bryson, S. Chung, A. Orekhov, D.C.
Rucker: Efficient Computation of Multiple Coupled
Cosserat Rod Models for Real-Time Simulation and
Control of Parallel Continuum Manipulators, Proc. of
ICRA2015,

[17] Takano, R., H. Mochiyama, N. Takesue: Real-time
Shape Estimation of Kirchhoff Elastic Rod Based
on Force/Torque Sensor, Proc. of IEEE ICRA17,
2508/2515, 2017.

[18] N. Nakagawa and H. Mochiyama: Real-time Shape
Estimation of an Elastic Rod Using a Robot Manipu-
lator Equipped with a Sense of Force, Proc. IEEE/RSJ
IROS2018, 8067-8073, 2018.

[19] H. Mochiyama: A Basic Idea of Identifying the Stiff-
ness of an Elastic Rod along its Backbone, Proc.
of the 30th 2019 IEEE International Symposium on
Micro-NanoMechatronics and Human Science (MHS),
132/153, 2019.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9308


