
Convergence and Stability Properties of a
Dynamic Maximum Consensus Estimator

João C. Monteiro ∗ Alessandro Jacoud Peixoto ∗

∗Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Abstract: In this paper, we present a novel dynamic consensus algorithm capable of tracking
the maximum value of a given measurement in a distributed network. Each node in the network
implements a sliding-mode based algorithm and only uses the information provided by its
neighbors to track this maximum value on the network. Thus, at any given time, a network
node is not allowed to disclose information from one of its neighbors to any other neighbor.
We demonstrate the convergence and stability properties of this technique and provide a
guide to select the control parameters, initial conditions, and sampling period for discrete-
time implementations. From a practical perspective, the proposed technique is very promising
since it relies on selecting only three parameters, which are the same for the whole network, and
solving one numerical integration on each node. Numerical simulations illustrate the results and
help visualize the algorithm transient behavior.

Keywords: sliding-mode control; consensus

1. INTRODUCTION

This work is inspired by distributed optimization prob-
lems, such as swarm motion towards a target position and
cost minimization in cooperative games. In fact, the idea of
developing the maximum consensus technique described in
this text occured while searching for a solution to estimat-
ing the Chebyshev distance of multiple objective functions
in a distributed optimization problem. Distributed is used
in the sense that the many nodes that constitute the net-
work have an associated objective function, which varies
with time, and the ability to exchange information with
its neighbors. A node cannot, however, inquire information
from a non-neighbor node, even if one of its neighbors can
communicate with this other node. Consensus is used in
the sense that each node aims at determining a common
global performance of the system.

Problems such as this one are extensively studied in the
area of networked systems. They usually appear in two
forms: static consensus and dynamic consensus. In static
consensus, a snapshot of the nodes’ inputs at a given time
is used to initialize the algorithm, but changes to these
inputs are ignored. In dynamic consensus, algorithms are
designed to track the desired network performance as the
nodes’ inputs change through time.

Some of the pioneering works on consensus estimators are
due to Spanos et al. (2005); Ren and Beard (2005); Olfati-
Saber et al. (2007). There are many works on consensus
estimators dealing with average consensus. In the static
case, authors have proposed many solutions, encompass-
ing, for example, privacy-preserving algorithms (Manitara
and Hadjicostis, 2013; Mo and Murray, 2016), robustness
to switching topologies and time-delays (Olfati-Saber and
Murray, 2004), and disturbance rejection (Bauso et al.,
2009). Since the literature on static consensus is quite
mature, one might be tempted to apply a static algorithm

over fixed periods of time repeatedly. As discussed and
exemplified by Kia et al. (2019), this is usually not the
best approach.

In contrast, dynamic consensus algorithms are explicitly
developed to deal with time-varying inputs. Although the
literature is not as extensive as the one on static con-
sensus, for specific consensus algorithms (mainly average
consensus), authors have already tackled problems such as
robustness to additive disturbances (Shi and Johansson,
2013), privacy-preserving schemes (Kia et al., 2015), and
robustness to communication delays (Moradian and Kia,
2018). Very recently, Kia et al. (2019) wrote a survey
paper on various applications and theoretical foundations
of dynamic average consensus algorithms. For a thorough
review of the state-of-the-art of consensus estimators, we
strongly recommend (Kia et al., 2019) and the references
therein. Also, a field of study that uses many of the tech-
niques that come from the dynamic consensus literature is
leader-follower networks of mobile agents.

Regarding maximum-value consensus, some authors have
studied this problem to solve time synchronization in
wireless sensor networks. In such a network, each sensor
performs measurements in a given time and publishes this
information to its neighbors. Thus, all logical times must
be synchronized across the network. For this problem, au-
thors have proposed appealing static consensus algorithms
tackling the most common challenges of wireless sensor
networks — privacy-preservation (Wang et al., 2019), se-
curity against malicious attacks (He et al., 2014a), and
robustness to network delays (He et al., 2014b).

Although the literature on consensus algorithms is quite
extensive, to the best of our knowledge, no author has
considered the problem of dynamic maximum consensus.
Thus, our contribution is the development of a dynamic
maximum consensus algorithm capable of tracking the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2943

time-varying maximum input of a directed and strongly
connected network. Naturally, the algorithm also works
for undirected and strongly connected networks. Our al-
gorithm also differs from most works in the consensus lit-
erature because it is based on sliding-mode control, which
ensures finite-time convergence to the network maximum.
Theoretically, the convergence time and final tracking er-
ror can be made arbitrarily small. Nonetheless, we provide
a practical guide to select the control parameters in order
to meet two predefined design constraints, namely: maxi-
mum tracking error and convergence rate.

This paper is structured as follows. In section 2, we intro-
duce the necessary notations and mathematical founda-
tions needed to present the results and state the maximum
consensus problem. In section 3, we develop the sliding-
mode based dynamic maximum consensus algorithm ca-
pable of achieving consensus in finite-time and demon-
strate its stability and convergence properties. Also, in this
section, we provide a practical guide to help the control
designer select the appropriate parameters to meet the
desired network performance. In section 4, we perform
simulations to illustrate the results, and in section 5 we
conclude the paper and hint the direction on future works.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we provide the mathematical foundations
needed to present the results and state the dynamic
maximum consensus problem.

Consider a group of n labeled nodes, with labels belonging
to the set V = {1, 2, . . . , n}, each one holding an input
uj(t) ∈ R and an estimate x(t) ∈ R, both function of
time. These nodes interact over a communication network,
with topology represented by a directed graph G = (V, E),
where E ⊂ V ×V is the set of all edges which connect two
nodes. It is said that a node i receives information from
node j if and only if (i, j) ∈ E . When this is the case, node
i has access to the inputs and the estimates of node j at
any given time t.

Many properties can be associated with graphs, but we
are particularly interested in the following. An undirected
path is a sequence of nodes i1, i2, . . . , ip such that either
(ij , ij+1) ∈ E or (ij+1, ij) ∈ E . Using this concept, a graph
is weakly connected if every pair of nodes lie on some
undirected path. A directed cycle is a sequence of nodes
i1, i2, . . . , ip, with i1 = ip, such that (ij , ij+1) ∈ E . A graph
is strongly connected if every pair of nodes lie on some
directed cycle. Considering undirected graphs, weakly con-
nected ⇐⇒ strongly connected. An illustration of these
concepts is shown in fig. 1. Similar to an undirected path, a
directed path is a sequence of nodes i1, i2, . . . , ip such that
(ij , ij+1) ∈ E .

For a given node j,

Uj(t) = {ui(t) ∈ R : (j, i) ∈ E} ∪ {uj(t)} (1a)

Xj(t) = {xi(t) ∈ R : (j, i) ∈ E} ∪ {xj(t)} (1b)

are the sets containing all inputs and all estimates that
node j is aware of, including its own input and estimate,
which are contained in the singletons {uj(t)} and {xj(t)}.
The shortest path between two nodes in a directed graph
is the directed path with the least amount of edges. The

(a) (b) (c)

Fig. 1. Examples of (a) an undirected strongly connected
graph, (b) a weakly connected but not strongly con-
nected directed graph, and (c) a strongly connected
directed graph.

distance between two nodes δ(i, j) is the number of edges
in a shortest path, and the eccentricity of a node is its
greatest distance to any other node. The diameter, denoted
d(G), is the greatest eccentricity of all nodes in a graph.

Given a vector v ∈ Rp, vj ∈ R denotes its j-th compo-
nent. Therefore, the vectors containing all inputs and all
estimates in the network are u(t), x(t) ∈ Rn, respectively.

Depending on the context, the function max(.) can denote
either the maximum component of a vector or the maxi-
mum element in a set. The sign function is defined as

sign(ζ) =

{
−1 , ζ < 0

1 , ζ > 0
(2)

If ζ = 0 is not a sliding-surface, sign(ζ) = 0 at ζ = 0.
Otherwise, sign(ζ) is undefined at ζ = 0. We consider the
following linear approximation of the sign function,

signε(ζ) =

{
sign(ζ) , |ζ| > ε
ζ/ε , |ζ| ≤ ε (3)

for any positive scalar ε > 0.

Furthermore, all solutions to differential equations are
defined for t ≥ t0, for any initial time t0 ∈ R. When
dealing with systems described by differential equations
with discontinuous right-hand sides, we adopt Filipov’s
definition of solutions (Filippov, 1964). To improve the
paper clarity, the explicit dependence of time is omitted,
kept only in contexts where this could cause ambiguity.

Finally, the objective of this paper is to develop an
algorithm such that all estimates xj are driven toward the
maximum input max(u) in the network. In other words,
for t > t∗, |xj(t)−max(u(t))| < ε, for all j ∈ V and for an
arbitrarily small scalar ε > 0, where t∗ > t0 can be made
arbitrarily close to t0.

3. DYNAMIC MAXIMUM CONSENSUS ALGORITHM

In this section, we formulate the problem and present the
sliding-mode based maximum consensus algorithm.

For the remaining of this paper, let G = (V, E) denote
a directed and strongly connected graph, with nodes
belonging to V = {1, 2, . . . , n} and edges belonging to
E ⊂ V × V.

For this class of networks, consider the update rule

τ ẋj = (1 + α) signε(êj) + sign(ej) (4a)

êj = max (Xj)− xj (4b)

ej = max (Uj)− xj (4c)

where êj(t) ∈ R is the error between the node estimate
and the maximum estimate it knows, ej(t) ∈ R the error

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2944

between the node estimate and the maximum input it
knows, τ > 0 is a scalar that controls the convergence rate,
and α ∈ (0, 1) and ε > 0 are other design parameters.

The first component of (4) is responsible for driving all
estimates toward a common value, which is the highest in
the entire network. The second component is responsible
for driving the estimates toward the maximum input.

We assume that u(t) is differentiable almost everywhere,
and that its rate of change u̇(t) is bounded, such that the
following are true.

Assumption 1 (Differentiable Input Vector)
The input vector u(t) is differentiable almost everywhere.

Assumption 2 (Bounded Input Derivative)
The input vector u(t) is absolutely continuous and there
is a known upper-bound L > 0 to its time derivative

max
j∈V
|u̇j(t)| ≤ L , ∀t ≥ t0 (5)

which is defined almost everywhere.

Assumption 2 is important to enable the control designer
to select an appropriate value for the parameter τ .

Lemma 1 (Convergence to max(x))
Let G be a directed and strongly connected graph and
let all nodes update their estimates through the update
rule (4). Then, with τ < α/L, the network achieves a
consensus and all estimates converge to max(x) − xj ≤
O(ε) after a finite-time t1 ≤ t0 +O(τ), remaining therein
for t ≥ t1.

Proof. At any given time, a node’s estimate is lower
or equal to the highest estimate it knows, i.e. xj(t) ≤
max(Xj(t)), ∀j ∈ V. Thus, considering also the ε-vicinity
of max(Xj), there are three possibilities for any node j:
xj ≤ max(Xj) − ε, max(Xj) − ε < xj < max(Xj), and
xj = max(Xj).
xj ≤ max(X j) − ε . In this case, it follows that êj ≥
ε ⇐⇒ signε(êj) = 1, and (4a) becomes

τ ẋj = 1 + α+ sign(ej) ≥ α (6)

with a solution

xj(t) ≥ xj(t′0) + (α/τ)(t− t′0) (7)

where t′0 > t0 is a time instant at which xj enters the
region xj ≤ max(Xj) − ε. Therefore, while xj is not close
to max(Xj) it increases at a rate α/τ .

xj = max(X j) . In this case, êj = 0 ⇐⇒ signε(êj) = 0,
and (4a) becomes

τ ẋj = sign(ej) (8)

such that the dynamics of ej becomes

ėj = τ
d

dt
max(Uj)− sign(ej) (9)

Therefore, as long as τ < 1/L, ej = 0 is a sliding-surface
while xj = max(Xj). Furthermore, to guarantee that the
neighbors i of node j for which max(Xi) = xj , have
estimates converging to xj , one must have α/τ > L ⇐⇒
τ < α/L. This conclusion follows from (7).

These two cases are enough to show that xj → max(x),
∀j ∈ V, entering an ε-vicinity of max(x) in finite-time,

since all estimates are either increasing, according to (7)
or bounded by their highest known input until another
estimate exceeds it. When this happens, the exceeded
estimate, for instance xi, must track its current maximum
known estimate max(Xi). This process repeats itself and
propagates through the network until all estimates reach
xj ≥ max(x)− d(G) ε, converging in a finite-time

t1 ≤ t0 + ∆
(α
τ
− L

)−1
≤ t0 +O(τ) (10a)

∆ = max

([
u(t0)

x(t0)

])
−min(x(t0)) (10b)

The propagation is guaranteed because G is strongly
connected. The factor d(G) acts as a worst case bound
because the estimate error might propagate through the
network from max(x) to the node furthest from it. This
distance is, at most, equal to the graph diameter d(G).

2

From the perspective of consensus, lemma 1 is enough
to show that the network reaches a consensus with the
proposed technique. It does not, however, establish any
relationship between the nodes’ inputs and the consensus
value. The next theorem shows that the update rule (4) is
able to enforce tracking of the maximum network input.

Theorem 1 (Convergence to max(u))
Let G be a directed and strongly connected graph and
let all nodes update their estimates through the update
rule (4). Then, with τ < α/L, the network achieves a
consensus and all estimates converge to |max(u)− xj | <
O(ε) after a finite-time t∗ ≤ t0 +O(τ), remaining therein
for t ≥ t∗.
Proof. From lemma 1 we already know that max(Xj) −
xj ≤ ε and max(x) − xj ≤ d(G) ε hold ∀j ∈ V for t ≥ t1.
Thus, it suffices to show that max(x) → max(u). The
proof is then split into two parts. First we show that, if
max(x) < max(u), all estimates increase. Otherwise, if
max(x) > max(u), all estimates decrease.

max(x) < max(u) . Let j : uj = max(u), which implies
uj = max(Uj), and let

k ∈ {i ∈ V : (j, i) ∈ E} ∪ {j} (11)

that is, k correspond to all nodes that node j has access
to, including itself. Considering these nodes and t > t1,
such that max(Xj)− xj ≤ ε ⇐⇒ signε(êj) = êj/ε,

τ ẋk =
1 + α

ε
êk + sign(ek) (12)

Since max(x) < max(u), then sign(ek) = sign(max(u) −
xk) = 1. Furthermore, from its definition, it follows that
êk ≥ 0, and equation (12) can be converted to the
inequality

τ ẋk ≥ 1 (13)

which yields

xk(t) ≥ xk(t2) + (t− t2)/τ (14)

where t2 ≥ t1 is any time instant for which max(x) <
max(u). Hence, for t > t1, max(Xj) must reach max(u) in
a finite-time

t∗1 ≤ t1 + ∆∗
(

1

τ
− L

)−1
(15a)

∆∗ = |max(u(t1))−max(Xj(t1))| (15b)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2945

with L from assumption 2. From lemma 1, |xj −max(u)| ≤
d(G) ε, ∀j ∈ V, is reached in a finite-time bounded by (15).

max(x) > max(u) . Consider the error function

e = max(x)−max(u) = 0 (16)

with time derivative

τ ė = sign(ei)− τ
d

dt
maxu(t) (17)

where i : xi = max(x) and signε(xi) = 0 was omitted
because xi is not in sliding-mode. Since max(x) > max(u),
then sign(ei) = −1. Therefore, the following is valid
whenever max(x) > max(u):

τ ė ≤ τL− 1 (18a)

e(t) ≤ e(t3)−
(

1

τ
− L

)
(t− t3) (18b)

where t3 ≥ t1 is any time instant for which max(x) >
max(u). Hence, for t > t1 and max(x) > max(u), the
maximum estimate max(x) reaches max(u) in a finite-time

t∗2 ≤ t1 + ∆∗
(

1

τ
− L

)−1
(19)

which equals the bound (15) for the previous case. Once
again, invoking lemma 1, |xj −max(u)| ≤ d(G) ε, ∀j ∈ V,
is reached in a finite-time bounded by (19).

Finally, since it was shown that max(x) is driven to-
ward max(u), we conclude from (10), (15), and (19) that
|max(u)− xj | ≤ d(G) ε ≤ O(ε) is reached in a finite-time

t∗ ≤ t0 + t1 + ∆∗
(

1

τ
− L

)−1
≤ t0 +O(τ) (20)

2

Remark 1 (Finite-Time Upper-Bounds)
It is worth pointing out that both convergence time upper-
bounds (10) and (20) are very conservative, since, to
compute them, it is assumed that the inputs are always
growing at their maximum possible rate L ≥ maxj∈V |u̇j |.

Theorem 1 guarantees that all estimates track the max-
imum network input, with an arbitrarily small error of
order O(ε). Naturally, in practical discrete-time imple-
mentations, even though the theory ensures arbitrarily
fast convergence rates and small tracking errors, there is
a tradeoff between improving these values and selecting
an appropriate sampling period. The faster the system
dynamics, the smaller the sampling period. Likewise, the
smaller the desired tracking error, the smaller the sampling
period. To help implementing the proposed consensus al-
gorithm (4), we highlight some guidelines in the following
remark.

Remark 2 (Discrete-Time Implementation)
To avoid undesired chattering, we have experienced better
results using the trapezoidal integration rule and using
signε(ej) instead of sign(ej) in (4a). For the initial states,
we suggest using xj(t0) = uj(t0). Let perror > 0 and
prate > L denote the desired maximum error and minimum
convergence rate, with L from assumption 2. Using these
specifications, the control parameters are defined as

ε = perror/d(G) (21a)

τ = α/prate (21b)

Although we let α ∈ (0, 1), we usually select α = 0.5.

There are two basic rules to select the sampling period. It
can be either a function of the convergence rate or a func-
tion of the desired tracking error. To ensure convergence
and that both specification are met, the sampling period
ts should be

ts ≤ min (ε , τ/100) (22)

Naturally, if the sampling period ts is pre-defined, good
choices of ε and τ are

ε ≥ ts (23a)

τ ≥ 100 ts (23b)

There is a margin on τ , such that the 102 factor can be
relaxed to 10 without much impact on performance.

Finally, we stress that it is essential to select an appro-
priate sampling period. Otherwise, there might be conver-
gence issues that may hinder the algorithm performance.
If reducing the sampling period or increasing τ are not
viable options, one might actually lower the parameter
τ . Although this seems counterintuitive, it mitigates the
problem, at the expense of increasing chattering.

4. SIMULATIONS

In this section, we illustrate the proposed consensus al-
gorithm properties through two numerical simulations.
The first one serves to illustrate the algorithm tracking
performance and its convergence properties, while the
second displays its robustness to the network size. The
graphs topologies for these simulations are illustrated in
fig. 2. Note that, regarding the network connectivity, the
second topology is the worst possible, since every node has
the same eccentricity, which equals the network diameter
d(G2) = 99.

(a)

n = 4

(b)

n = 100

Fig. 2. Topology of the two graphs, Ga on the left and
Gb on the right, considered in the simulations. For
simplicity, we draw only 13 nodes of Gb, but the actual
simulation runs with 100 nodes.

As suggested in remark 2, all simulations are solved using
the trapezoidal integration rule.

4.1 Small Network

The first simulation consists of a graph Ga with four nodes
connected as in fig. 2(a), each with a sinusoidal input

uj(t) = sin(2πt/j) (24)

Nodes are numbered starting from the topmost node in
fig. 2(a) and increase clockwise until the last node is
reached. The target consensus value max(u) is shown in
fig. 3. All parameters, together with those of the other

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2946

simulation, are listed in table 1. The control parameters
are chosen according to (21) and (22) to achieve a desired
maximum consensus error perror = 0.01 and a desired
minimum convergence rate prate = 2π.

Table 1. Parameters used to run the simula-
tions on graphs Ga and Gb of fig. 2.

τ α ε ts

Simulation of Ga 8 · 10−2 5 · 10−1 2.5 · 10−3 10−4

Simulation of Gb 5 · 10−2 5 · 10−1 10−3 10−4

0 1 2 3 4 5

−0.2

0.2

0.6

1

0 2 4 6 8 10

−4

−1.5

1

Time [s]

max(u)

Fig. 3. Maximum consensus of networks Ga and Gb shown
in fig. 2, with inputs (24) and (25). In blue the value
of max(u) and in light gray the nodes inputs uj . Only
the inputs u1, u33, u66, and u100 are shown for Gb.

4.2 Large Network with Sparse Connectivity

This simulation consists of a graph Gb with one hundred
nodes connected as in fig. 2(b), labeled clockwise, with
ramp inputs

uj(t) =

(
j

n

)
t+ bj (25a)

bj−1 =

(
j − 1

jn

)
tf + bj (25b)

bn = 1− tf , tf = 10 (25c)

Out of curiosity, note that limn→∞max(u(t)) = [(t/tf)2−
1] tf/2 + 1, for t ∈ [0, tf], with u(t) from (25), is a
parabola. The target consensus value max(u) is shown in
fig. 3. All control and simulation parameters are listed
in table 1. The control parameters are chosen according
to (21) and (22) to achieve a maximum consensus error
perror = 0.1 and a minimum convergence rate prate = 10.

4.3 Simulation Results

The simulation results are shown in fig. 4 for both sce-
narios. Note that, as expected, during both simulations all
nodes estimates converge to the maximum network input
and proceed to track this value afterwards. The bottom

graphs display the tracking errors, which remain smaller
than the prescribed values of 0.01 and 0.1.

Analyzing the results from the first simulation, we observe
some of the convergence properties of the proposed con-
sensus algorithm. A lot can be said about the interaction
between nodes 2 (in solid black), 3 (in dashed black), and
4 (in solid red). Focusing on a short frame at the begin-
ing of the simulation, one can study several convergence
properties discussed in the proof of lemma 1, and also get
a good feeling of the algorithm transient behavior.

When the simulation starts, node 4 knows no higher
estimate than its own, and, hence, x4 tracks its own input,
since max(U4) = u4. Meanwhile, not only does node 3
knows an estimate higher than its own, max(X3) = x2,
but also max(U3) = u2 > x3. Thus, node’s 3 estimate
increases at a rate (2 + α)/τ . At approximately t = 8.4
ms x3 surpasses x4, and node 4 will then start increasing
its estimate at a rate α/τ , since max(X4) = u4 < x4,
and follow x3. Shortly after, at approximately t = 11
ms, x3 surpasses max(U3) = x2, node’s 3 highest known
maximum input, and x3 will then start increasing at a
rate α/τ , the same as x4. Both estimates continue to grow
until x3 reaches the ε-vicinity below x2 at approximately
t = 157 ms. From this moment on, the network reaches a
consensus and all estimates track max(u).

The results of the second simulation illustrate a phe-
nomenon that, although very unlikely, can occur on some
occasions. It is the error propagation from one node to
another across a long path in the network, in this case,
across the entire network. In the current example, it hap-
pens because max(u) is always changing from uj to uj+1 as
time goes by. These consecutive changes imply that xj−1
is always chasing xj . Since all estimates are increasing at
the same rate, without ever reaching one another, the final
consensus error for each node becomes

|max(u)− xj |t≥10 ≈ δ(j, 100) r ε = (100− j) r ε
where δ(j, 100) is the distance from node j to node 100
and r ∈ (0, 1) a ratio which determines the separation
between each estimate. On this simulation scenario, we
have r ≈ 0.7. On average, the overall final consensus
errors is reduced if the node inputs of this second example
are randomly reordered or, even better, if more edges are
added to the network, such that the network diameter
d(G2) decreases.

5. CONCLUSION

We have presented a dynamic maximum consensus algo-
rithm that works with directed and strongly connected
networks. To the best of our knowledge, this problem had
remained hitherto unsolved for dynamic consensus. Both
theoretically and through simulations, we have demon-
strated the algorithm finite-time convergence and stability
properties. From a practical perspective, the algorithm is
promising since it requires tuning only three parameters,
which we describe as functions of two usual design con-
straints: convergence rate and maximum tracking error.

There are many directions for future works for the pro-
posed technique. We are currently developing a dual ap-
proach that finds the minimum input in a network, and we
are using both of these techniques to perform scalarization

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2947

0

0.5

1

Errors max(u)− xj

max(u)− x1

max(u)− x2

max(u)− x3

max(u)− x4

0 0.1 0.2

0 1 2 3 4 5
−0.01

0

0.01

0 1 2 3 4 5

−1

−0.5

0

0.5

1

Time [s]

Estimates xj

0 0.1 0.2

0

0.5

1

Errors max(u)− xj

max(u)− x1

max(u)− x2

max(u)− x3

max(u)− x4

0 0.1 0.2

0 1 2 3 4 5
−0.01

0

0.01

0 1 2 3 4 5

−1

−0.5

0

0.5

1

Time [s]

Estimates xj

0 0.1 0.2

0

1

2

3

4

5

Errors max(u)− xj

0 0.25 0.5

0 2 4 6 8 10
0

0.035

0.07

0 2 4 6 8 10

−9

−4

1

Time [s]

Estimates xj

0 0.25 0.5

Fig. 4. Simulation results for networks Ga and Gb, with inputs (24) and (25), using the proposed consensus algorithm (4).
To the left, the solution of Ga. To the right, the solution of Gb, where only 25 out of the 100 nodes are shown.

of multiple objectives and solve distributed optimization
problems in real-time. Other exciting possibilities for fu-
ture development are adapting the technique to preserve
privacy, hiding a node’s input from its neighbors, testing
the algorithm robustness to topology changes, network
delays, and robustness to malicious attacks.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

REFERENCES

Bauso, D., Giarré, L., Pesenti, R., 2009. Consensus for net-
works with unknown but bounded disturbances. SIAM
J. on Control and Optim. 48 (3), 1756–1770.

Filippov, A. F., 1964. Differential equations with discon-
tinuous right-hand side. American Math. Soc. Transla-
tions 42 (2), 199–231.

He, J., Chen, J., Cheng, P., Cao, X., 2014a. Secure
time synchronization in wirelesssensor networks: A
maximumconsensus-based approach. IEEE Trans. on
Parallel and Distributed Syst. 25 (4), 1055–1065.

He, J., Cheng, P., Shi, L., Chen, J., Sun, Y., 2014b.
Time synchronization in wsns: A maximum-value-based
consensus approach. IEEE Trans. Auto. Control 59 (3),
660–675.

Kia, S. S., Cortés, J., Martinez, S., 2015. Dynamic average
consensus under limited control authority and privacy
requirements. Int. J. of Robust and Nonlinear Control
25 (13), 1941–1966.

Kia, S. S., Van Scoy, B., Cortes, J., Freeman, R. A.,
Lynch, K. M., Martinez, S., 2019. Tutorial on dynamic
average consensus: The problem, its applications, and
the algorithms. IEEE Control Syst. Mag. 39 (3), 40–72.

Manitara, N. E., Hadjicostis, C. N., 2013. Privacy-
preserving asymptotic average consensus. In: European
Control Conf. IEEE, pp. 760–765.

Mo, Y., Murray, R. M., 2016. Privacy preserving average
consensus. IEEE Trans. Auto. Control 62 (2), 753–765.

Moradian, H., Kia, S. S., 2018. On robustness analysis of a
dynamic average consensus algorithm to communication
delay. IEEE Trans. on Control of Network Sys. 6 (2),
633–641.

Olfati-Saber, R., Fax, J. A., Murray, R. M., 2007. Consen-
sus and cooperation in networked multi-agent systems.
Proceedings of the IEEE 95 (1), 215–233.

Olfati-Saber, R., Murray, R. M., 2004. Consensus problems
in networks of agents with switching topology and time-
delays. IEEE Trans. Auto. Control 49 (9), 1520–1533.

Ren, W., Beard, R. W., 2005. Consensus seeking in mul-
tiagent systems under dynamically changing interaction
topologies. IEEE Trans. Auto. Control 50 (5), 655–661.

Shi, G., Johansson, K. H., 2013. Robust consensus for
continuous-time multiagent dynamics. SIAM Journal on
Control and Optimization 51 (5), 3673–3691.

Spanos, D. P., Olfati-Saber, R., Murray, R. M., 2005.
Dynamic consensus on mobile networks. In: IFAC World
Congress. Citeseer, pp. 1–6.

Wang, X., He, J., Cheng, P., Chen, J., 2019. Differentially
private maximum consensus: Design, analysis and im-
possibility result. IEEE Trans. on Network Sci. and Eng.
6 (4), 928–939.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2948

