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Abstract: In the context of trajectory planning for autonomous vehicles, a widely used vehicle
model relies on linear integrator dynamics. We consider planning with this model type, with
a focus on the requirement to account for curved road topologies. As our analysis reveals,
this generally gives rise to non-convex, coupled constraints on the vehicle’s states and inputs,
which impedes computationally efficient planning. We propose a method to resolve this issue by
modification of the non-convex constraints. This modification is based on inner approximations
of sub-level sets of nonlinear functions, which are obtained by quantifier elimination. The efficacy
of the method is demonstrated in two example scenarios.
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1. INTRODUCTION

1.1 Motivation

A great challenge in the context of autonomous driving
is to plan trajectories for a vehicle, i.e., to schedule its
future positions and velocities without causing collisions
with other vehicles or leaving the road. Due to its non-
convex nature, this task constitutes a complex problem,
which has found considerable attention in the fields of
robotics, e.g. (LaValle, 2006), and autonomous driving,
cf. (González et al., 2016). Many approaches formulate the
problem as a discrete-time optimal control problem with
the objective to minimize the value of a cost function J .
For a given initial state x0 ∶= x(t0) of a dynamical system,
the value of the cost function depends on the sequence of
states x(⋅) ∶= (x(tk) ∈ Rnx)Hk=0 resulting from a sequence
of input signals u(⋅) ∶= (u(tk) ∈ Rnu)H−1

k=0 as predicted over
a horizon H. The optimal input sequence results from:

Problem 1. (Planning Problem).

minu(⋅)J = minu(⋅)
H

∑
k=1

∣∣x(tk) − xref∣∣
2
Q + ∣∣u(tk−1)∣∣2R,

subject to dynamical constraints on the state:

x(tk+1) = f(x(tk), u(tk)) = Ax(tk) +Bu(tk). (1)

Assume appropriate dimensions for A, B, Q, R, and Cz.
Inputs and states are constrained to lie within sets U ⊆ Rnu

and X ⊆ Rnx , respectively. Also, coupling constraints:

[x(tk)
T u(tk)

T]
T
∈ C ⊆ X × U , (2)

may be imposed. Collision avoidance constraints require
the system not to enter a set F(tk) ⊂ X of forbidden states:

x(tk) ∉ F(tk), (3)

encoding, e.g., positions of other vehicles.
⋆ Financial support by the German Research Foundation (DFG)
within priority program (SPP) 1835 is gratefully acknowledged.

Established methods exist for the implementation of (3),
e.g. relying on mixed-integer programming (Williams,
1990). Since this is not the focus of this paper, we omit the
details. Often (Qian et al., 2016; Eilbrecht and Stursberg,
2018; Hess et al., 2018; Burger and Lauer, 2018; Nilsson
et al., 2015; Schürmann et al., 2017), the (discretized)
dynamics (1) is based on the description of a vehicle’s
dynamics similar to:
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⎥
⎥
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ux
uy

] , (4)

with px, py, vx, vy, ux, uy denoting longitudinal (x)
and lateral (y) positions, velocities, and accelerations.
Additional constraints, e.g. on the rate of change of the
inputs, can readily be incorporated and lead to higher-
order integrator models or additional constraints on states
and inputs.

Clearly, we (and certainly all others who use integrator
models for planning) are well aware of the fact that actual
vehicle dynamics are more complicated than the integrator
dynamics in (4). This per se does not constitute a prob-
lem since every model is only a simplified description of
the actual system dynamics: Low-level control of vehicles
usually relies on the so-called bicycle model (Pacejka,
2005), which considers nonlinear coupling of lateral and
longitudinal dynamics as well as (potentially nonlinear)
tire dynamics, but neglects vertical, roll, and pitch dynam-
ics. These degrees of freedom, in contrast, are considered
by multi-body vehicle models (Blundell and Harty, 2004)
used for driving dynamics simulation. But even detailed
multi-body vehicle models are often based on rigid body
assumptions, neglecting complex elastic deformations of
the car body, and so on.

Thus, the mere existence of more detailed vehicle models
does not imply that a specific model is not suited for a
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certain task. The following arguments promote the use-
fulness of integrator models for planning: At first, plan-
ning is understood as generation of reference trajectories,
which are then fed to lower-layer controllers, which are
based on more detailed vehicle models, such that vehicle
operation is not directly based on the simple integrator
models. Then, planning procedures can be combined with
methods to verify the safety of a plan. This has been
demonstrated by Schürmann et al. (2017) for plans gen-
erated based on integrator models. Finally, models with
integrator structure result from feedback linearization of
nonlinear systems, such that integrator models may ac-
tually reflect nonlinear dynamics. That being said, the
ultimate purpose of this paper is not to investigate into
the appropriateness of integrator models. Instead, we will
assume its appropriateness and analyze which challenges
arise in this context if curved roads have to be considered.
To our knowledge, this has not been explicitly considered
in approaches relying on integrator models.

1.2 Related Work

The question of how to represent constraints arising from
the topology of a road has found different answers in
the literature: A significant part of existing approaches
to trajectory planning for autonomous vehicles plans in a
Cartesian coordinate frame. These approaches either rely
on local linearization, i.e., assume a straight road over the
planning horizon, e.g. (Nilsson et al., 2015; Eilbrecht and
Stursberg, 2018; Qian et al., 2016), or use approximations
to the road boundaries, cf. (Ziegler et al., 2014). Clearly,
the validity of the first kind of approach depends on the
curvature of the road and the planning horizon. While the
second type of approach is flexible and allows to extract
information from maps easily, it leads to computationally
demanding, non-convex optimization problems.

Other approaches do not use a global, Cartesian coordi-
nate system, but plan in a Frenét frame (Perantoni and
Limebeer, 2014; Hess et al., 2018), cf. Sec. 2. This allows
to represent constraints arising from the road topology
as convex constraints. However, it complicates the equa-
tions of motion of a vehicle and the imposed constraints,
which generally requires to employ computationally very
demanding algorithms (Perantoni and Limebeer, 2014).
This problem can be circumvented by simplifying assump-
tions (Hess et al., 2018), however at the cost of reduced
planning accuracy.

2. PRELIMINARIES

We define a planning model to be a tuple:

M = (f,C) , (5)

consisting of equations of motion f as in (1) and con-
straints C as in (2). Equations of motion are derived based
on kinematic and kinetic considerations, in which the kine-
matics describe a motion, while the kinetics are concerned
with the description of the forces causing the motion. In
addition, a coordinate system is required to relate a motion
to a global coordinate system. For planning, apart from
the global coordinate system, two additional coordinate
systems are widely used: a body-fixed one and a so-called
Frenét frame. These are described here for the sake of

completeness and for use in subsequent derivations. While
different coordinate systems can give the same informa-
tion, some may be more appropriate for certain tasks than
others. For example, dynamical constraints can be best
expressed in a body-fixed reference frame, while it is easier
to enforce constraints resulting from the road topology in
a Frenét frame.

2.1 Notations and Coordinate Systems

In the following, boldface letters denote vectors, e.g. r. A
vector can be expressed by a tuple of coefficients referred
to in a certain basis, e.g.:

r = r1e1 + r2e2 + r3e3 =∶ [r1 r2 r3]B123, (6)

in which the basis is a tuple of basis vectors:

B123 = [e1 e2 e3]
T

and is assumed to be ordered and orthonormal. Three
coordinate systems will be used, cf. Fig. 1:

Global Inertial Reference Frame The planar position of
a vehicle in a global coordinate system with the basis Bg =

[eg,x eg,y eg,z]
T

is given by:

r(t) = [px(t) py(t) 0]Bg. (7)

Frenét Frame In addition, a moving reference frame
(Perantoni and Limebeer, 2014) with the basis Btn =

[et en eg,z]
T

will be used. Its basis moves along a path
characterized by the path coordinate s and the angle θ(s)
between the tangent at s and the basis vector eg,x of the
global reference frame. Positions are then given by the path
coordinate s and an offset n normal to the path at s. A
relation between Btn and Bg can be established based on:

dpx = ds cos θ(s) − n(s) sin θ(s), (8)

dpy = ds sin θ(s) + n(s) cos θ(s), (9)

which leads to:

px(s) = ∫
s

smin

cos θ(σ)dσ + px(smin) − n(s) sin θ(s), (10)

py(s) = ∫
s

smin

sin θ(σ)dσ + py(smin) + n(s) cos θ(s). (11)

Defining the curvature C = dθ
ds

, the tangent angle is:

θ(s) = ∫
s

smin

C(σ)dσ + θ(smin). (12)

Thus, knowledge of the trajectories C(s) and n(s) enables
one to transform every point given in the moving reference
frame into the global reference frame, in which n(s) = 0
gives the shape of the path itself. A trajectory s(t) then
determines trajectories over time for all other quantities,
e.g. C = C(s(t)). The benefit from using this reference
frame is that constraints resulting from the road topology
can be accounted for conveniently.

Body-fixed Coordinate System The third considered co-

ordinate system has the basis Bb = [eb,x eb,y eg,z]
T

,
which is fixed at the center of gravity of a considered
vehicle. The basis vectors eb,x and eb,y span the road plane
and eb,x is aligned with the longitudinal axis of the vehicle.
A vector in this coordinate system can be expressed in the
Frenét frame:
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Fig. 1. Coordinate Systems.

vTBb = v
T

⎡
⎢
⎢
⎢
⎢
⎣

cos(ξ) sin(ξ) 0
− sin(ξ) cos(ξ) 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

Btn. (13)

The body-fixed frame makes it possible to easily express
constraints resulting from the vehicle dynamics.

2.2 Kinematics

In order to describe the motion of a vehicle in one of the
coordinate systems, information about its position, veloc-
ity, and acceleration is required – this is what kinematics
is concerned with. A vector r can be expressed combining
the global and the Frenét frame (cf. Fig. 1):

r = rtn + rb = r
T
tnBg + r

T
bBtn, (14)

in which rtn indicates the position of the origin of the
basis Btn and rb the connection from there on to the
position of the vehicle. If r = r(t), differentiating (14) gives
the velocity vector:

ṙ = ṙtn + ṙb. (15)

Alternatively, the velocity vector can be described conve-
niently in the body-fixed reference frame:

ṙ = vTBb, (16)

which is rotated against the Frenét frame by the angle
ξ = ψ−θ. The latter indicates the heading of the vehicle as

measured in the Frenét frame, and v = [vx vy 0]
T

. Next,
we have that:

ṙtn = ṙ
T
tnBg = [ṡ 0 0]Bg (17)

and, with θ̇ as angular velocity of Btn:

ṙb = ṙ
T
bBtn + (θ̇ × rb)

T
Btn = [0 ṅ 0]Btn+

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

0
0

θ̇

⎤
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎣

0
n
0

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

T

Btn = [−nθ̇ ṅ 0]Btn. (18)

From (15) and (16), it follows that:

ṙ = ṙtn + ṙb = v
TBb, (19)

and using θ̇ = dθ
ds
ṡ = Cṡ and (13), we have (cf. Perantoni

and Limebeer (2014)):

⎡
⎢
⎢
⎢
⎢
⎣

ṡ(1 − nC)

ṅ
0

⎤
⎥
⎥
⎥
⎥
⎦

T

Btn =

⎡
⎢
⎢
⎢
⎢
⎣

vx cos(ξ) − vy sin(ξ)
vx sin(ξ) + vy cos(ξ)

0

⎤
⎥
⎥
⎥
⎥
⎦

T

Btn. (20)

Differentiating (19) gives:

r̈ = r̈tn + r̈b = v̇
TBb + (ψ̇ × vb)

T
Bb, (21)

in which ψ̇ is the angular velocity of Bb, and:

r̈tn =
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

s̈
0
0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0
0

θ̇

⎤
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎣

ṡ
0
0

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

T

Btn = [s̈ θ̇ṡ 0]Btn,

r̈b =
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

−ṅθ̇ − nθ̈
n̈
0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0
0

θ̇

⎤
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎣

−nθ̇
ṅ
0

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

T

Btn =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2ṅθ̇ − nθ̈

n̈ − nθ̇2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

Btn,

such that r̈ = [s̈ − 2ṅθ̇ − nθ̈ θ̇ṡ + n̈ − nθ̇2 0]Btn. With:

Ċ(s) =
dC(s)

dt
=

dC(s)

ds

ds

dt
=

dC(s)

ds
ṡ =∶ C ′

(s)ṡ,

it shows that θ̈ = d
dt

(C(s)ṡ) = C ′(s)ṡ2 +C(s)s̈, such that

r̈ =

⎡
⎢
⎢
⎢
⎢
⎣

s̈(1 − nC(s)) − 2ṅC(s)ṡ − nC ′(s)ṡ2

n̈ +C(s)ṡ2(1 − nC(s))
0

⎤
⎥
⎥
⎥
⎥
⎦

T

Btn =∶

⎡
⎢
⎢
⎢
⎢
⎣

ax,tn
ay,tn

0

⎤
⎥
⎥
⎥
⎥
⎦

T

Btn,

(22)

with the external accelerations ax,tn and ay,tn in the
Frenét frame. The right hand side of (21) reads:

r̈ =
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

v̇x
v̇y
0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0
0

ψ̇

⎤
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎣

vx
vy
0

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

T

Bb =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v̇x − vyψ̇

v̇y + vxψ̇
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

Bb =∶

⎡
⎢
⎢
⎢
⎢
⎣

ax,b
ay,b

0

⎤
⎥
⎥
⎥
⎥
⎦

T

Bb,

in which ax,b and ay,b are the accelerations in the body-
fixed reference frame. For planning purposes, a state-space
model is required. By introducing the yaw acceleration aψ,

the state vector xb = [px py ψ vx vy ψ̇]
T

, and ab =

[ax,b ay,b]
T

, the model reads:

ẋb = fb(xb, ab, aψ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vx cos(ψ) − vy sin(ψ)
vx sin(ψ) + vy cos(ψ)

ψ̇

ax,b + vyψ̇

ay,b − vxψ̇
aψ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)

in the body-fixed reference frame. Note that the accelera-
tions are independent of the position and the orientation.
Alternatively, due to its ability to conveniently handle
constraints arising from the road topology, a state-space
model can be derived from the kinematics (22) in the
Frenét frame:

ẋtn = ftn(xtn, ax,tn, ay,tn, aψ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ṡ
ṅ

ψ̇ −C(s)ṡ
ax,tn+2ṅC(s)ṡ+nC′(s)ṡ2

1−nC(s)
ay,tn −C(s)ṡ2(1 − nC(s))

aψ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)

with the state vector: xtn = [s n ξ ṡ ṅ ψ̇]
T

and atn =

[ax,tn ay,tn]
T

.

3. DERIVATION OF AN INTEGRATOR MODEL

3.1 Equations of Motion

The basis of planning in Frenét coordinates is the kine-
matic equation (24). In this section, we show that a sim-
ple model of the form (4) can be derived from (24) by
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appropriate assumptions. Kinematic equations describe a
vehicle’s motion without considering the forces causing it
and generally hold for all vehicles. Kinetics, in contrast,
provide a model of these forces or external accelerations,
typically expressed in the body-fixed reference frame.

Usually, the acceleration depends on both the vehicle’s
velocities (e.g. due to wind resistance) and its inputs
(e.g. steering and throttle commands), while we assume
independence of the position and orientation. Clearly,
this relation may differ from vehicle to vehicle. For the
model class at hand, it is assumed that the external
accelerations ab acting on the vehicle in the body-fixed
reference frame can be directly controlled, i.e.:

u = [ax,b ay,b aψ]
T
. (25)

This assumes that questions concerning tire dynamics or
air resistance have been accounted for, e.g. by lower-level
feedback controllers and proper choice of constraints on ab.

Another crucial assumption concerns the orientation ξ
relative to the road. In the case of integrator models, this
is assumed to be always aligned with the orientation of the
road, i.e.:

ξ = ψ − θ = 0. (26)

This makes the considered model less a vehicle model, but
a model of a road-aligned box which may be occupied by
a vehicle at a certain point in time. According to (13), this
equates the accelerations in the body-fixed frame and the
Frenét frame, i.e.:

ab = atn, (27)

and fixes the rotational velocity: ψ̇ = θ̇ = C(s)ṡ as well as
rotational acceleration:

ψ̈ = aψ = C ′
(s)ṡ2 +C(s)s̈, (28)

eliminating ξ and ψ̇ as a states from (24), leaving x1 ∶=

[s n ṡ ṅ]
T

. Despite these simplifying assumptions, the
resulting equations of motion are still nonlinear:

ẋ1 ∶= f1(x1, atn) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ṡ
ṅ

ax,tn+2ṅC(s)ṡ+nC′(s)ṡ2
1−nC(s)

ay,tn −C(s)ṡ2(1 − nC(s))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (29)

Further simplifications can be obtained by noting that (24)
is affine in the accelerations ax,tn and ay,tn, while the
states are arranged in an integrator chain. Therefore,
we introduce artificial system inputs similar to feedback
linearization of input affine systems (Khalil, 1996):

ũ ∶= [
ut
un

] =
⎡
⎢
⎢
⎢
⎣

ax,tn+2ṅC(s)ṡ+nC′(s)ṡ2
1−nC(s)

ay,tn −C(s)ṡ2(1 − nC(s))

⎤
⎥
⎥
⎥
⎦
, (30)

such that (29) becomes:

ẋ2 ∶= f2(x2, ũ) = [ṡ ṅ ut un]
T
, (31)

where x2 ≡ x1. The similarity to (4) is obvious.

3.2 Constraints

A model often not only consists of equations of motion,
but also of constraints. Even though planning requires
all constraints to be defined in the Frenét frame, some
may initially be defined in different coordinate systems
and have to be transformed. This will be addressed in this
section.

Constraints on a vehicle’s velocity are typically imposed
in the body-fixed coordinate system as interval bounds:

[
vxmin

vymin
] ≤ [

vx
vy

] ≤ [
vxmax

vymax
] . (32)

The transformation of (32) from the body-fixed frame
to the Frenét frame results according to (13), which,
considering that ξ = 0 as per (26), leads to:

[
vxmin

vymin
] ≤ [

ṡ(1 + nC(s))
ṅ

] ≤ [
vxmax

vymax
] . (33)

State constraints resulting from the road topology are
typically expressed in the Frenét frame. Combining these
with the transformed velocity constraints (33) yields the
state constraint set:

Xtn ∶= {xtn∣Cmin ≤ C(s) ≤ Cmax, 0 ≤ ṡ ≤ ṡmax(s),

nmin(s) ≤ n ≤ nmax(s), ξmin ≤ ξ ≤ ξmax, (34)

[
vxmin

vymin
] ≤ [

ṡ(1 + nC(s))
ṅ

] ≤ [
vxmax

vymax
] }.

The interval bounds on n and ṡ depend on s in order
to account for changes in the road width or speed limits.
Note that requirements from collision avoidance with other
vehicles are not in the focus of this paper. They can
be formulated in either the Frenét frame or the global
coordinate system without affecting any of the subsequent
derivations.

The accelerations are coupled and constrained by the so-
called friction ellipsoid (Pacejka, 2005):

a2x,b + a
2
y,b ≤ const. (35)

In addition, each acceleration is confined to an interval:

ab,min ≤ ab ≤ ab,max. (36)

By combining (35) and (36) and by transforming the
accelerations from the body-fixed to the Frenét frame
according to (27), the following set of constraints on the
accelerations results:

Utn ∶= {atn∣a
2
x,tn + a

2
y,tn ≤ const., ab,min ≤ atn ≤ ab,max} .

(37)

The planning model (31) is not based on the actual accel-
erations, but on artificial inputs ũ, for which a constraint
set must be specified. According to (30), ũ depends on
both atn and xtn. Therefore, it must be chosen such that
both (34) and (37) are not violated. Solving (30) for atn
yields:

g(xtn, ũ) ∶= [
(1 − nC(s))ut − (2ṅC(s)ṡ + nC ′ṡ2)

un +C(s)ṡ2(1 − nC(s))
] . (38)

Note that inserting (38) into (37) leads to nonlinear,
mixed state-input constraints. Collecting (34) and (37)
(combined with (38)) then yields the constraints:

Z =

⎧⎪⎪
⎨
⎪⎪⎩

[
xtn
ũ

] ∣Cmin ≤ C(s) ≤ Cmax, nmin ≤ n ≤ nmax,

[
vxmin

vymin
] ≤ [

ṡ(1 + nC(s))
ṅ

] ≤ [
vxmax

vymax
] , (39)

ψ̇min ≤ C(s)ṡ ≤ ψ̇max,

aψ,b,min ≤ C
′ṡ2 +C(s)ut ≤ aψ,b,max,

ab,min ≤ g(xtn, ũ) ≤ ab,max, ∣∣g(xtn, ũ)∣∣
2
≤ const.

⎫⎪⎪
⎬
⎪⎪⎭

.
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3.3 Constraint Simplification

Clearly, while (24) has been substantially simplified by
introduction of the artificial inputs ũ, the new con-
straint (39) is much more complex than the original con-
straints on the accelerations (37). To be precise, (39) is de-
fined by level sets of nonlinear functions, such that it gener-
ally can be non-convex or even non-connected. In general,
these properties cannot even be checked efficiently (Weber
and Reissig, 2014). All the more, (39) depends on the longi-
tudinal position s, which introduces further nonlinearities
into the planning. For computationally efficient planning,
in contrast, simple, if possible polytopic constraints are
required. Thus, instead of using (39) directly for planning,
this section is concerned with the following problem:

Problem 2. Find a polyoptic inner approximation to (39):

Z = {[
xtn
ũ

] ∣N [
xtn
ũ

] ≤ b} ⊆ Z (40)

by appropriate choice of a matrix N and a vector b.

In a first step, we obtain a polytopic inner approximation
for the convex, but nonlinear constraint (35). For simplic-
ity, we employ a rectangle, which decouples the interde-
pendence of ax,b and ay,b. Thus, the input constraints
essentially reduce to the type (36) with appropriately
tightened bounds ab,min and ab,max.

In a next step, we aim to resolve the position dependence
of (39). This is achieved by elimination of s, C(s), n (and ṅ
likewise in order to further reduce the dimensionality of the
resulting set) from (39) through computation of a set:

Z̃ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎣

ṡ
ut
un

⎤
⎥
⎥
⎥
⎥
⎦

∣ [
xtn
ũ

] ∈ Z ∀

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
C(s)
n
ṅ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

smin, smax

Cmin, Cmax

nmin, nmax

vymin, vymax

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

. (41)

Here, a typical road topology allows to assume C(s) to be
linear or constant, such that C ′ is constant or zero, i.e., not
a variable anymore. The set Z̃ is an inner approximation of
the projection of Z and can be determined by elimination
of the quantifier ∀ by using algorithms as implemented
in Mathematica (Wolfram, 1991) or Maple (Heck, 1993).
Note that this is in general a computationally very de-
manding procedure. In the given case, however, it turns
out to be tractable.

The resulting set has been reduced to three dimensions,
namely ṡ, ut, and un. This allows to gain insight into
its shape, for example to assess connectivity by visual
inspection. If the set is convex, but not polytopic, standard
procedures for computation of inner approximations of
convex sets (Lotov et al., 2013, Chpt. 8), (Le Guernic,
2009, Sec. 4.2.2) can be readily employed. Otherwise,
for arbitrarily complex, but simply connected sets, the
procedure from Xue et al. (2016) can be used if an au-
tomated approach is required. However, as we demon-
strate in Sec. 4, the sets resulting for typical scenarios
are relatively simple even in the non-convex case, such
that human intuition quickly leads to sufficiently accurate
approximations. The set Z can then be obtained as follows:

Z = Z̃ × [smin, smax] × [nmin, nmax] × [vymin, vymax].

(42)

3.4 Resulting Models

In the previous sections, we have derived several equations
of motion and corresponding sets of (mixed) states and
input constraints. Different combinations of these lead to
different planning models:

Combining the nonlinear equations of motion (29) with
the input and state constraints (34) and (37) gives:

M1 = (f1,Xtn × Utn) . (43)

The second model is obtained by combination of the
simplified, linear dynamics (31) with the nonlinear, mixed
state-input constraints (39):

M2 = (f2,Z) . (44)

Combining the same dynamics with the linearized con-
straints (40) gives the third model:

M3 = (f2,Z) . (45)

For comparison purposes, we also introduce a fourth
model, combining the linear dynamics (31) with the orig-
inal input and state constraints (34) and (37):

M4 = (f2,Xtn × Utn) . (46)

This model clearly is naive in so far as that it ignores the
constraint coupling resulting from (38). Based on these
models, our main result is summarized as follows:

Proposition 1. Planning with the linear model M3 gen-
erates trajectories which are feasible for the nonlinear
model M1. More formally, given the constraint set Z
from (45) and the original constraint sets Xtn and Utn
from (43),

[xtn ũ]
T
∈ Z ⇒ xtn ∈ Xtn ∧ ∃atn ∈ Utn ∶ atn and ũ fulfill (30).

Proof. Due to (39), [xtn ũ]
T
∈ Z ⇒ [xtn ũ]

T
∈ Z. Since

Z is defined as the conjunction of (34) and (37) (mapped
to ũ), the result is immediate. ◻

3.5 Strategies to Reduce Conservatism

Clearly, the procedure described in Sec. 3.3 introduces
conservatism: first by imposing conditions for all possible
values of certain variables, and second by inner approxi-
mating the resulting set. While finer inner approximations
obviously lead to less conservatism, a remedy to the first
issue is less obvious. We propose to partition roads into
segments of a certain length, in which the ranges of C and
n are small enough to introduce only little conservatism
when eliminating these variables. Also, a constant value
for C ′ is used. This introduces again position dependence,
but on a coarser scale, constituting a good compromise
between computational tractability and conservatism. In
addition, maneuver-dependent bounds on ṅ can be used,
e.g. when the vehicle simply has to follow a lane or has to
overtake.

4. EXAMPLE

We demonstrate the efficacy of our approach by planning
trajectories for a vehicle driving on the road depicted in
Fig. 2. The track consists of two circles connected by
so-called Euler spirals (road segments of linearly varying
curvature) – two common shapes in road design. Fig. 3a
shows the curvature values, which represent a relatively
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Fig. 2. Test Track (crosses indicate segment ends; s = 0 at
(0,0), increasing eastwards).
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Fig. 3. Properties of the test track.

demanding, but still comfortably drivable track. In order
to reduce conservatism, we divide the track into eight
segments with boundaries as indicated by red crosses in
Fig. 2 and dotted vertical lines in Fig. 3a, respectively. For
all sections, if not mentioned otherwise, the reference speed
as well as the maximum allowable speed are set to vx,max =

100 km h−1, while vx,min = 0 km h−1 and −18 km h−1 ≤ vy ≤
18 km h−1. For reasons of comfort and safety, longitudinal

and lateral accelerations are limited to
√
a2x,b + a

2
y,b ≤

√
2 ⋅

3 m s−2, which is inner-approximated by requiring that
−3 m s−2 ≤ ai,b ≤ 3 m s−2, i ∈ {x, y}.

Based on these constraints, for each segment, a set Z is
computed according to Sec. 3.3. Projections of the result-
ing sets on the ṡ - ut and ṡ - un - space are shown in Fig. 4,
in which dotted lines denote the inner approximations
(where none are visible, these coincide with the bounds
of the original set). Note that the inner approximation
can be obtained by inner-approximating the projections of
the set because the accelerations are independent of each

other. The obtained constraints Z are then used to define
model M3 in each segment. Depending on the segment
in which the vehicle is predicted to be located in, differ-
ent constraints are activated, which is implemented using
binary variables and the Big-M-method, cf. (Williams,
1990). In the following, the equations of motion and con-
straints of two different models from Sec. 3.4 will be used
when solving Problem 1: ModelM3, which is the result of
the proposed method, and model M4, which represents a
naive approach to the planning problem.

4.1 Scenario 1

We first demonstrate that solving Problem 1 based on the
proposed method, i.e., model M3, allows excessive lateral
motion on curved roads without violating constraints,
while the naive model M4 leads to immediate failure.
To that end, we impose a sinusoidal reference trajectory
for the lateral motion of the vehicle while traversing the
northern circle. In order to follow that motion, lateral
inputs as shown in Fig. 5 are applied, which correspond
to lateral accelerations as given in Fig. 6. Clearly, the
inputs as determined by both methods are admissible.
However, in the naive approach, the resulting accelerations
violate the imposed constraints as indicated by the gray
lines. The proposed method, in contrast, yields admissible
accelerations due to the employed state-dependent input
constraints. Certainly, admissible accelerations could also
be obtained based on the naive modelM4 by introducing
speed limits. However, as the next scenario shows, constant
speed limits may not be sufficient to guarantee constraint
compliance.

4.2 Scenario 2

Secondly, we focus on the aspect of varying curvature,
while the vehicle keeps a constant lateral position during
its journey along the track in Fig. 2. As the previous
section has demonstrated, failure of the naive approach
on roads with high curvature is foreseeable if no speed
limits are present. Therefore, in order to give the naive
approach a chance, the maximal admissible longitudinal
velocity is reduced to 70 km h−1 in the smaller circle of the
track and in the first segments preceding and following it.
For the proposed approach, it is not necessary to enforce
this constraint, because one can rely on its ability to
automatically choose admissible speeds.

The longitudinal input trajectories resulting from both
planning procedures are given in Fig. 7. Use of both models
leads to feasible inputs, i.e., the input constraints are
not violated, which are constant in the case of the naive
planner and vary with the speed in the proposed method.
The longitudinal and lateral accelerations resulting for
the vehicle from these inputs are given in Fig. 8. Despite
overall similar appearance, subtle but crucial differences
demonstrate the value of our approach: Some longitudinal
accelerations are not admissible in the naive case (cf. mark-
ings). The proposed method, in contrast, automatically
limits the longitudinal inputs as shown in Fig. 7 at the
critical instances, leading to admissible accelerations.
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Fig. 5. Scenario 1: Input un.
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Fig. 6. Scenario 1: accelerations ay,b (dashed blue: naive
approach; solid red: proposed method; thick grey:
constraints).

5. CONCLUSION

While planning based on the naive model M4 violates
the acceleration constraints in both scenarios, it can be
noted that the degree of violation is relatively small.
Also, one could argue that M4 could certainly return
admissible accelerations by tuning of its cost function
or by introducing additional constraints (such as further
reducing the maximal speed). While in human driving,
speed limits are the standard mean to prevent dynamically
infeasible situations, this is not sufficient for autonomous
vehicles, because traveling at a prescribed speed does
not imply compliance with dynamical constraints, which
also depends on the other states of the vehicle and the
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Fig. 7. Scenario 2: Input ut.
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(b) Lateral acceleration ay,b.

Fig. 8. Scenario 2: accelerations in the body-fixed frame
(dashed blue: Naive approach; solid red: proposed
method).

chosen inputs. In order to select these inputs properly, a
human driver relies on experience and typically tries to
not operate the vehicle at the bounds of the admissible
region. This is not viable for autonomous vehicles, whose
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Fig. 9. Resulting velocities in the body-fixed frame (dashed
blue: naive approach; solid red: proposed method).

planning algorithms do not have human experience. Also,
an optimization-based planner will often find an optimum
on the boundary of a given admissible set, not leading
to cautious driving. Therefore, the tuning effort may be
significant.

In addition, tuning goes along with significant testing
effort in order to reduce the likelihood of failure, without
being able to ever completely exclude it. Our method, in
contrast, is able to guarantee compliance with the original
constraints based on a theoretically sound approach. While
it is conservative, constraints tailored to a certain vehicle
can still lead to less conservative behavior than simple
speed limits imposed on a road segment, which do not
account for the dynamics of a certain vehicle. This becomes
clear when considering the velocity trajectories resulting
from both planning procedures as given in Fig. 9: while the
naive planner reduces the vehicle’s longitudinal velocity
according to the speed limits, the planner based on the
proposed method does not have to account for a global
speed limit. Thus, it only reduces the vehicle’s speed based
on its speed-dependent input constraints, leading to overall
less reduction, while still complying with the acceleration
constraints (unlike the more conservative naive approach).
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