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Abstract: In a previous work, multi-stage NMPC and tube-based NMPC schemes were
combined into a single framework called tube-enhanced multi-stage NMPC with the goal of
achieving an improved trade-off between simplicity and performance. In tube-enhanced multi-
stage NMPC, the large uncertainties are handled using a multi-stage primary controller and
the small uncertainties are handled using a multi-stage ancillary controller that tracks the
predictions of the primary controller. In this work, we propose the replacement of the multi-
stage ancillary controller by a single scenario NMPC that tracks the predicted trajectories of
one of the scenarios of the multi-stage primary controller. The scenario that will be tracked
by the ancillary controller as well as the ancillary controller model are time varying and are
adapted to the current plant dynamics. The benefits of the new formulation are demonstrated
on the benchmark Williams-Otto Continuous Stirred Tank Reactor (CSTR) example.
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1. INTRODUCTION

Robust Model Predictive Control (NMPC) approaches
were introduced to deal with the presence of uncertainties
in the available process models. Min-max MPC tackles
the presence of uncertainties by minimizing the worst-case
value of the objective while satisfying the constraints for
all realizations of the uncertainty (Campo and Morari,
1987). However, min-max MPC is conservative because
the presence of feedback information in the predictions is
not considered in the problem formulation. This can easily
lead to situations where the constraints cannot be satisfied
for all possible uncertainties. To reduce the conservatism,
feedback min-max MPC was proposed for linear systems
in (Scokaert and Mayne, 1998) where the decision problem
was formulated by considering the feedback information in
the predictions while minimizing the worst-case objective.
Several formulations for feedback min-max NMPC were
proposed such as in (Fontes and Magni, 2003) and (Limon
et al., 2006). However, the proposed formulations result in
optimization problems which are very difficult to solve.

Multi-stage MPC was proposed in (Muñoz de la Peña
et al., 2005) for the linear case. For the nonlinear case
it was initially proposed by (Dadhe and Engell, 2008)
and elaborated in (Lucia and Engell, 2012) and (Lucia
et al., 2013). It provides a computationally tractable ro-
bust scheme that considers a scenario tree for the future
evolution of the uncertainty and reflects the presence of
feedback information explicitly by formulating the op-
timization problem as a multi-stage problem where the
future inputs constitute the recourse variables by which
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Fig. 1. Scenario tree representation for multi-stage NMPC.

the reaction to the future information is incorporated.
As shown in Figure 1, the branches represent the dif-
ferent realizations of the uncertainties that give rise to
different state predictions which are the tree nodes. An
inherent drawback of the multi-stage NMPC approach is
that the size of the scenario tree and consequently the
optimization problem grows rapidly with the number of
uncertainties considered and with the prediction horizon.
The restriction of the scenario tree to the so-called robust
horizonNR after which the uncertainties are assumed to be
constant alleviates this problem to some extent. However,
the problem size can still be large despite the use of a small
robust horizon, if many uncertainties are considered in the
scenario tree.

Another family of robust NMPC schemes, is tube-based
NMPC. Tube-based NMPC mimics the pragmatic engi-
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neering approach of lower-layer controllers by which the
nominal trajectory is followed despite the uncertainty in
the behaviour of the plant. Different formulations of tube-
based NMPC schemes were developed in (Cannon et al.,
2011), (Mayne et al., 2011), (Yu et al., 2013) and (Vil-
lanueva et al., 2017). In (Mayne et al., 2011), an NMPC
is employed as a primary controller with tightened con-
straints to minimize a given objective and an ancillary
controller is employed to keep the system trajectories close
to the predicted nominal trajectories such that robust
constraint satisfaction is achieved. A key feature of this
approach is that the problem complexity remains close to
that of nominal NMPC. However, since only the nominal
model is used, the tube-based NMPC can be conservative
for large uncertainties.

Recently in (Subramanian et al., 2018), multi-stage NMPC
and tube-based NMPC were combined into a single frame-
work called tube-enhanced multi-stage NMPC. Tube-
enhanced multi-stage NMPC uses two controllers similar
to the tube-based NMPC scheme proposed in (Mayne
et al., 2011). However, unlike tube-based NMPC, robust
multi-stage NMPC controllers are employed as primary
and ancillary controllers. The uncertainties with signifi-
cant effect are handled using the multi-stage NMPC frame-
work and the small disturbances and state estimation
errors are handled using the tube-based NMPC concept,
where a multi-stage ancillary controller was employed to
track the predicted trajectories of the primary controller
for all the realizations of the uncertainty that are consid-
ered in the primary controller. As a result, the growth in
problem size due to the small uncertainties is eliminated
with small or even insignificant loss of performance.

In this paper, a simplified variant of tube-enhanced multi-
stage NMPC is proposed and evaluated. We propose to
use a single scenario NMPC ancillary controller to track
one of the predicted trajectories of the multi-stage pri-
mary controller at each time step. The scenario (reference
trajectory) that will be tracked by the ancillary controller
and the ancillary controller model can change according
to the plant measurements or states estimates. This re-
sults in a significant reduction of the computational effort
while maintaining the robustness properties of the origi-
nal scheme. We demonstrate how stability of the system
controlled by the proposed scheme can be established from
the results in the robust NMPC literature. The capabilities
of the proposed controller are demonstrated using the
benchmark Williams-Otto CSTR.

2. SYSTEM UNDER CONSIDERATION

We consider a discrete time uncertain nonlinear system
described by:

xt+1 = f(xt, ut, dt) + wt, (1a)
yt = h(xt, ut) + δt (1b)

where xt ∈ X ⊂ Rnx , ut ∈ U ⊂ Rnu are the state and
input vectors respectively, X and U are the state and
input constraints, dt ∈ D ⊂ Rnd denotes the parametric
uncertainties, wt ∈ W ⊂ Rnx is the vector of additive
disturbances, yt ∈ Rny is the output vector, δt ∈ ∆ ⊂ Rny

is the measurement noise. The sets X, U, D, W and ∆ are
compact. The nonlinear map f : Rnx ×Rnu ×Rnd → Rnx

represents the system dynamics, and the system output is
described by (1b).

An estimator is assumed to be employed to estimate the
states from the available model and the measurement
information. The initial state estimation error e0 = x0−x̂0
is assumed to lie in the compact set E0, and subsequent
estimation errors et = xt − x̂t lie in the compact sets Et,
∀t > 0, where x̂t is the state estimate at time step t.
We assume that the parametric uncertainties dt have a
significant influence on the evolution of the states, while
the effects of wt and et are assumed to be relatively small.

We want to control the system described by (1) either to
track a reference or to achieve the best possible economic
objective along with state and input constraints satisfac-
tion.

3. TUBE-ENHANCED MULTI-STAGE NMPC

The subscript t denotes the current time step, and with
some abuse of notation the subscript k will denote future
predictions from the current time step t, and hence it is
implicit that xk means the predicted state at the future
time step t+ k while xt means the current state.

Tube-enhanced multi-stage NMPC (Subramanian et al.,
2018) employs two controllers, a multi-stage primary
NMPC which optimizes the original objective and takes
into account the future evolution of the large uncertainties
(assumed to be the parametric uncertainties dk) at each
time step and a multi-stage ancillary NMPC that tracks
the optimal predictions of the primary controller for the
considered discrete realizations of the parametric uncer-
tainties to counteract the effects of the small uncertainties
(assumed to be the additive disturbances and state esti-
mation errors). Hence it inherits properties from both the
tube-based and the multi-stage NMPC schemes.

By considering only the large uncertainties in the primary
controller formulation, the growth in problem size with
respect to small uncertainties is eliminated. An ancillary
controller of the same tree structure as the primary con-
troller is employed to track the predictions of the primary
controller.

In order to have a primary system state z that is af-
fected only by the parametric uncertainties, the primary
controller is initialized at each time step t with the one
step ahead predicted tree node (predicted at the previous
time step t − 1 by the primary controller) which has the
minimum Euclidean distance to the current state estimate
x̂t. The ancillary controller is initialized at each time step
t with the current state estimate x̂t.

The primary system state and input vectors are denoted
by z and v respectively, hence the evolution of the state of
the model used in the primary controller is given by:

zt+1 = f(zt, vt, dt). (2)

The evolution of the state of the plant is given by:

xt+1 = f(xt, ut, dt) + wt, (3)

which is considered to be unknown (due to state estimation
errors) but lies in a compact set centered at x̂t.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11735



4. SIMPLIFIED TUBE-ENHANCED MULTI-STAGE
NMPC

The idea proposed in this paper is to replace the multi-
stage ancillary NMPC by a single scenario ancillary NMPC
that employs only one plant model at each time step. The
task of the ancillary controller is to track the predicted
input and state trajectories of one of the scenarios of
the primary controller which has the same model as the
ancillary controller. This is motivated by the fact that
plant measurements when used with (uncertain) process
models provide some information about the uncertainty
that has realized in the plant (in the previous time step)
and the fact that parametric uncertainties d are usually
slowly varying.

The primary controller is the same as the one proposed in
(Subramanian et al., 2018). At each time-step t, the opti-
mization problem of the primary controller is formulated
as follows:

min
zj
k+1

,vj
k
∀(j,k)∈I

V̄N (zt) (4a)

subject to

zjk+1 = f(z
p(j)
k , vjk, d

r(j)
k ), ∀(j, k + 1) ∈ I, (4b)

zjk+1 ∈ Z, ∀(j, k + 1) ∈ I, (4c)

vjk ∈ V, ∀(j, k) ∈ I, (4d)

vjk = vlk, if z
p(j)
k = z

p(l)
k , ∀(j, k), (l, k) ∈ I, (4e)

V̄N (zt) =

Ns∑
i=1

ωiṼi, (5)

where I denotes the set of indices of the scenario-tree, N
denotes the prediction horizon, Ns denotes the number of
scenarios which depends on the considered discrete realiza-
tions of the uncertainties and the robust horizon, ωi is the
respective scenario weight, zjk+1 is the predicted primary
system state which is determined by (4b) and depends
on its parent primary system state z

p(j)
k , the primary

system input vjk and the realization of the uncertainty
d
r(j)
k . The scenario cost Ṽi =

∑N−1
k=0 `(z

j
k+1, v

j
k), ∀zjk+1, v

j
k

in scenario i. The constraints on the primary system states
and inputs are defined by (4c) and (4d), where Z ⊆ X
and V ⊆ U. To represent causality in the decision problem
formulation, decisions based on the same information must
be the same. This is enforced by the non-anticipativity
constraint (4e). The scenario tree of the primary controller
considers s possibilities for the uncertainty realizations.
Hence, dr(j)k ∈ Dd ⊆ D, where Dd = {d1, d2, · · · , ds}.
The optimal predicted inputs and states of the primary
control problem are denoted by v∗jk and z∗jk respectively,
∀(j, k) ∈ I.
At t = 0, the primary controller is initialized with the
initial state estimate x̂0. For all t ≥ 1, the discrete set
Zr(t − 1) defined as Zr(t − 1)=̂{z∗j1 |(j, 1) ∈ I} defines
the optimal one step ahead predicted primary states at
the previous time step t − 1. At each time step ∀t ≥ 1,
the primary system state in Zr(t − 1) with the minimum
Euclidean distance from the current state estimate x̂t
will act as the initial primary tree node. The ancillary
controller is always initialized with the state estimate x̂t.

The ancillary controller optimization problem is formu-
lated as follows:

min
x̂k+1,uk,∀0≤k≤N−1

VN (x̂t) (6a)

subject to
x̂k+1 = f(x̂k, uk, d

n), 0 ≤ k ≤ N − 1 (6b)

ujk ∈ U, 0 ≤ k ≤ N − 1 (6c)

VN (x̂t) =

N−1∑
k=0

`
(
x̂k+1 − z∗ik+1, uk − v∗ik

)
, (7)

where dn ∈ D is the realization of the uncertainty that is
considered in the ancillary controller, and

z∗ik+1 = f(z
∗p(i)
k , v∗ik , d

n). (8)
We propose to select dn at each time step t as the
uncertainty value which was estimated to have resulted in
the primary system state zt. Hence, dn at each time step
t belongs to the discrete set of uncertainties considered by
the scenario tree of the primary controller (dn ∈ Dd).

In tube-based NMPC (Mayne et al., 2011), only additive
disturbances on the plant state were considered. The pur-
pose of the ancillary controller was to keep the plant state
in a close neighborhood of the primary system trajectory.
For the case of a more generic form of uncertainty, a tube-
based NMPC scheme was proposed in (Falugi and Mayne,
2011).

The key difference in our proposed scheme is that the
ancillary controller does not track a fixed reference tra-
jectory. Instead, it may track a different scenario at each
time step depending on the actual (estimated) realization
of the plant uncertainty. The reference scenario tracked
by the ancillary controller is generated by the primary
controller using the same model (same uncertainty d) as
the model used in the ancillary controller. The multi-
stage primary controller implicitly optimizes (with respect
to d) for the required back-offs for each scenario from
the primary system constraints, for each current initial
state of the primary system. If the primary controller
uses only one model, the constraint tightening has to be
done manually for all initial states and for all possible
uncertainty sequences (w, e and d), which would lead
to sub-optimal plant operation. Hence, in our proposed
approach, constraint tightening for the primary controller
is only with respect to the small uncertainties (w and e).

As explained in (Mayne et al., 2011) and (Subramanian
et al., 2018), the computation of the required constraint
tightening (the sets Z and V) rigorously is a formidable
task, and simulation studies have to be conducted to
determine Z and V.

Assume that at time step t, the ancillary controller model
was based on uncertainty di, where di ∈ Dd which was
the actual plant uncertainty up to time step t − 1. If
at time step t, the plant uncertainty changes from di to
dj , where dj ∈ Dd, the actual plant state at time step
t + 1 will be different from what was predicted by the
ancillary controller due to the model mismatch in the
ancillary controller at time step t. However, the scenario
tree of the primary controller considers all d ∈ Dd, and
hence we expect the plant state xt+1, although different
from what was predicted by the ancillary controller, to be
close to zt+1 = z∗j ∈ Zr(t) (which is one of the nodes
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of the scenario tree of the primary controller). At t + 1,
the ancillary controller will use the correct model (which
corresponds to dj) because the state of the primary system
is zt+1 = z∗j . Therefore, although the ancillary controller
uses only one model at each time step, robustness against
the uncertainty d is achieved by the primary controller. By
the ancillary controller, the plant state is kept in a vicinity
of the primary system state. After a change of the large
uncertainty at some point in time, convergence of the state
of the plant to a robust positive invariant set around the
state of the primary system can be guaranteed as will be
discussed in the following section. The controller can be
implemented as per Algorithm 1.

Algorithm 1 Controller Implementation
Require: Z, V, x̂t.
If t = 0: Initialize the primary controller with x̂0.

Solve (4) and apply v∗10 to the plant.
Store the elements of Zr(0) (z∗j1 , ∀(j, 1) ∈ I).

else:
Step 1 Estimate the current state x̂t.
Step 2 Determine z∗j1 ∈ Zr(t − 1) which has the

minimum distance to x̂t and use it as the root
node for the primary controller (z0).

Step 3 Determine the parameter d ∈ Dd which re-
sulted in z∗j1 ∈ Zr(t − 1) which has the mini-
mum distance to x̂t and store it as dn.

Step 4 Solve (4) and store the optimal solution se-
quences {z∗jk }, {v

∗j
k }.

Step 5 Store the elements of Zr(t).
Step 6 Determine the reference scenario by using dn

in (8) from k = 0 to k = N − 1.
Step 7 Solve (6) using dn in the ancillary controller

model.
Step 8 Apply u∗10 to the plant, set t = t + 1, and go

to step 1 at the next sampling instant.

The advantage of the proposed scheme over the original
tube-enhanced multi-stage NMPC (with muti-stage pri-
mary and ancillary controllers) is a significant reduction
in the computation time, as only a standard NMPC prob-
lem is solved for the ancillary controller. In the process
industry, the sampling time is usually large, and hence
the primary controller optimization problem can be solved
within the sampling interval as many times as the number
of considered discrete realizations of the uncertainty, with
root nodes z∗j1 ∈ Zr(t − 1), ∀(j, 1) ∈ I. When the state
estimate x̂t arrives at time step t, the primary controller
solution that corresponds to z∗j1 ∈ Zr(t− 1) which has the
minimum Euclidean distance to x̂t can be used to select
the ancillary controller model and the reference trajectory
(8) needed in (6) and (7). This results in a robust NMPC
scheme that has the same response time as an NMPC
based on a nominal model.

5. DISCUSSION ON THE STABILITY OF THE
PROPOSED SCHEME

In this section, we sketch briefly how convergence of the
state trajectory of the plant to a robust positive invariant
set around the state trajectory of the primary system can

be established. We will not present a detailed stability
proof, but we discuss in a conceptual manner how the pre-
sented scheme (when extended by stabilizing ingredients)
can guarantee stability of the controlled plant. We will
invoke already established assumptions and results from
the tube-based NMPC and multi-stage NMPC literature
only when needed for the sake of our discussion.

Throughout, we assume that the actual realization of the
uncertainty in the plant belongs to the discrete set Dd

which is taken into account by the primary controller. We
consider the full state information case (xt = x̂t, ∀t ≥ 0)
for simplicity. The following is assumed for the remainder
of this section.
Assumption 1.

i. The plant dynamics f(·, ·, ·) is Lipschitz continuous
with Lipschitz constant Lf .

ii. The solution to the ancillary controller optimization
problem is unique.

5.1 Primary Controller

A robust positive invariant terminal constraint set Zf and
a terminal penalty function satisfying the assumptions in
(Lucia, 2014) can be added to the optimization problem
of the primary controller, which guarantees the existence
of a feasible terminal control law κf (z), ∀d ∈ Dd, ∀z ∈ Zf .

The scenario tree of the primary controller is initialized at
each time step t by one of the tree nodes from the set Zr(t−
1). Since the terminal constraint set is robust positive
invariant, a feasible solution for the primary controller
optimization problem always exists ∀t ≥ 0. Input-to-state
practical stability (ISpS) of the primary system state then
follows as in (Lucia, 2014).

5.2 Ancillary Controller

We assume in the sequel that the actual plant uncertainty
dt at time step t changes from di to dj , where di, dj ∈ Dd.
Due to the way the primary controller is initialized, and
since dt = dj ∈ Dd, at time step t+ 1, the plant state and
the primary system state are given by

xt+1 = f(xt, ut, dt) + wt, (9a)
zt+1 = f(zt, vt, dt), (9b)

where zt+1 ∈ Zr(t) will be the root node of the scenario
tree of the primary controller at t+ 1.

We assume quadratic stage costs of the form
`(x− z, u− v) = (x− z)TQ(x− z) + (u− v)TR(u− v)

for the ancillary controller, where the matrices Q and R
are positive definite.

It follows from proposition 2 in (Mayne et al., 2011), that
there exists a constant c1 > 0 such that,

VN (xt) ≤ c1|xt − zt|2 (10)
Therefore, from (10) and the positive definiteness of Q and
R, there exists a constant L1 > 0 such that,

|ut − vt| ≤ L1|xt − zt|. (11)
From (9), (11), Assumption 1.i and the triangle inequality,
there exists a constant L2 such that,

|xt+1 − zt+1| ≤ L2|xt − zt|+ |wt|. (12)
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Inequality (12) shows that if the plant uncertainty changed
at time step t, the control error at time step t+ 1 (|xt+1−
zt+1|) is bounded and the bound depends on the previous
control error (|xt− zt|) and the additive disturbances |wt|.
Since the ancillary controller has no state constraints,
recursive feasibility is guaranteed by construction, and
from time step t+1 on, convergence of the state of the plant
to a robust positive invariant set around the the state of
the primary system can be established in a similar fashion
as in (Mayne et al., 2011). Therefore, the plant state and
the ancillary controller input are always in a neighborhood
of the primary system state and input. However, unlike in
(Mayne et al., 2011), the terminal ingredients have to be
satisfied ∀d ∈ Dd because there exists s possibilities for the
model in the ancillary controller, where s is the cardinality
of the set Dd.

6. CASE STUDY

The core unit in the Williams-Otto process (Williams and
Otto, 1960) is the CSTR in which the following reactions
occur:
A + B → C, k1 = 1.6599× 106e

− 6666.7
TR+273.15 s−1,

B + C → P + E, k2 = 7.2117× 108e
− 8333.3

TR+273.15 s−1,

C + P → G, k3 = 2.6745× 1012e
− 11111

TR+273.15 s−1

where ki = ai×e−
bi

TR+273.15 is the general form of the reac-
tion rate. We consider the CSTR model presented in their
work with the modifications of removing the recycle flows
and adding an ODE for modelling the jacket temperature.
Consequently, the model dynamics is governed by:

WRẊA = FA − (FA + FB)XA − k1XAXBWR

WRẊB = FB−(FA+FB)XB−(k1XAXB+k2XBXC)WR

WRẊC = −(FA + FB)XC

+ (2k1XAXB − 2k2XBXC − k3XCXP )WR

WRẊE = −(FA + FB)XE + 2k2XBXCWR

WRẊG = −(FA + FB)XG + 1.5k3XCXPWR

WRẊP = −(FA+FB)XP +(k2XBXC−0.5k3XCXP )WR

WRCpṪR = 2k1XAXBWH1 + 3k2XBXCWH2+

1.5XCXPWH3 − hwAw(TR − TJ)−
FACp(TR − TA)− FBCp(TR − TJ)

WwCpṪJ = FwCp(TJin − TJ) + hwAw(TR − TJ)

where XA, XB , XC , XE , XG and XP are the mass
fractions of the 6 components, TR and TJ are the reactor
and jacket temperatures. The process inputs are the flow
rates of the pure inlet components A and B which are FA

and FB , and the jacket cooling water inlet temperature
TJin. The mass of the liquid inside the reactor WR is
considered to be constant and locally controlled. Ww is
the mass of the water inside the jacket. H1, H2 and H3

are the heat of reactions for each of the 3 reactions taking
place. The complete details for the values of the model
parameters can be found in (Williams and Otto, 1960).

The exponential term b1 in the first reaction rate is con-
sidered to be uncertain by ±6% and its nominal value is
6666.7. We consider this as the main parametric uncer-
tainty which is modelled in the scenario tree of the primary
controller. Hence, dt ∈ [0.94, 1.06], ∀t ≥ 0. Random but
bounded additive disturbances are added to the solution
of the differential equations at each time step. The values
of the additive disturbances are ±5× 10−4 for the concen-
trations, ±0.2 for TR and ±0.01 for TJ .

The mass fractions of XE , XG and XP are measured with
a measurement error ±0.05. Also TR and TJ are measured
with a measurement error of±0.3◦C. An extended Kalman
filter (EKF) is used to estimate the the 8 states and the
unknown parameter b1. Initial state estimation errors e0 ∈
[−0.05, 0.05] for components A and B, e0 ∈ [−0.03, 0.03]
for components C and E, e0 ∈ [−0.01, 0.01] for compo-
nents G and P and e0 ∈ [−2.5, 2.5]°C for TR and TJ are
assumed.

The sampling time for all controllers and for the EKF is
Ts = 30 seconds. The prediction horizon for all controllers
is N = 20, and all the multi-stage controllers have a robust
horizon NR = 1.

The state and input constraints are, 60 °C ≤ TR ≤ 90,
0.5 kg s−1 ≤ FA ≤ 10 kg s−1, 0.5 kg s−1 ≤ FB ≤
10 kg s−1, 15 °C ≤ TJin ≤ 100 °C.

We consider three controllers; the tube-enhanced multi-
stage controller with primary and ancillary multi-stage
controllers (TEMS NMPC) from (Subramanian et al.,
2018), the newly proposed tube-enhanced multi-stage with
a single scenario NMPC ancillary controller (STEMS
NMPC) which considers d = 1 in its model for the first
time step, and ∀t ≥ 1 selects its model as detailed in
section 4, and a controller that only considers the nominal
parameter realization (d = 1) for the primary and the an-
cillary controllers, which we call tube NMPC in the sequel.
The multi-stage primary and ancillary controllers for the
TEMS NMPC and the multi-stage primary controller for
the STEMS NMPC consider the minimum, nominal and
maximum values of d, which are {0.94, 1.0, 1.06}.
All the simulations presented below were implemented
using CasADi (Andersson et al., 2019) for automatic
differentiation, and IPOPT (Wächter and Biegler, 2006)
for solving the resulting nonlinear optimization problems.

We first show the results of the three controllers for track-
ing a reference temperature of 90 °C. The constraints for
the primary and ancillary controllers are shown in Table 1.
As can be seen, the temperature of 90 °C is an unreachable
set point for all the primary controllers because of the
tightened constraints on TR. Both TEMS NMPC and
STEMS NMPC required the same constraint tightening
for the primary controllers, while tube NMPC required
tightening the constraint for the reactor temperature by
15.5 °C more in order to achieve robust constraint sat-
isfaction ∀d ∈ [0.94, 1.06]. As shown in Figure 2, for the
highest reaction rate (d = 0.94) all the controllers satisfy
the plant constraints. TEMS NMPC and STEMS NMPC
resulted in similar results, while tube NMPC results in a
slower behaviour. The behavior of the reactor temperature
for the nominal (d = 1.0) and lowest (d = 1.06) reaction
rates shows that tube NMPC resulted in a significantly
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Table 1. Constraints for the tracking objective.

Primary Controller TEMS, STEMS Tube Units
FA (0.6− 9.7) (0.6− 9.7) kg s−1

FB (0.6− 9.7) (0.6− 9.7) kg s−1

TJin (19− 97) (19− 97) °C
TR (60.5− 88.5) (60.5− 73) °C

Ancillary Controller TEMS, STEMS Tube Units
FA (0.5− 10) (0.5− 10) kg s−1

FB (0.5− 10) (0.5− 10) kg s−1

TJin (15− 100) (15− 100) °C

Fig. 2. Behavior of the reactor temperature TR, for the
CSTR controlled by TEMS NMPC, STEMS NMPC,
tube NMPC, for the uncertainty realization d = 0.94
(Upper figure), d = 1.0 (Middle figure), d = 1.06
(Lower figure)

larger steady state error compared to the TEMS NMPC
and STEMS NMPC due to the significant conservatism
introduced by the required constraint tightening.

In what follows, we show the results of the three controllers
for an economic objective. It is desired to control the
Williams-Otto CSTR with the uncertain model parameter
b1 such that instantaneous profit given by:
(5554.1XP +125.91XE)(FA+FB)−370.3FA−555.42FB $ s−1,
is maximized, while the input and state constraints are
satisfied all the time. The ancillary controllers are tuned
to track the primary system states and inputs with the
following stage cost:
10∆X2

P + 2∆X2
E + 5∆F 2

A + 10∆T 2
R + ∆F 2

B + 10−3∆T 2
Jin,

where ∆x is the deviation of the state or input of the plant
from the primary system state or input.

500 simulations were conducted, scanning the parameter
uncertainty range with a step size of 0.005, and random but
bounded generation of the additive disturbances, measure-
ments noise and initial state estimation errors as explained
earlier in this section.

Figure 3 shows a large spread of XP (the mass fraction of
the most profitable component) for the system controlled
by the tube NMPC. The steady state value of XP is as low
as 0.07 in some of the simulations. This is because the con-
troller tries to bring the reactor temperature close to the
significantly tightened nominal reactor temperature using
sub-optimal (with respect to the actual plant) inputs, be-
cause it is based on an incorrect model in the primary and
ancillary controllers. This resulted in a reduced average
steady state profit and even steady state loss in some of
the simulations as shown in Figure 3. Figure 4 shows the
inputs generated by the tube NMPC.

Fig. 3. Tube NMPC: Trajectories for the mass fractions
XE , XP , reactor temperature TR and the profit dy-
namics for the 500 simulations

Fig. 4. Tube NMPC: Trajectories for the inlet flow rates
FA, FB and the inlet cooling water temperature TJin
for the 500 simulations

Fig. 5. STEMS NMPC: Trajectories for the mass fractions
XE , XP , reactor temperature TR and the profit dy-
namics for the 500 simulations

As can be seen from the small spread of XP in Figure
5, this loss of performance did not occur for the system
controlled by the proposed STEMS NMPC. The steady
state value of XP did not fall below 0.1 in any of the
simulations and the steady state profit was never below
250 $s−1. Figure 6 shows the generated inputs by the
STEMS NMPC. Similar to the tracking objective case
illustrated earlier in this section, the STEMS NMPC and
the TEMS NMPC (plots eliminated here for brevity)
generated similar trajectories.

Table 2 shows the average steady state profits over the
500 simulations, where the TEMS NMPC and STEMS
NMPC resulted in approximately 27 % increase of profit
over tube NMPC. Table 3 shows the average computation
times for the primary and the ancillary controllers of the 3
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Fig. 6. STEMS NMPC: Trajectories for the inlet flow rates
FA, FB and the inlet cooling water temperature TJin
for the 500 simulations

Table 2. Average steady state profit.

TEMS STEMS Tube Units
955 962 751 $ s−1

Table 3. Average computation time.

Controller TEMS STEMS Tube Units
Primary 380 380 100 ms
Ancillary 220 50 50 ms

control schemes. The computation time for the ancillary
controller of the STEMS NMPC and the tube NMPC
are the same and much lower than that of the TEMS
NMPC. As mentioned earlier, the primary controller can
be solved three times within the 30 seconds sampling time
for the three future predicted states, and only the ancillary
controller optimization problem needs to be solved after
receiving the measurements. Hence, STEMS NMPC can
be implemented with the same input delay as nominal
NMPC.

7. CONCLUSION

In this paper we proposed a new variant of tube-enhanced
multi-stage NMPC, in which the multi-stage ancillary con-
troller is replaced by a single scenario NMPC ancillary
controller. The simulation study showed that the pro-
posed NMPC scheme has a potential of achieving similar
performance results as the original tube-enhanced NMPC
scheme with a significant reduction in the computational
effort and in the reaction time of the controller.
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