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Abstract: We solve an extension of the inverse problem: Given a function, x, which differential
equation does it solve. This extends the well known solution for Bohl functions, where an LTI-
ODE is the solution. We first show that for functions analytic in an open interval, a regular
time-variant differential polynomial annihilates the given function. Its order is determined by
the highest multiplicity of a real zero of the given function. This is then extended to a class
of functions that are real-analytic in R, and further to a class of meromorphic functions, but
without real poles. The solution is based on the theory of entire functions, for which essential
notions are summarized. Applications in reduced-modeling and computer algebra are mentioned.
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1. INTRODUCTION

A classic problem in the theory of linear systems is the
one of obtaining a state space realization of a given input-
output behavior of the system. The impulse response of
the system characterizes this input-output behavior. The
impulse response of a linear time-invariant system (LTI)
described by a finite order linear LTI ordinary differential
equation (ODE), consists of a finite sum of (complex) ex-
ponentials multiplied by polynomials in t. Such a function
is known as a Bohl function (Trentelman and Stoorvogel
[2002]). Zeilberger calls these C-finite. In the real case, a
Bohl function is a finite sum of products of polynomials,
real exponentials and sines and cosines. Conversely, any
Bohl function is the solution to a homogeneous linear time-
invariant ODE for specific initial conditions. Or, equiva-
lently, it is the impulse response of some nonhomogeneous
linear time-invariant equation a(D)y = b(D)u, (where D

denotes the differential operator d
dt ), with deg b < deg a.

An inverse problem (determining the annihilator) is asso-
ciated with the previous: Given any Bohl function x(t):

x(t) =

µ
∑

i=1

pi(t) e
λit, such that i 6= j ⇒ λi 6= λj ,

with pi ∈ C[t], λi ∈ C, deg pi = mi, determine the
polynomials a ∈ C[s] such that x is annihilated by a(D).
It is well known that this inverse problem does not have a
unique answer. If a(D) is a solution, i.e., a(D)x = 0, then
so is c(D)a(D) for any polynomial c(·). In the ring of Bohl
functions, the inverse problem specifies an ideal. However,
the monic solution of least degree is unique. Let’s denote
this by a0(D). It follows readily that, for x as given above,

a0(D) =

µ
∏

i=1

(D− λi)
mi+1, deg a0 =

µ
∑

i=1

(mi + 1).

⋆ The support by the NSF grant CPS-1544857 is gratefully acknowl-

edged.

This paper explores how this result changes if we allow
more general smooth functions, and look for time-variant
linear ordinary differential operators that annihilate the
given smooth function. Of course, the ODE should be
restricted to have smooth coefficients. How smooth? Let
us formulate the general inverse problem as follows:

The Problem
Given a smooth function, x(t), find a linear time-variant
monic differential operator,

a(t,D) = Dm + a1(t)D
n−1 + · · ·+ an−1D+ an(t),

with ai(t) ∈ C(R,R) such that

a(t,D)x ≡ 0, t ∈ (α, β).

Define the operation of multiplication by the independent
variable by Q. The differential operators of the above
form are then an extension of the elements from the
noncommutative Weyl algebra generated by Q and D,
where the generators satisfy the Heisenberg commutation
rule DQ − QD = I. Our idea of “realization” stems
then from the fact that any continuous function can be
approximated in any finite interval by a polynomial. Hence
an approximate representation of a given smooth x is
given by a polynomial approximation of the time-variant
coefficients of the annihilating differential polynomial in
the Weyl algebra, together with its initial conditions. This
also means that we seek holonomic approximations of
a given function. A holonomic function is one that is
annihilated by a polynomial in Q and D.

x ∈ kerR[Q,D] ⇔ x holonomic.

The set of holonomic functions (a.k.a. D-finite) form a
ring, and are closed under integration (Zeilberger [1990]),
which makes them amenable for computer algebra. In this
work, we shall also allow the coefficients of the differential
polynomials to be rational functions, or power series. See
also Verriest [1993] and Zerz [2006].
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The problem sketched above is explored in Section 2,
and completely solved for functions that are analytic in a
bounded interval in Section 3. Section 4 gives an extension
to infinite intervals. This requires the ideas from the theory
of Weierstrass (and Hadamard) representations.

2. TIME-VARIANT ODE

In this section we answer the following questions:
1. Can one do better (in terms of degree) for Bohl functions
if one allows time-varying coefficients ai(t)?
2. Can one find a(t,D) if x is non-Bohl?
3. What is the minimal order of a(t,D)? We will see that
the answers to question 1 and 2 are affirmative. We then
proceed with the constructive answer to question 3.

2.1 Nonvanishing functions

Given x ∈ C1((α, β),R) such that x(t) 6= 0 in (α, β), then

a(t,D) = D− ẋ

x
(1)

which involves the logarithmic derivative, is well-defined
and solves the problem since

(

D− ẋ

x

)

x = ẋ− ẋ = 0.

Example 1: The specific example below for a non-vanishing
but smooth non-Bohl function is illustrative. It also holds
for all t ∈ R.

x(t) =
1

t2 + 1
⇒ a(t,D) = D+

2t

t2 + 1
.

Example 2: Consider the continuous non-Bohl function
x(t) = a > 0 for t < 0, x(t) = a + t for t > 0. This is
continuous but not differentiable at 0. If a > 0, it does not
vanish. The corresponding annihilating differential form

D− H(t)

a+ tH(t)
= D− H(t)

a+ t
,

whereH is the Heaviside unit-step function, is not smooth.
Moreover it is not uniformly bounded as the parameter
a→ 0. Clearly, smoothness of x may be an issue.

2.2 Isolated Single Zero

If x vanishes at t0 ∈ (α, β), the first order operator a(t,D)
in (1) is not well-defined. Restricted to (α, t0), all solutions
of a(t,D)y = 0 are of the form Ax(t), A ∈ C. Likewise, in
(t0, β), the solutions are of the form Bx(t), B ∈ C. It is
not necessary to assume A = B. Let’s illustrate:

Example 3: Let x(t) = t− 1 so that (1) yields

a(t,D) =

(

D− 1

t− 1

)

.

The corresponding Cauchy problem has (weak) solutions
(with H(·) the Heaviside unit-step function):

[A+ (B −A)H(t− 1)](t− 1).

Since two parameters pin down a particular solution,
this alludes to a higher dimensionality. With the identity
tδ(t) = 0, it is readily verified that the above functions

are all solutions to the non-monic differential operator
(t− 1)D− 1. A non-monic ODE where the highest order
coefficient can vanish is also known as a singular ODE.

Example 4: Consider the function x(t) = t + tnH(t), for
n ≥ 2. It has a single zero at t = 0, and is (n − 1) times
differentiable. Here we obtain the singular differential
polynomial

a(t,D) = tD−1 + ntn−1H(t)

1 + tn−1H(t)
= tD−1− (n− 1)tn−1

1 + tn−1
H(t).

The equation a(t,D)y(t) = 0 has the general solution
y(t) = At for t < 0, and y(t) = Bt(1 + tn−1) for t > 0.
However, unless A = B, the solution is not differentiable.
Solutions with A = B are only n− 1 times differentiable.
For n = 2, its second derivative, ÿ, contains the singular
term (B −A)δ(t) and a jump 2BH(t).
The next section explores this singular case in more
detail. These examples also illustrate that more than finite
smoothness in x will be needed to obtain nice results.

3. ANALYTIC FUNCTIONS IN (α, β)

The examples in Section 2 suggested an idea on how
to generate a singular time-variant first order ODE in
case the given function x has a single zero in some
interval (α, β). The first main result proven here relates
to arbitrary nonzero analytic x(t). By the principle of
permanence, this implies that the zeros of x are isolated
(no cluster points). Consequently, a real analytic function
has finitely many zeros in any bounded interval.

Definition 1: The linear differential polynomial

a(t,D) = Dm + a1(t)D
n−1 + · · ·+ an−1D+ an(t),

is regular in (α, β) if it is monic (a0(t) ≡ 1) and the
coefficients ai(t) are continuous in (α, β).
It is well-known that if x solves a(t,D)x = 0, then it
and its first n derivatives are all continuous. We shall now
restrict the given function x to be real analytic. The set of
real analytic functions on an interval (α, β) is denoted by
Cω((α, β),R). Recall that x is real analytic on (α, β) iff x
can be extended to a complex analytic (a.k.a holomorphic)
function on an open set D ⊂ C, which contains the real
interval (α, β). This is not true in general for real analytic
functions defined on all of R. The function x in Example 1
gives a counterexample. Its Taylor series about 0 does not
converge for |x| > 1.

Theorem 1. If x ∈ Cω((α, β),R) then there exists a reg-
ular second order linear differential operator a(t,D) such
that a(t,D)x = 0, iff x has no repeated real zeros in (α, β).

Proof. Let the zeros of x in (α, β) be α < t1 < t2 < · · · <
tn < β, and factor x(t) as

x(t) = (t− t1)(t− t2) · · · (t− tn)
︸ ︷︷ ︸

=p(t)

xr(t),

where xr(t) is twice differentiable and has a fixed sign in
(α, β). The (weak) first-order differential form

p(t)D− p(t)ẋr(t)

xr(t)
− ṗ(t),

annihilates the given function x but is not regular. Operate
on the left with the first-order differential polynomial D−
η(t), where η ∈ C((α, β),R), to get
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(D− η)

(

pD− pẋr

xr
− ṗ

)

= pD2 − p

(

η +
ẋr

xr

)

D+ p

(

ẋr

xr
η −

(
ẋr

xr

)′
)

+

+

[

ṗ

(

η − ẋr

xr

)

− p̈

]

.

If the term in [ · ] were a multiple of p, we could cast out
the “p” from the above differential operator to obtain a
monic one. Thus motivated, we ask for the solvability for
η and k in

ṗ

(

η − ẋr

xr

)

− p̈
?
= kp.

Note that by the Gauss-Lucas theorem, p and ṗ have
interlaced roots. This implies that p and ṗ are coprime
polynomials. By Bezout’s theorem, polynomials q0 and k0
exists in R[t] such that

q0(t)ṗ(t)− k0(t)p(t) = 1. (2)

A constructive solution method is given in Verriest [2020].
The Diophantine equation

q(t)ṗ(t)− k(t)p(t) = p̈(t) (3)

is then solved by the polynomials

q(t) = q0(t)p̈(t), k(t) = k0(t)p̈(t).

Finally, letting

η(t) = q(t) +
ẋr(t)

xr(t)
,

the regular second order differential polynomial, a(t,D)
annihilating x(t) = p(t)xr(t) is given by

D2−
(

q0p̈+ 2
ẋr

xr

)

D+

((
ẋr

xr

)

q0p̈+

(
ẋr

xr

)2

−
(
ẋr

xr

)′

+ k0p̈

)

.

✷

This may explain why the theory of linear time-variant
ODE’s mostly centers around second-order equations, cul-
minating in the Sturm-Liouville problem.

If x possesses real zeros of higher multiplicity, one can
make use of the following lemma:

Definition 2: A smooth function is called signed in
(α, β) if it is nowhere vanishing in the interval (α, β).
Consequently, it has a fixed sign in (α, β).

Lemma 2. Any x ∈ Cω((α, β),R) can be factored as pxb,
where p is a monic polynomial with only real zeros in (α, β)
and xb is differentiable and signed in (α, β) Then

(

D− ẋb

xb

)

pxb = ṗxb.

Proof. Direct verification.

The factorization alluded to in Lemma 2 is not unique.
The function x(t) = t(t2 + 1) exp(−t) factors in p1(t) = t
and xb1(t) = (t2 + 1) exp(−t), or p2(t) = t(t2 + 1) and
xb2(t) = exp(−t) in the interval (−1, 1). This prompts us
to define a canonical factorization:

The factorization of x ∈ Cω((α, β),R) as x = pxb is
canonical in (α, β) if p is monic and its extension over
C has no roots other than those in the real interval (α, β).
It follows that the cofactor xb is signed in (α, β).

Note that by the Gauss-Lucas theorem, all roots of ṗ lie
on the real axis, and deg ṗ = deg p − 1. In addition, if p
has a root of multiplicity m at t = t∗ > 1, then ṗ has a
root at t∗ of multiplicity m− 1. This leads to:

Theorem 3. Let x = pxb be a canonical factorization of x.
If the highest multiplicity of a root is m, then a regular
differential polynomial annihilating x is given by

a(t,D) = (D2 + a1D+ a2)

(

D− ẋb

xb

)m−1

. (4)

Proof.
(

D− ẋb

xb

)m−1

pxb = qxb

where q = p(m−1) has only roots on the real axis with
multiplicity one. By Theorem 1 smooth functions a1 and
a2 exist such that qxb is annihilated by a(t,D). ✷

Corollary 4. If the highest multiplicity of a zero of x(t) ∈
Cω((α, β),R) is m, then x is annihilated by a regular
differential polynoimal of degree m+ 1.

In Example 4, x(t) = t + tnH(t) has a factorization with
p(t) = t and xb(t) = 1+ tn−1H(t) > 0, but is not analytic.
For n = 2, a regular second order differential polynomial
cannot exist since x fails to be twice differentiable.

4. EXTENSIONS: FROM (α, β) TO R

If x has a finite number of real zeros the previous extends
directly from (α, β) to R. But when x has infinitely
many zeros, the factor p(t) does not make sense. Still
assuming that x is analytic, the zeros cannot cluster and
consequently, if {ti} is the sequence of zeros, |tn| → ∞.

The infinite product
∏∞

n=1

(

1− 1
tn

)

converges if
∑∞

n=1
1

|tn|

converges. It seems that the first step in the generalization
of Theorem 1 will be to restrict the function x to an entire
function, for which a rich theory exists. See Boas [1954].

4.1 Entire Functions

These are complex-valued functions that are analytic in
all of C. Of course, we should maintain that x : R → R,
i.e., we will only consider real-entire functions.
The rate of growth of an entire function is closely tied to
the distribution of its zeros:
Definition 3: An entire function f has order ρ if

lim supr→∞

log logM(r)

log r
= ρ, (5)

where M(r) is the maximum modulus of f(z) for |z| = r.
Definition 4: If {zn} are the zeros of f , then the conver-
gence exponent of its zeros is the infimum of positive α for
which

∑∞
n=1 |zn|−α converges.

Definition 5: The genus of the set of zeros, p, is the
integer such that p + 1 is the smallest integer for which
the sum in Definition 4 converges.
For p = 1, 2, . . ., define Weierstrass’s elementary factors:

Ep(z) = (1− z) exp

(

z +
z2

2
+ · · · z

p

p

)

, E0(z) = (1 − z).

The elementary factors are close to 1 if |z| < 1, and large
p, although Ep(1) = 0. If {zn} is a sequence of complex
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numbers, zn 6= 0 and |zn| → ∞, and {pn} is a sequence of
nonnegative integers such that

∞∑

n=1

|zn|1+pn <∞,

then the infinite product

P (z) =
∞∏

n=1

Epn

(
z

zn

)

defines an entire function which vanishes at every zn, and
which has no other zeros in C. If α appears m times in the
sequence, then P has a zero of orderm at α (Rudin [1974]).
This theorem, due to Weierstrass, is so general that it is
of little use. Hadamard’s theorem is more appropriate here.

If {zn}∞n=1 is an infinite sequence of complex numbers,
ordered by increasing modulus, of genus p (Definition 5),
then the infinite product

P (z) =

∞∏

n=1

Ep

(
z

zn

)

(6)

is called a canonical product of genus p. Hadamard’s
factorization theorem states that an entire function of
finite order, ρ, with m-fold zero at 0, factors as

f(z) = zm eQ(z) P (z) (7)

where P (z) is the canonical product (of genus p) formed of
the zeros (other than z = 0) of f , and Q(z) is a polynomial
of degree q < ρ.
Definition 7 The genus of the function f is max(p, q).

4.2 Application to the function realization problem

Let us see how we can extend Theorem 1. Let x be a real
entire function (meaning that x : C → C is analytic in
C and x : R → R.) Let x have infinitely many zeros on
the real axis. These real zeros do not contain a cluster
point, so that they are all separated. Finally let us restrict
the problem to the case where these real zeros all have
multiplicity one. Let Z(x) ⊂ C denote the zero-set for x,
extended as a function x : C→ C, and let ZR = Z(x) ∩ R

be the set of real zeros and ZC its complement in Z(x).
By Hadamard’s factorization theorem for entire functions
of finite order (Boas [1954]),

f(z) = zm0 eQ(z) P (z) (8)

where P (z) is the canonical product (of genus p) formed
of the zeros (other than z = 0 of f . If f has a (single) zero
at the origin, m0 = 1, while if 0 6∈ ZR, then m0 = 0, and
Q(z) is a polynomial of degree p < ρ. Restricted to R, this
may be factored further as

x(t) = tm0

∏

tn∈ZR

EpR

(
t

tn

)

︸ ︷︷ ︸

=Π(t)

∏

zm∈ZC

EpC

(
t

zm

)

y(t)

︸ ︷︷ ︸

=xe(t)

(9)

where y is entire without zeros. Consequently, xe, having
no zeros in R, is signed. Proceeding as in Theorem 1, we
try to find a smooth function η such that

(D− η)

(

ΠD− Π̇−Π
ẋe

xe

)

,

is regular. This subproblem requires the solution of the
Bezout equation

(

η − ẋe

xe

)

Π̇− kΠ = Π̈.

But can this be solved? Consider the subclass of real entire
functions of the form

f(z) = C e−az2+bz zm
∞∏

k=1

(

1− z

zk

)

ez/zk ,

witha≥0,b∈R,C∈R,
∑

k
1

|zk|2
<∞, zk∈C\{0}, |Im zn| <∞.

Functions in this class have only real zeros. Examples are
sin(z), cos(z), exp(z), exp(−z), and exp(−z2). Functions in
this class have genus less than two. This class is known as
the Laguerre-Pólya class, denoted LP. It is known that
functions in LP are uniform limits of real polynomials
with only real coefficients. We can now make the proper
extension for real analytic x:

Theorem 5. If x, a real entire function, has a factorization
x = xeΠ, with Π ∈ LP and xe has no real zeros, then x(t)
satisfies a regular second order ODE in all of R if all zeros
of Π have multiplicity one.

Proof. The ring of entire functions is a Bezout domain,
but not a PID. However, every finitely generated ideal
is principal. Thus a solution exists since Π and Π̇ are
relatively prime. The proof follows as in Theorem 1. ✷

Remark: There is no division algorithm to compute η
and k for entire functions. However, we can make use of
the following result, due to Laguerre: “If x ∈ LP with only
infinitely many single real zeros, then ẋ is well-defined and
also has real zeros which are interlaced with the zeros of
x.” A solution set (a, b) to the Bezout equation ax+bẋ = 1
is given for arbitrary p by

a =
x

x2 + ẋ2
+ pẋ, b =

ẋ

x2 + ẋ2
− px.

Example 5: Let x(t) = sin t and consider

(D− η(t))(sin tD− cos t)

= sin tD2 − η(t) sin tD+ η(t) cos t+ sin t.

The obvious choice is η(t) = 0, leading - not surprisingly -
to the monic operator D2 + 1. For η(t) = − cos t sin t, the
resulting differential polynomial is D2+cos t sin tD+sin2 t.

Example 6: Consider the Bessel function, x(t) = J0(t),

and recall that J̇0(t) = −J1(t) and by Bessel’s ODE:

J̈0(t) = −J0(t) + J1(t)
t . Here

(D− η(t))(J0(t)D+ J1(t))

= J0(t)D
2 − η(t)J0(t)D + J̇1(t)− η(t)J1(t).

Solve the Bezout equation, η(t)J1(t)+k(t)J0(t) = J̇1(t) to
get

η(t) =

(
J1(t)

J2
0 (t) + J2

1 (t)
+ p(t)J0(t)

)

J̇1(t),

k(t) =

(
J0(t)

J2
0 (t) + J2

1 (t)
− p(t)J1(t)

)

J̇1(t).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4827



For p ≡ 0 we get

a(t,D) = D2 − J1J̇1
J2
0 + J2

1

D+
J0J̇1

J2
0 + J2

1

.

We do not retrieve the known Bessel ODE, but there is a
good reason for that. Bessel’s ODE for J0 has a singular
coefficient 1/t, which is not allowed if we consider a domain
containing 0.

Example 7: For x(t) = sin2 t, all the zeros are double zeros.
As before,

ẋ(t)

x(t)
= 2 cos t.

But D sin t2 = 2 sin t cos t only has single zeros, and

(D− η(t))(sin t cos tD− cos2 t+ sin2 t)

= sin t cos tD2 − η(t)(cos t sin t))D

+η(t)(cos2 t− sin2 t) + 4 cos t sin t.

An obvious choice is η = 0, giving the combined third
order differential polynomial (D2 + 4)D. Time-invariance
was to be expected since sin2 t = 1

2 (1 − cos 2t) is Bohl.

Example 8: Let now x(t) = sin t2. This has a double root at
t = 0, all other roots (±k√π) for k = 1, 2, . . . being simple.
In an interval not containing 0, we expect a second order
ODE. Indeed, we can find

D2 − 1

t
D+ 4t2.

In order to find a differential polynomial that is valid in
all of R, consider

(D− η(t))(t cos tD2 −D+ 4t3)

= tD2 − η(t)D2 − η(t)tD2 + (η(t) + 4t3)D− 12t3.

Letting η(t) = tη0(t), we get the monic differential poly-
nomials

D3 − t2η0(t)D
2 + 4(η0(t) + t2)D− 12t.

Its simplest form for η0(t) ≡ 0, gives D3 + 4t2D+ 12t.
These examples also illustrate further that it may not be
necessary to explicitly use Hadamard’s factorization.

4.3 Meromorphic extension

A function f is meromorphic in an open set D if there
exists a set A ∈ D such that (See Rudin [1974])

i) A has no limit point in D
ii) f is analyic in D \A.
iii f has a pole at each point of A.

Every meromorphic function in open D is a quotient of
two functions that are holomorphic (analytic) in D (Rudin
[1974]). Theorem 5 can now be extended:

Theorem 6. If x(t) can be factored as x = xmΠ where
xm is a real meromorphic function, without real poles,
and Π ∈ LP , then x satisfies a regular second order time-
variant ODE if all zeros of Π have multiplicity one.

Proof. Direct and omitted. ✷

Example 8: Let now x(t) = sinπt
1+t2 . This function has a

single pole at ±j and simple zeros at all integers. The
computation yields

(D− η)

(

sin tD−
(

π cosπt− 2t

1 + t2
sinπt

))

,

and the choice η(t) = − 2t
1+t2 yields the regular annihilator

D2 +
4t

1 + t2
D+

(

π2 +
2

1 + t2

)

.

Similar extensions of Theorem 3 and Corollary 4 are also
direct and omitted.

Finally, the problem is also solvable using an idea based on
the least common multiple in the Weyl algebra: Suppose
that x(t) is partitioned as x(t) = x1(t) + x2(t) + · · · +
xn(t), where none of the xi have real zeros. (Example:

t2 − 1 = (t2 + 1) − 2). Then the ai(t) =
ẋi(t)
xi(t)

are regular

functions, and any linear combination over R will be nulled
by their least common multiple:

lcm{(D− a1(t)), (D− a1(t)) . . . , (D− an(t))}.
However, computation of the lcm in the noncommutative
Weyl algebra is a nontrivial problem.

4.4 Higher order LTI case

So far we only looked at scalar functions x. We discuss next
a related problem of modeling the projection of a solution
to an LTI-system by a lower dimensional time-variant one.
Thus we seek to find annihilators for Bohl functions, but
represented by their LTI-differential annihilator.

Problem: Consider the LTI autonomous system ẋ = Ax,
evolving in R

n. Consider in R
n the subspace S. Assume

that the initial state is restricted to lie in S. It is desired
to describe the system as a time-variant one evolving in S.
Let the projection operation on the subspace S be y = Px.
By assumption, the initial state in S is embedded in Rn

by x0 = P⊤y0. For simplicity, fix on the case P = [Ir, 0].
The solution of the autonomous system is

y(t) = P eAt P⊤y0, y0 ∈ S = R
r.

Thus also for all τ

y(t) = P eAt P⊤(P eAτ P⊤)−1y(τ) = Φ(t, τ)y(τ),

provided P eAτ P⊤ has full rank for all τ . The lower order
model (of dimension r = dimS) must satisfy ẏ(t) =
A(t)y(t) for some time-variant matrix ⊣ and initial con-
dition y(0) = y0. Hence,

d

dt
A(t)Φ(t, τ)y(τ),

from which it follows that

A(t) = PA eAt P⊤(P eAt P⊤)−1.

For instance, if the solution starting in a half space
remains in this half-space, then the projection to the one-
dimensional system along the normal has no zero crossings,
and

A(t) = [A eAt]11
[eAt]11

.

This yields time variant-reduced models, but only for
the undriven system. Reduced input-output behavior re-
quires the hidden-variable characterization of the full order
model.

More generally, consider the homogeneous system ẋ = Ax,
with partial state y(t) = Cx(t) of dimension n and r < n
respectively. Assume then that y(0) = y0, and x(0) = By0,
so that for all y0: CBy0 = y0, i.e., CB = Ir. It follows that

ẏ(t) = CA eAt By0.
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Fig. 1. Coefficient for the first order differential operator
associated with the third order LTI system (Ex. 9)

Fig. 2. Coefficients for the second order differential opera-
tor associated with the third order LTI system

On the other hand, expressing the r-th order system as
ẏ(t) = F (t)y(t), we can identify

CA eAt By0 = F (t)C eAt By0

so that

A(t) = CA eAt B(C eAt B)−1.

Successive differentiation yields the representation

y(k) = (
←−
D +A)ky, (10)

where
←−
D is the derivative operator acting to anything on

the left: (i.e, if x(t) and y(t) are arbitrary differentiable

functions, then x(t)
←−
Dy(t) = ẋ(t)y(t)).

The vector ODE (10) generalizes the scalar ODE time-
variant homogeneous ODE.
Example 9: Consider the third order system with A-matrix
in the reachable canonical form

A =

[−1 −4 −2
1 0 0
0 1 0

]

.

Choosing the first state as the partial state of interest, a
singular first order representation follows, the scalar A1(t)
is shown in figure 1. Choosing instead the fist and second
state as the partial states yieds a second order time varying
representation with the time-varying 2×2 dynamic matrix
given in the (time-varying) reachable canonical form ,

A2(t) =

[
−a1(t) −a2(t)

1 0

]

.

with a1(t) and a2(t) shown in Figure 2.

5. CONCLUSION

We solved the inverse problem for obtaining differential
annihilators for a class of analytic functions, and obtained
the interesting property that any function in this class
having only real zeros of multiplicity one can be rep-
resented as the solution to a regular time-variant ODE
of order 2. In the more general case where the largest
multiplicity of a real zero of the given function is m, a
regular annihilator of order m+1 exists. This problem has
potential applications in reduced order modeling of an LTI
system from its impulse response, and in approximation of
functions with a finite data set. Indeed, by representing x
by its annihilator and initial conditions, one can then use
polynomial approximations (in an open interval, by Weier-
strass’s theorem) of its time-varying coefficients. Hence a
finite data set characterizes an approximation of the given
function. It was also shown that analyticity was needed
in this result. Counterexamples showed that a finite order
regular annihilator may not exist if x is merely smooth.
Finally, this paper shed some light onto the more obscure
class of Laguerre-Pólya functions, and algebraic aspects
of the class of holomorphic functions. In fact, recently
renewed interest in entire functions have given impetus to
the long standing Riemann conjecture (Griffin et al [2019]).
In a companion paper (Verriest [2020]), an approximation
to the deformed exponential, the unit solution to the scalar
scale-delay functional differential equation (pantograph
equation) is derived.
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