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Abstract: In this paper, we propose a new method based on the Sliding Algorithm from Lan
(2016, 2019) for the convex composite optimization problem that includes two terms: smooth
one and non-smooth one. Our method uses the stochastic noised zeroth-order oracle for the
non-smooth part and the first-order oracle for the smooth part and it is the first method in
the literature that uses such a mixed oracle for the composite optimization. We prove the
convergence rate for the new method that matches the corresponding rate for the first-order
method up to a factor proportional to the dimension of the space or, in some cases, its squared
logarithm. We apply this method for the decentralized distributed optimization and derive upper
bounds for the number of communication rounds for this method that matches known lower
bounds. Moreover, our bound for the number of zeroth-order oracle calls per node matches the
similar state-of-the-art bound for the first-order decentralized distributed optimization up to to
the factor proportional to the dimension of the space or, in some cases, its squared logarithm.

Keywords: gradient sliding, zeroth-order optimization, decentralized distributed optimization,
composite optimization

1. INTRODUCTION

In this paper we consider finite-sum minimization problem

min
x∈X⊆Rn

f(x) =
1

m

m∑
i=1

fi(x), (1)

where each fi is convex and differentiable function
and X is closed and convex. Such kind of problems
are highly widespread in machine learning applications
Shalev-Shwartz and Ben-David (2014), statistics Spokoiny
et al. (2012) and control theory Rao (2009). In particular,
we are interested in the case when functions fi are stored
on different devices which are connected in a network Lan
et al. (2017); Scaman et al. (2017, 2018, 2019); Dvinskikh
et al. (2019); Dvinskikh and Gasnikov (2019); Gorbunov
et al. (2019); Uribe et al. (2020). This scenario often
appears when the goal is to accelerate the training of big
machine learning models or when the information that
defines fi is known only to the i-th worker.

In the centralized or parallel case, the iteration of the
method can be described in the following way:

1) each worker in parallel performs computations of
either gradients or stochastic gradients of fi;

2) then workers send the results (not necessarily gradi-
ents that they just computed) to one predefined node
called master node;

3) master node processes received information and
broadcast new information to each worker that is
needed to get new iterate.

However, such an approach has several problems, e.g.
synchronization drawback or high requirements to the
master node. There are a lot of works that cope with
aforementioned drawbacks (see Stich (2018); Karimireddy
et al. (2019); Alistarh et al. (2017); Wen et al. (2017)).

Another possible approach to deal with these drawbacks is
to use decentralized architecture Bertsekas and Tsitsiklis
(1989). Essentially it means that workers are able to com-
municate only with their neighbors and communications
are simultaneous. Moreover, such an approach is more
robust, e.g. it can be applied to time-varying (wireless)
communication networks Rogozin and Gasnikov (2019).
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1.1 Our contributions

We develop a new method called Zeroth-Order Sliding
Algorithm (zoSA) for solving convex composite problem
containing non-smooth part and L-smooth part which uses
biased stochastic zeroth-order oracle for the non-smooth
term and first-order oracle for the smooth component
which is, to the best of our knowledge, the first method
that uses zeroth-order and first-order oracles for composite
optimization problem in such a way (see the details in Sec-
tion 3). We prove the convergence result for the proposed
method that matches known results for the number of first-
oracle calls. Regarding the non-smooth component, we
prove that the required number of zeroth-order oracle calls
is typically n times or, in some cases, log n times larger
then the corresponding bound obtained for the number of
first-order oracle calls required for the non-smooth part
which is natural for the derivative-free optimization (see
Larson et al. (2019)).

Next, we show how to apply zoSA to the decentralized
distributed optimization and get results that match the
state-of-the-art results for the first-order non-smooth de-
centralized distributed optimization in terms of the com-
munication rounds.

One can find the proofs together with the extension of zoSA
to the case when the smooth part is additionally strongly
convex and numerical experiments in the full version of
this paper available on arXiv Beznosikov et al. (2019).

2. NOTATION AND DEFINITIONS

We use 〈x, y〉 def
=

∑n
i=1 xiyi to denote standard inner

product of x, y ∈ Rn where xi corresponds to the i-th
component of x in the standard basis in Rn. It induces

`2-norm in Rn in the following way ‖x‖2
def
=
√
〈x, x〉. We

denote `p-norms as ‖x‖p
def
= (

∑n
i=1 |xi|p)

1/p
for p ∈ (1,∞)

and for p = ∞ we use ‖x‖∞
def
= max1≤i≤n |xi|. The dual

norm ‖·‖∗ for the norm ‖·‖ is defined in the following way:

‖y‖∗
def
= max {〈x, y〉 | ‖x‖ ≤ 1}. To denote maximal and

minimal positive eigenvalues of positive semidefinite ma-
trix A ∈ Rn×n we use λmax(A) and λ+min(A) respectively

and we use χ(A)
def
= λmax(A)/λ+

min
(A) to denote condition

number of A. Operator E[·] denotes full mathematical
expectation and operator Eξ[·] express conditional math-
ematical expectation w.r.t. all randomness coming from
random variable ξ. To define the Kronecker product of
two matrices A ∈ Rm×m and B ∈ Rn×n we use A ⊗
B ∈ Rnm×nm. The identity matrix of the size n × n is
denoted in our paper by In.

Since all norms in finite dimensional space are equivalent,
there exist such constants C1, C2 and C3 that for all
x ∈ Rn

‖x‖∗ ≤ C1‖x‖2, ‖x‖2 ≤ C2‖x‖∗, ‖x‖ ≤ C3‖x‖2. (2)

For example, if ‖ ·‖ = ‖ ·‖2, then C1 = C2 = C3 = 1 and if
‖·‖ = ‖·‖1, then ‖·‖∗ = ‖·‖∞ and C1 = 1, C2 = C3 =

√
n.

Definition 1. (L-smoothness). Function g is called L-smooth
in X ⊆ Rn with L > 0 w.r.t. norm ‖ · ‖ when it is

differentiable and its gradient is L-Lipschitz continuous
in X, i.e.

‖∇g(x)−∇g(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ X.

One can show that L-smoothness implies (see Nesterov
(2004))

g(x) ≤ g(y)+〈∇g(y), x−y〉+L

2
‖x−y‖2, ∀x, y ∈ X. (3)

Definition 2. (s-neighborhood of a set). For a given set
X ⊆ Rn and s > 0 the s-neighborhood of X w.r.t.

norm ‖ · ‖ is denoted by Xs which is defined as Xs
def
=

{z ∈ Rn | ∃x ∈ X : ‖y − x‖ ≤ s}.
Definition 3. (Bregman divergence). Assume that func-
tion ν(x) is 1-strongly convex w.r.t. ‖·‖-norm and differen-
tiable on X function. Then for any two points x, y ∈ X we
define Bregman divergence V (x, y) associated with ν(x) as
follows:

V (x, y)
def
= ν(y)− ν(x)− 〈∇ν(x), y − x〉.

Note that 1-strong convexity of ν(x) implies

V (x, y) ≥ 1

2
‖x− y‖2. (4)

Finally, we denote the Bregman-diameter of the set X

w.r.t. V (x, y) as DX,V
def
= max{

√
2V (x, y) | x, y ∈ X}.

In view of (4) DX,V is an upper bound for the standard

diameter of the set DX
def
= max{‖x − y‖ | x, y ∈ X}.

When V (x, y) = 1
2‖x− y‖

2
2 (standard Euclidean proximal

setup) we have DX,V = DX . If ‖ · ‖ = ‖ · ‖1 is `1-norm,
then in the case when X is a probability simplex, i.e.
X = {x ∈ Rn+ |

∑n
i=1 xi = 1}, and the distance generating

function ν(x) is entropic, i.e. ν(x) =
∑n
i=1 xi lnxi, we

have that V (x, y) is the Kullback-Leibler divergence, i.e.

V (x, y) =
∑n
i=1 xi ln xi

yi
, and DX,V =

√
2 lnn (see Ben-Tal

and Nemirovski (2015)).

3. MAIN RESULT

We consider the composite optimization problem

min
x∈X

Ψ0(x) = f(x) + g(x), (5)

where X ⊆ Rn is a compact and convex set with diameter
DX in ‖·‖-norm, function g is convex and L-smooth on X,
f is convex differentiable function on X. Assume that we
have an access to the first-order oracle for g, i.e. gradient
∇g(x) is available, and to the biased stochastic zeroth-
order oracle for f (see also Gorbunov et al. (2018)) that

for a given point x returns noisy value f̃(x) such that

f̃(x)
def
= f(x, ξ) + ∆(x) (6)

where ∆(x) is a bounded noise of unknown nature

|∆(x)| ≤ ∆ (7)

and random variable ξ is such that

E[f(x, ξ)] = f(x), (8)

Additionally, we assume that for all x ∈ Xs (s ≤ DX)

‖∇f(x, ξ)‖2 ≤M(ξ), E[M2(ξ)] = M2. (9)

This assumption implies that for all x ∈ Xs

|f(x, ξ)− f(y, ξ)| ≤M(ξ)‖x− y‖2, ‖∇f(x)‖2 ≤M.
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Using this one can construct a stochastic approximation
of ∇f(x) via finite differences (see Nesterov and Spokoiny
(2017); Shamir (2017)):

f̃ ′r(x) =
n

2r
(f̃(x+ re)− f̃(x− re))e (10)

where e is a random vector uniformly distributed on the
Euclidean sphere and

r < sC3 (11)

is a smoothing parameter. Inequality (11) guarantees that
the considered approximation requires points only from s-
neighborhood of X since ‖re‖ ≤ rC3 (see (2)). Therefore,
throughout the paper we assume that (11) holds. Following
Shamir (2017) we assume that there exists such constant
p∗ > 0 that

4
√
E[‖e‖4∗]≤ p∗. (12)

For example, when ‖ · ‖ = ‖ · ‖2 we have p∗ = 1 and for the

case when ‖·‖ = ‖·‖1 one can show that p∗ = O
(√

ln(n)/n
)

(see Corollaries 2 and 3 from Shamir (2017)). Consider also
the smoothed version

F (x)
def
= Ee[f(x+ re)] (13)

of f(x) which is a differentiable in x function. In the
following we summarize key properties of F (x).

Lemma 1. (see also Lemma 8 from Shamir (2017)). Assume
that differentiable function f defined on Xs satisfy
‖∇f(x)‖2 ≤ M with some constant M > 0. Then F (x)
defined in (13) is convex, differentiable and F (x) satisfies

sup
x∈X
|F (x)− f(x)| ≤ rM, (14)

∇F (x) = Ee
[n
r
f(x+ re)e

]
, (15)

‖∇F (x)‖∗ ≤ c̃p∗
√
nM, (16)

where c̃ is some positive constant independent of n and p∗
is defined in (12).

In other words, F (x) provides a good approximation of
f(x) for small enough r. Therefore, instead of solving (5)
directly one can focus on the problem

min
x∈X

Ψ(x)
def
= F (x) + g(x) (17)

with small enough r since the difference between optimal
values for (5) and (17) is at most rM . The following
lemma establishes useful relations between ∇F (x) and

f̃ ′r(x) defined in (10).

Lemma 2. (modification of Lemma 10 from Shamir (2017)).

For f̃ ′r(x) defined in (10) the following inequalities hold:

|E[f̃ ′r(x)]−∇F (x)| ≤ n∆

r
, (18)

E[‖f̃ ′r(x)‖2∗] ≤ 2p2∗

(
cnM2 +

n2∆2

r2

)
, (19)

where c is some positive constant independent of n.

In other words, one can consider f̃ ′r(x) as a biased stochas-
tic gradient of F (x) with bounded second moment and
apply Stochastic Gradient Sliding from Lan (2016, 2019)
with this stochastic gradient to solve problem (17).

Algorithm 1 Zeroth-Order Sliding Algorithm (zoSA)

Input: Initial point x0 ∈ X and iteration limit N .
Let βk ∈ R++, γk ∈ R+, and Tk ∈ N, k = 1, 2, . . ., be
given and set x0 = x0.
for k = 1, 2, . . . , N do

1. Set xk = (1 − γk)xk−1 + γkxk−1, and let hk(·) ≡
lg(xk, ·) be defined in (22).

2. Set

(xk, x̃k) = PS(hk, xk−1, βk, Tk);

3. Set xk = (1− γk)xk−1 + γkx̃k.
end for
Output: xN .

The PS (prox-sliding) procedure.
procedure: (x+, x̃+) = PS(h, x, β, T )
Let the parameters pt ∈ R++ and θt ∈ [0, 1], t = 1, . . .,
be given. Set u0 = ũ0 = x.
for t = 1, 2, . . . , T do

ut = argmin
u∈X

{
h(u) + 〈f̃ ′r(ut−1), u〉

+βV (x, u) + βptV (ut−1, u)
}
, (20)

ũt = (1− θt)ũt−1 + θtut. (21)

end for
Set x+ = uT and x̃+ = ũT .
end procedure:

In the Algorithm 1 we use the following function

lg(x, y)
def
= g(x) + 〈∇g(x), y − x〉. (22)

At each iteration of PS subroutine the new direction e
is sampled independently from previous iterations. We
emphasize that we do not need to compute values of F (x)
which in the general case requires numerical computation
of integrals over a sphere. In contrast, our method requires
to know only noisy values of f defined in (6).

Next, we present the convergence analysis of zoSA that
relies on the analysis for the Gradient Sliding method
from Lan (2016, 2019). The following lemma provides an
analysis of the subroutine PS from Algorithm 1.

Lemma 3. (see also Proposition 8.3 from Lan (2019)). Let
{pt}t≥1 and {θt}t≥1 in the subroutine PS of Algorithm 1
satisfy

θt =
Pt−1 − Pt

(1− Pt)Pt−1
, (23)

Pt =

{
1 t = 0,

pt(1 + pt)
−1Pt−1 t ≥ 1.

Then for any t ≥ 1 and u ∈ X:

β(1− Pt)−1V (ut, u) + [Φ(ũt)− Φ(u)]

≤ βPt(1− Pt)−1V (u0, u)

+Pt(1− Pt)−1
t∑
i=1

(piPi−1)−1
[ (M̃ + ‖δi‖∗)2

2βpi

+〈δi, u− ui−1〉
]
, (24)

where
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Φ(u) = h(u) + F (u) + βV (x, u), (25)

δt = f̃ ′r(ut−1)−∇F (ut−1). (26)

M̃ = c
√
nC1M,

c is some positive constant independent of n, C1 is from
(2).

Using the lemma above we derive the main result.

Theorem 1. Assume that {pt}t≥1, {θt}t≥1, {βk}k≥1, {γk}k≥1
in Algorithm 1 satisfy (23) and

γ1 = 1, βk − Lγk ≥ 0, k ≥ 1, (27)

γkβk
Γk(1− PTk

)
≤ γk−1βk−1

Γk−1(1− PTk−1
)
, k ≥ 2. (28)

Then

E[Ψ(xN )−Ψ(x∗)]

≤ ΓNβ1
1− PT1

V (x0, u) + ΓN

N∑
k=1

Tk∑
i=1

[
(M̃2 + σ2)γkPTk

βkΓk(1− PTk
)p2iPi−1

+
n∆DXp∗

r
· γkPTk

Γk(1− PTk
)piPi−1

]
, (29)

where x∗ is an arbitrary optimal point for (17), Pt is from
(23),

Γk =

{
1, k = 1,

(1− γk)Γk−1, k > 1
(30)

and

σ2 def
= 4p2∗

(
CnM2 +

n2∆2

r2

)
, (31)

where C is some positive constant independent of n.

The next corollary suggests the particular choice of param-
eters and states convergence guarantees in a more explicit
way.

Corollary 1. Suppose that {pt}t≥1, {θt}t≥1 are

pt =
t

2
, θt =

2(t+ 1)

t(t+ 3)
, ∀t ≥ 1, (32)

N is given, {βk}, {γk}, Tk are

βk =
2L

k
, γk =

2

k + 1
, Tk =

N(M̃2 + σ2)k2

D̃L2
(33)

for D̃ = 3D2
X,V/4. Then ∀N ≥ 1

E[Ψ(xN )−Ψ(x∗)] ≤
12LD2

X,V

N(N + 1)
+
n∆DXp∗

r
. (34)

Finally, we extend the result above to the initial problem
(5).

Corollary 2. Under the assumptions of Corollary 1 we
have that the following inequality holds for all N ≥ 1:

E[Ψ0(xN )−Ψ0(x∗)]≤ 2rM +
12LD2

X,V

N(N + 1)

+
n∆DXp∗

r
. (35)

From (35) it follows that if

r= Θ
( ε

M

)
, ∆ = O

(
ε2

nMDX min{p∗, 1}

)
(36)

and ε = O (
√
nMDX), s = Ω (ε/MC3), then the number

of evaluations for ∇g and f̃ ′r, respectively, required by
Algorithm 1 to find an ε-solution of (5), i.e. such xN that
E[Ψ0(xN )]−Ψ0(x∗) ≤ ε, can be bounded by

O

√LD2
X,V

ε

 , (37)

O

√LD2
X,V

ε
+
D2
X,V nM

2(C2
1 + p2∗)

ε2

 . (38)

Let us discuss the obtained result and especially bounds
(37) and (38). First of all, consider Euclidean proximal
setup, i.e. ‖ · ‖ = ‖ · ‖2, V (x, y) = 1

2‖x− y‖
2
2, DX,V = DX .

In this case we have p∗ = C1 = C2 = C3 = 1 and bound
(38) for the number of (6) oracle calls reduces to

O

(√
LD2

X

ε
+
D2
XnM

2

ε2

)
and the number of ∇g(x) computations remains the same.
It means that our result gives the same number of first-
order oracle calls as in the original Gradient Sliding
algorithm, while the number of the biased stochastic
zeroth-order oracle calls is n times larger in the leading
term than in the analogous bound from the original first-
order method. In the Euclidean case our bounds reflect
the classical dimension dependence for the derivative-free
optimization (see Larson et al. (2019)).

Secondly, we consider the case when X is the probability
simplex in Rn and the proximal setup is entropic (see the
end of Section 2). As we mentioned earlier in Section 2 and
in the beginning of this section, in this situation we have
DX,V =

√
2 lnn, DX = 2, p∗ = O (ln(n)/n) and C1 = 1,

C2 = C3 =
√
n. Then number of ∇g(x) calculations is

bounded by O
(√

(L ln2 n)/ε
)

. As for the number of f̃ ′r(x)

computations, we get the following bound:

O

√L ln2 n

ε
+
M2 ln2 n

ε2

 .

Clearly, in this case we have only polylogarithmical depen-
dence on the dimension instead.

4. FROM COMPOSITE OPTIMIZATION TO
CONVEX OPTIMIZATION WITH AFFINE
CONSTRAINTS AND DECENTRALIZED

DISTRIBUTED OPTIMIZATION

4.1 Convex Optimization with Affine Constraints

As an intermediate step between the composite optimiza-
tion problem (5) and decentralized distributed optimiza-
tion we consider the following problem

min
Ax=0,x∈X

f(x), (39)

where A � 0 and KerA 6= {0} and X is convex compact
in Rn with diameter DX . The dual problem for (39) can
be written in the following way
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min
y
ψ(y), where (40)

ϕ(y) = max
x∈X
{〈y, x〉 − f(x)} ,

ψ(y) = ϕ(A>y) = max
x∈Q
{〈y,Ax〉 − f(x)}

= 〈y,Ax(A>y)〉 − f(x(A>y))

= 〈A>y, x(A>y)〉 − f(x(A>y)),

where x(y)
def
= argmaxx∈X {〈y, x〉 − f(x)}. The solution of

(40) with the smallest `2-norm is denoted in this paper as

y∗. This norm Ry
def
= ‖y∗‖2 can be bounded as follows Lan

et al. (2017):

R2
y ≤

‖∇f(x∗)‖22
λ+min(A>A)

.

Following Gasnikov (2018); Dvinskikh and Gasnikov
(2019); Gorbunov et al. (2019) we consider the penalized
problem

min
x∈X

F (x) = f(x) +
R2
y

ε
‖Ax‖22, (41)

where ε > 0 is some positive number. It turns out (see the
details in Gorbunov et al. (2019)) that if we have such x̂
that F (x̂)−minx∈X F (x) ≤ ε then we also have

f(x̂)− min
Ax=0,x∈X

f(x) ≤ ε, ‖Ax̂‖2 ≤
2ε

Ry
.

We notice that this result can be generalized in the follow-
ing way: if we have such x̂ that E[F (x̂)]−minx∈X F (x) ≤ ε
then we also have

E[f(x̂)]− min
Ax=0,x∈X

f(x) ≤ ε,
√
E[‖Ax̂‖22] ≤ 2ε

Ry
. (42)

Next, we consider the problem (41) as (5) with g(x) =
R2

y‖Ax‖
2
2/ε. Assume that ‖∇f(x)‖2 ≤ M for all x ∈ X and

for f we have an access to the biased stochastic oracle
defined in (6). We are interested in the situation when
∇g(x) = 2R2

yA
>Ax/ε can be computed exactly. Moreover, it

is easy to see that g(x) is 2R2
yλmax(A

>A)/ε-smooth w.r.t. `2-
norm. Applying Corollary 2 we get that in order to produce
such a point x̂ that satisfies (42) Algorithm 1 applied to
solve (41) requires

O

√λmax(A>A)R2
yD

2
X

ε2

 calculations of A>Ax

and

O

√λmax(A>A)R2
yD

2
X

ε2
+
nD2

XM
2

ε2


calculations of f̃(x) since p∗ = C2 = C1 = 1 for the
Euclidean case. As we mentioned at the end of Section 3,
this bound depends on dimension n in the classical way.

4.2 Decentralized Distributed Optimization

Now, we go back to the problem (1) and, following Scaman
et al. (2017), we rewrite it in the distributed fashion:

min
x1=...=xm
x1,...,xm∈X

f(x) =
1

m

m∑
i=1

fi(xi), (43)

where x> = (x>1 , . . . , x
>
m)> ∈ Rnm. Recall that we

consider the situation when fi is stored on the i-th node. In

this case one can interpret xi from (43) as a local variable
of i-th node and x1 = . . . = xn as a consensus condition
for the network. The common trick Scaman et al. (2017,
2018, 2019); Uribe et al. (2020) to handle this condition
is to rewrite it using the notion of Laplacian matrix. In
general, the Laplacian matrix W = ‖W ij‖m,mi,j=1,1 ∈ Rm×m
of the graph G with vertices V , |V | = m and edges V is
defined as follows:

W ij =


−1, if (i, j) ∈ E,
deg(i), if i = j,

0 otherwise,

where deg(i) is degree of i-th node. In this paper we
focus only on the connected networks. In this case W

has unique eigenvector 1m
def
= (1, . . . , 1)> ∈ Rm associated

to the eigenvalue 0. Using this one can show that for all
vectors a = (a1, . . . , am)> ∈ Rm we have the following
equivalence:

a1 = . . . = am ⇐⇒ Wa = 0. (44)

Using the Kronecker product W
def
= W ⊗ In, which is also

called Laplacian matrix for simplicity, one can generalize
(44) for the n-dimensional case:

x1 = . . . = xm ⇐⇒ Wx = 0

and
x1 = . . . = xm ⇐⇒

√
Wx = 0.

That is, instead of the problem (43) one can consider the
equivalent problem

min√
Wx=0,

x1,...,xm∈X

f(x) =
1

m

m∑
i=1

fi(xi). (45)

Next, we need to define parameters of f using local param-
eters of fi. Assume that for each fi we have ‖fi(xi)‖2 ≤M
for all xi ∈ X, all fi are convex functions, the starting
point is x>0 = (x>0 , . . . , x

>
0 )> and x>∗ = (x>∗ , . . . , x

>
∗ )> is

the optimality point for (45). Then, one can show (see Gor-
bunov et al. (2019) for the details) that ‖∇f(x)‖2 ≤ M/

√
m

on the set of such x that x1, . . . , xm ∈ X, D2
Xm = mD2

X

and R2
y

def
= ‖y∗‖22 ≤ M2

/mλ+
min

(W ).

Now we are prepared to apply results obtained in Sec-
tion 4.1 to the problem (45). Indeed, this problem can be

viewed as (45) with A =
√
W . Taking this into account,

we conclude that one A>Ax calculation corresponds to
the calculation of Wx which can be computed during
one communication round in the network with Laplacian
matrix W . This simple observation implies that in order
to produce such a point x̂ that satisfies (42) with x̂ = x̂,

A :=
√
W , X := Xn, Ry := Ry Algorithm 1 applied to

the penalized problem (41) requires

O

(√
χ(W )M2D2

X

ε2

)
communication rounds

and

O

(√
χ(W )M2D2

X

ε2
+
nD2

XM
2

ε2

)
calculations of f̃(x) per node since p∗ = 1 for the Euclidean
case. The bound for the communication rounds matches
the lower bound from Scaman et al. (2018, 2019) and we
conjecture that under our assumptions the obtained bound
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for zeroth-order oracle calculations per node is optimal
up to polylogarithmic factors in the class of methods
with optimal number of communication rounds (see also
Dvinskikh and Gasnikov (2019); Gorbunov et al. (2019)).

5. DISCUSSION

To conclude, the proposed method — zoSA — is the first,
to the best of our knowledge, 1/2-order method for the
convex composite optimization: it uses zeroth-order oracle
for the non-smooth term and the first-order oracle for the
smooth one. As for the future work, it would be inter-
esting to study zeroth-order distributed methods for the
smooth decentralized distributed optimization using the
technique from Gorbunov et al. (2019). Another direction
for future research is in developing the analysis of the
proposed method for the case when X is unbounded and,
in particular, when X = Rn via recurrences techniques
from Gorbunov et al. (2018, 2019).
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