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Abstract: We present a Gradient-based extremum seeking algorithm for maximizing unknown
maps in the presence of constant delays. It is incorporated a filtered predictor feedback with
a perturbation-based estimate for the Hessian of locally quadratic maps. Exponential stability
and convergence to a small neighborhood of the unknown extremum point are achieved by
using backstepping transformation and averaging theory in infinite dimensions. The low-pass
filter (with a high enough pole) in the predictor feedback allows the technical application of the
Hale and Lunel’s averaging theorem for functional differential equations and also establishes an
inverse optimal result for the closed-loop system. This inverse optimality property is for the
first time demonstrated in extremum seeking designs and justifies the heuristic use of a low-pass
filter between the demodulation and the integrator, which has historically been a part of the
extremum seeking implementations free of delays.
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1. INTRODUCTION

In extremum seeking (ES) (Krstić and Wang, 2000), there
are many publications applying high-pass and low-pass
filters in order to improve the closed-loop system perfor-
mance and to facilitate the tuning parameters (Adetola
and Guay, 2007; Tan et al., 2009; Nesić et al., 2010;
Ghaffari et al., 2012; Liu and Krstić, 2012). However, they
do not present any theoretical support that justifies the
inclusion of such filters, on the contrary, only heuristic
arguments are given.

In this paper, for the first time in the literature, the proof
of inverse optimality and its influence on the extremum
seeking feedback is discussed in the presence of delays
(although the results are also valid in the case without
delays). We show that the basic predictor feedback con-
troller originally proposed in (Oliveira and Krstić, 2015;
Oliveira et al., 2017), when applied through a low-pass
filter, is inverse optimal and study its robustness to the
low-pass filter time constant.

Inverse optimality was defined by (Kalman, 1964) as
follows: “Given a dynamic system and a known control
law, find performance criteria (if any) for which this
control law is optimum”. Inverse optimality can be related
to a Lyapunov concept, with a special control law. In
this sense, the inverse optimality is guaranteed when a
stabilizing controller is optimal for some criteria and, for
? This work was supported in part by the Brazilian Funding Agen-
cies CNPq, CAPES, and FAPERJ.

a given Lyapunov function, it is possible to show the
feedback law is optimal with respect to some cost function.
In general, this functional includes a control input penalty
(or in its derivative or rate) and has an infinite gain margin
(Krstić, 2008; Cai et al., 2018).

Notice that, so far ES was neither studied with Lyapunov
tools nor has a control input whose cost should be op-
timized oven infinite time. In this paper, we study the
inverse optimality of the average system, which we do
via Lyapunov method, and we also want to minimize the
update rate over the infinite interval. Results and simu-
lations illustrate the advantages of satisfying the inverse
optimality such as improved closed-loop responses.

Norms and Notations: The 2−norm of the state
vector X(t) for a finite-dimensional system described by
an Ordinary Differential Equation (ODE) is denoted by
single bars, |X(t)|. In contrast, norms of functions (of x)
are denoted by double bars. By default, ‖ · ‖ denotes the
spatial L2[0, D] norm, i.e., ‖·‖ = ‖·‖L2[0,D]. Since the state
variable u(x, t) of the infinite-dimensional system governed
by a Partial Differential Equation (PDE) is a function of
two arguments, we should emphasize that taking a norm
in one of the variables makes the norm a function of the
other variable. For example, the L2[0, D] norm of u(x, t) in

x∈ [0, D] is ‖u(t)‖=
(∫D

0
u2(x, t)dx

)1/2

, see (Krstić, 2009).

The partial derivatives of u(x, t) are denoted by ut(x, t)
and ux(x, t) or, occasionally, by ∂tuav(x, t) and ∂xuav(x, t)
to refer the operator for its average signal uav(x, t). As
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defined in (Khalil, 2002), big O(ε) notation is used to
quantify approximations or order of magnitude relation
of vector functions, valid for “ε sufficiently small”.
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Fig. 1. Block diagram of the basic prediction scheme for
output-delay compensation in gradient ES. The low-
pass filter (in blue) is the key element employed to
guarantee the inverse optimality.

2. EXTREMUM SEEKING UNDER DELAYS

The goal of scalar ES is to maximize (or minimize) the
output y ∈ R of an unknown nonlinear static map Q(θ)
by changing its input θ ∈ R. We further assume there is
a constant and known delay D ≥ 0 in the measurement
system such that the delayed output signal is

y(t) =Q(θ(t−D)) . (1)

For the sake of clarity, we illustrate the complete output-
delayed system in the block diagram of Figure 1. Without
loss of generality, we also consider the maximum seeking
problem. For the sake of simplicity, we assume the nonlin-
ear map to be optimized is quadratic as

Q(θ) = y∗ +
H

2
(θ − θ∗)2 , (2)

with θ∗ ∈ R, y∗ ∈ R and H ∈ R being unknown scalar
constants. The maximizer of the input parameter θ is given
by θ∗, while y∗ is the extremum point and H < 0 is the
unknown Hessian of the map.

Substituting (2) into (1), lead us to the following quadratic
static map under delay:

y(t) = y∗ +
H

2
(θ(t−D)− θ∗)2 . (3)

2.1 Signals and Systems

Let us define the the estimation error :

θ̃(t) = θ̂(t)− θ∗ (4)

where θ̂ is the estimate of θ∗. According to Figure 1, one
can write the error dynamics as

˙̃
θ(t−D) =U(t−D) . (5)

In addition, one gets

G(t) = M(t)y(t) , θ(t) = θ̂(t) + S(t) , (6)

with additive and multiplicative dithers given by

S(t) = a sin(ω(t+D)) , M(t) =
2

a
sin(ωt) . (7)

In (7), the amplitude a and frequency ω must be nonzero,
assuming small and large values (as discussed later on),
respectively.

The estimate of the unknown Hessian H is given by

Ĥ(t) = N(t)y(t) , (8)

with the demodulating signal N(t) being

N(t) = − 8

a2
cos(2ωt) . (9)

From (Ghaffari et al., 2012), it is possible to show

1

Π

Π∫
0

N(σ)ydσ = H , Π = 2π/ω , (10)

for a quadratic map, as assumed in (2). Basically, the
expression (9) give us an averaging-based estimate of H

by means of (10), i.e., Ĥav = (Ny)av = H.

2.2 Predictor Feedback with Averaging-based Estimates

From the averaging analysis, we can obtain the average
version of G(t) in (6) as follows

Gav(t) = Hθ̃av(t−D) . (11)

Moreover, from (5), we can also derive the average models

˙̃
θav(t−D) =Uav(t−D) , (12)

Gav(t) =HUav(t−D) , (13)

with Uav ∈ R being the average version of the control
signal U ∈ R.

As shown in (Oliveira and Krstić, 2015; Oliveira et al.,
2017), by computing the variation of constants formula of
(13), we can write the future state as

Gav(t+D) = Gav(t) +H

t∫
t−D

Uav(σ)dσ , (14)

which is given in terms of the average control signal Uav(σ)
from the past window [t − D, t]. It results in the next
predictor-feedback law

Uav(t) = k

Gav(t) +H

t∫
t−D

Uav(σ)dσ

 , k > 0 , (15)

which is able to make the equilibrium θ̃eav =0 of the closed-
loop system (12) and (15) exponentially stable.

As in In (Oliveira and Krstić, 2015; Oliveira et al., 2017),
the following infinite-dimensional filtered predictor feed-
back, computed from its non average version (15), is again
considered:

U(t) =
c

s+ c

k
G(t) + Ĥ(t)

t∫
t−D

U(τ)dτ

 (16)

where c > 0 is a design constant chosen sufficiently large.
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This low-pass filtering was particularly required in the
stability analysis of our earlier publications (Oliveira and
Krstić, 2015; Oliveira et al., 2017) when the averaging
theorem in infinite dimensions was invoked (Hale and
Lunel, 1990).

Now, in the next section, we are going to demonstrate
the advantages of such a filtering procedure go beyond to
merely solve technical limitations in the analysis, but it
can also improved the control performance of the closed-
loop ES system, which is rigorously justified through the
concept of inverse optimality (Kalman, 1964).

3. INVERSE OPTIMAL DESIGN

In this section, the stability analysis is carried out and the
proof of inverse optimality is presented.

Theorem 1. There exists c∗ such that the average feedback
system of (5) and (16) is exponentially stable in the sense
of the norm

Ψ(t) =

(
|θ̃av(t−D)|2 +

∫ t
t−D Uav(τ)2dτ + Uav(t)2

)1/2

for all c > c∗. Furthermore, there exists c∗∗ > c∗ such
that for any c ≥ c∗∗, the feedback (16) minimizes the cost
functional

J =

∞∫
0

(L(t) + U̇2
av(t))dt, (17)

where L(t) is a functional of (θ̃av(t − D), U(τ)) , τ ∈[
t−D, t

]
and such that

L(t) ≥ µΨ(t)2 (18)

for some µ(c) > 0 with a property that µ(c) → ∞ as
c→∞.

Proof. The proof is structured into Step 1 to Step 6 .

Step 1: Transport PDE for Delay Representation

Considering (Krstić, 2009), the delay in (5) is represented
using a transport PDE such as

˙̃
θ(t−D) = u(0, t) , (19)

ut(x, t) = ux(x, t) , x ∈ [0, D] , (20)

u(D, t) =U(t) , (21)

with the solution of (20)–(21) being

u(x, t) = U(t+ x−D) . (22)

Step 2: Average Model of the Closed-loop System

By denoting

ϑ̃(t) := θ̃(t−D) , ϑ̃av(t) = θ̃av(t−D) , (23)

the average version of system (19)–(21), with U(t) in (16)
is given by:

˙̃
ϑav(t) = uav(0, t) , (24)

∂tuav(x, t) = ∂xuav(x, t) , x ∈ [0, D] , (25)

d

dt
uav(D, t)=−cuav(D, t)+ckH

ϑ̃av(t)+ D∫
0

uav(σ, t)dσ

 , (26)
where the filter c/(s + c) in (16) was also represented in
the state-space form. The solution of the transport PDE
(25)–(26) is given by

uav(x, t) = Uav(t+ x−D) . (27)

Step 3: Backstepping Transformation, its Inverse and the
Target System

Since we are not able to prove directly the stability for
the average closed-loop system (24)–(26), we consider the
infinite-dimensional backstepping transformation of the
delay state

w(x, t) = uav(x, t)− kH

ϑ̃av(t) +

x∫
0

uav(σ, t)dσ

 , (28)

with inverse given by

uav(x, t)=w(x, t)+kH

ekHxϑ̃av(t)+ x∫
0

ekH(x−σ)w(σ, t)dσ

 . (29)

The transformation (28) maps the system (24)–(26) into
the target system:

˙̃
ϑav(t) = kHϑ̃av(t) + w(0, t) , (30)

wt(x, t) =wx(x, t) , x ∈ [0, D] , (31)

w(D, t) =−1

c
∂tuav(D, t) . (32)

Step 4: Lyapunov-Krasovskii Functional

Consider the following Lyapunov functional

V (t)=
ϑ̃2

av(t)

2
+
a

2

D∫
0

(1 + x)w2(x, t)dx+
1

2
w2(D, t) , (33)

where the parameter a = − 1
KH and kH < 0. Computing

the time-derivative of (33) along with (30)–(32), we have

V̇ (t) = kHϑ̃2
av(t) + ϑ̃av(t)w(0, t)

+a

D∫
0

(1 + x)w(x, t)wx(x, t)dx+ w(D, t)wt(D, t)

= kHϑ̃2
av(t) + ϑ̃av(t)w(0, t) +

a(1 +D)

2
w2(D, t)

−a
2
w2(0, t)− a

2

D∫
0

w2(x, t)dx+w(D, t)wt(D, t) (34)

≤ kHϑ̃2
av(t) +

ϑ̃2
av(t)

2a
− a

2

D∫
0

w2(x, t)dx

+w(D, t)

[
wt(D, t) +

a(1 +D)

2
w(D, t)

]
.

Now, following the same procedure given in (Oliveira and
Krstić, 2015), we get
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V̇ (t)≤− 1

4a
ϑ̃2

av(t)− a

4(1 +D)

D∫
0

(1 + x)w2(x, t)dx

− (c− c∗)w2(D, t) , (35)

where

c∗ =
a(1 +D)

2
− kH + a

∣∣(kH)2ekHD
∣∣2

+
1

a

∥∥∥(kH)2ekH(D−σ)
∥∥∥2

. (36)

According to (36), an upper bound for c∗ can be obtained
from the known delay D as well as some lower and upper
bounds of the Hessian H. Thus, from (35), if we chose c
such that c > c∗, we arrive at

V̇ (t) ≤ −µ∗V (t) , (37)

for some µ∗ > 0. Hence, the closed-loop system is expo-
nentially stable in the sense of the full-state norm|ϑ̃av(t)|2 +

D∫
0

w2(x, t)dx+ w2(D, t)

1/2

, (38)

i.e., in the transformed variable (ϑ̃av , w).

Step 5: Average System Exponential Stability Estimate
(in L2 norm)

In order to assure exponential stability for the average
system (24)–(26) in the sense of the norm|ϑ̃av(t)|2 +

D∫
0

u2
av(x, t)dx+ u2

av(D, t)

1/2

,

we need to show there exist constants α1 > 0 and α2 > 0
such that

α1Ψ(t) ≤ V (t) ≤ α2Ψ(t) , (39)

where Ψ(t):=|ϑ̃av(t)|2+
∫D

0
u2

av(x, t)dx+u2
av(D, t), or using

(23) and (27),

Ψ(t) := |θ̃av(t−D)|2 +

t∫
t−D

U2
av(τ)dτ + U2

av(t) . (40)

The inequality (39) can be directly established from (28),
(29), (33), by using the Cauchy-Schwartz inequality and
other calculations, such as in the proof of Theorem 2.1 in
(Krstić, 2009). Thus, taking into account (37), we obtain

Ψ(t) ≤ α2

α1
e−µtΨ(0) , (41)

which concludes the proof of exponential stability in the
original variables (ϑ̃av , uav).

Step 6: Inverse Optimality

Based on the proof of Theorem 6 in (Smyshlyaev and
Krstic, 2004) and Theorem 2.8 in (Krstic and Deng, 1999),
we chose c∗∗ = 4c∗, c = 2c∗ and define L(t) as:

L(t) = −2cV̇ (t) + c(c− 4c∗)w2(D, t)

≥c
(

1

2
kϑ̃2

av(t)+
a

2

D∫
0

w2(x, t)dx+(c−2c∗)w2(D, t)

)
(42)

where ϑav(t) := θ̃av(t−D), according to (23).

Using (28) for x = D and the fact that uav(D, t) = Uav(t),
from (32) we get (26). Let us now consider w(D, t). From
(28) and (29), it is easy to see that

wt(D, t) = ∂tuav(D, t)− kHuav(D, t) , (43)

where ∂tuav(D, t) = U̇av(t). Plugging (32) and (29) into
(43), we get

wt(D, t) = −cw(D, t)− kHw(D, t)

−(kH)2

ekHDϑ̃av(t) + D∫
0

ekH(D−σ)w(σ, t)dσ

 . (44)

By plugging (44) into derivative of the Lyapunov func-
tional (34), one has

V̇ (t) = kHϑ̃2
av(t) + ϑ̃av(t)w(0, t) +

a(1 +D)

2
w2(D, t)

−a
2
w2(0, t)− a

2

D∫
0

w2(x, t)dx− 2c∗w2(D, t)

−kHw2(D, t)− (kH)2w(D, t)ekHDϑ̃av(t)

−(kH)2w(D, t)

D∫
0

ekH(D−σ)w(σ, t)dσ . (45)

Then, by applying (45) to (42), L(t) can be written as:

L(t)=−2ckHϑ̃2
av(t)−2cϑ̃av(t)w(0, t)−2c

a(1+D)

2
w2(D, t)

+caw2(0, t) + ca

D∫
0

w2(x, t)dx+ 2ckHw2(D, t)

+2c(kH)2w(D, t)ekHDϑ̃av(t)

+2c(kH)2w(D, t)

D∫
0

ekH(D−σ)w(σ, t)dσ+c2w2(D, t). (46)

On the other hand, substituting the average version of the
system (24) into the target system (30), we obtain

uav(0, t) = kHϑ̃av(t) + w(0, t). (47)

Rearranging (47) in order to isolate w(0, t), we can write:

w(0, t) = uav(0, t)− kHϑ̃av(t). (48)

Then, plugging (48) into (46), and adding-subtracting

the term γϑ̃2
av(t) (in blue) in the right-hand side of the

resulting equation, lead us to

L(t) = c
(
a(kH)2ϑ̃2

av(t)− 2(akH + 1)uav(0, t)ϑ̃av(t)
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−a(1 +D)w2(D, t)− γϑ̃2
av(t) + 2(kH)2w(D, t)

×
[
ekHDϑ̃av(t) +

D∫
0

ekH(D−σ)w(σ, t)dσ
])

+au2
av(0, t) +

a

2

D∫
0

w2(x, t)dx+ w2(D, t)(2c∗ + 2kH)

+c
(
γϑ̃2

av(t)+
a

2

D∫
0

w2(x, t)dx+(c− 2c∗)w2(D, t)
)
. (49)

Reminding that a = − 1
kH , and replacing kH by − 1

a in
(49), one has

L(t) = c
([1

a
− γ
]
ϑ̃2

av(t)
(
2c∗ − a(1 +D)− 2

a

)
w2(D, t)

+au2
av(0, t) +

a

2

D∫
0

w2(x, t)dx+
2

a2
w(D, t)

×
[
ekHDϑ̃av(t) +

D∫
0

ekH(D−σ)w(σ, t)dσ
])

+c
(
γϑ̃2

av(t)+
a

2

D∫
0

w2(x, t)dx+(c−2c∗)w2(D, t)
)
. (50)

After some mathematical manipulations, the term L(t) in
(50) can be rewritten as:

L(t) = Υ(D, t) + c
(
γϑ̃2

av(t) +
a

2

D∫
0

w2(x, t)dx

+ (c− 2c∗)w2(D, t)
)
, (51)

where Υ(D, t) is given by:

Υ(D, t)=c
([1

a
−γ
]
ϑ̃2

av(t)+
(
2c∗−a(1+D)− 2

a

)
w2(D, t)

+au2
av(0, t) +

a

2

D∫
0

w2(σ, t)dσ +
2

a2
w(D, t)ekHDϑ̃av(t)

+
2

a2
w(D, t)

D∫
0

ekH(D−σ)w(σ, t)dσ
)
. (52)

In order to satisfy inequality (42), it is necessary to ensure
Υ(D, t) ≥ 0. To assure the latter condition, we will analyze
the terms in (52) with undefined signs so that we can
guarantee they are non negative. After adding and sub-

tracting the terms 1
a2 [ϑ̃2

av +w2(D, t)] and 2
√
D

a2 [w2(D, t) +∫D
0
w2(σ, t)dσ] (in blue and red) into (52), Υ(D, t) can be

rewritten as:

Υ(D, t) = c
([1

a
− 1

a2
− γ
]
ϑ̃2

av(t)

+
(
2c∗ − a(1 +D)− 2

a
− 1

a2
− 2
√
D

a2

)
w2(D, t)

+au2
av(0, t) +

[a
2
− 2
√
D

a2

] D∫
0

w2(σ, t)dσ

+
2

a2
w(D, t)ekHDϑ̃av(t) +

1

a2
w2(D, t) +

1

a2
ϑ̃2

av(t)

+
2

a2
w(D, t)

D∫
0

ekH(D−σ)w(σ, t)dσ

+
2
√
D

a2
w2(D, t) +

2
√
D

a2

D∫
0

w2(σ, t)dσ
)
. (53)

By employing the Young and Cauchy-Schwartz inequali-
ties, it is possible verify valid lower bounds for the terms
which were added and subtracted in (53), so that:

1

a2
w2(D, t) +

1

a2
ϑ̃2

av(t) ≥ 2

a2

∣∣∣w(D, t)ekHDϑ̃av(t)
∣∣∣ ,(54)

2
√
D

a2

(
w2(D, t) +

D∫
0

w2(σ, t)dσ
)

≥ 2

a2

∣∣∣∣∣∣w(D, t)

D∫
0

ekH(D−σ)w(σ, t)dσ

∣∣∣∣∣∣ . (55)

Analyzing Υ(D, t) in terms of the lower bounds in (54)
and (55), we get

Υ(D, t) ≥ c
([1

a
− 1

a2
− γ
]
ϑ̃2

av(t)

+
(
2c∗ − a(1 +D)− 2

a
− 1

a2
− 2
√
D

a2

)
w2(D, t)

+au2
av(0, t) +

[a
2
− 2
√
D

a2

] D∫
0

w2(σ, t)dσ

+
2

a2
w(D, t)ekHDϑ̃av(t) +

2

a2

∣∣∣w(D, t)ekHDϑ̃av(t)
∣∣∣

+
2

a2
w(D, t)

D∫
0

ekH(D−σ)w(σ, t)dσ

+
2

a2

∣∣∣∣∣∣w(D, t)

D∫
0

ekH(D−σ)w(σ, t)dσ

∣∣∣∣∣∣
)
. (56)

Then, to ensure Υ(D, t) ≥ 0 it is necessary to satisfy the
following conditions:

1st Condition:

1

a
− 1

a2
− γ > 0 , γ <

a− 1

a2

2nd Condition:

Reminding that c = 2c∗,

2c∗ − a(1 +D)− 2

a
− 1

a2
− 2
√
D

a2
> 0

c > a(1 +D) +
2

a
+

1

a2
+

2
√
D

a2
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3rd Condition:

a

2
− 2
√
D

a2
> 0 , a >

3

√
4
√
D

Therefore, considering L(t) given in (51) and Υ(D, t) given
in (52), under the conditions imposed for γ, a and c, one
can conclude Υ(D, t) ≥ 0 and

L(t)≥c
(

1

2
kϑ̃2

av(t)+
a

2

D∫
0

w2(x, t)dx+(c−2c∗)w2(D, t)

)
,

with γ = k/2.

Hence, we have L(t) ≥ µΨ(t)2, for the same reason that
(39) holds, completing the proof of inverse optimality. 2

Finally, analogously to the Steps 6 and 7 performed for
the proof of Theorem 1 in (Oliveira and Krstić, 2015), we
can invoke the averaging theorem in infinite dimensions
by Hale and Lunel (1990) and still conclude the results
for constant delays, where the estimation errors θ(t) − θ∗
and y(t) − y∗ are ultimately of order O(a + 1/ω) and
O(a2 + 1/ω2), respectively.

4. NUMERICAL SIMULATIONS

In order to evaluate the effects of the inverse optimality for
the ES feedback under delays, the next quadratic map (1)–
(2) is considered: Q(θ) = 5 − 0.1(θ − 3)2, with an output
delay of D = 5 s. The extremum point is (θ∗; y∗) = (3; 5)
and the Hessian of the corresponding static map is H =
−0.1. For the simulation tests, the following parameters

were employed: ω = 10 rad/s , k = 0.8, θ̂(0) = −5 and
a = 0.2. The time constant of the low-pass filter c = 40
was chosen to satisfy the Conditions 1-3 in the Step 6 of
the proof of Theorem 1.

Figure 2 presents a numerical comparison between the ES
fundamental variables with and without using the filter
c
s+c in feedback law (16). As it can be observed, in the first
case where the inverse optimality is guaranteed, the input
signal θ(t) converges monotonically rather than swinging
up-and-down, thus improving the transient responses.

5. CONCLUSIONS

In this paper, we derived inverse optimality results for
extremum seeking feedback with the low-pass filtered
modification of the predictor-based feedback for delay
compensation proposed in (Oliveira and Krstić, 2015).
Extremum seeking is studied with Laypunov tools and
has a control input whose cost can be optimized over
infinite time. We have established the stability robustness
to varying the parameter c from some large value c∗ to
∞, recovering in the limit, the basic, unfiltered predictor-
based feedback (15). The inverse optimality properties of
the basic predictor feedback controller are illustrated by a
numerical example.
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