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Abstract: This paper presents a universal adaptive fault-tolerant control (FTC) design for
multicopter unmanned aerial vehicles (UAVs). The proposed architecture consists of a two-loop
control structure: a fault-tolerant controller generates normalized virtual control inputs to track
the desired trajectory subject to actuator faults, and an adaptive augmentation controller deals
with system uncertainties and also balances the design requirements for specific platform. The
FTC approach is based on gain-scheduling control in the framework of structured H∞ synthesis.
In order to implement the overall control system on most types of multicopter UAVs, an adaptive
mapping algorithm is proposed. High fidelity simulations and experimental results, performed
on various multicopters with different payload and configuration, show the effectiveness and
robustness of the proposed approach in accommodating different levels of actuator degradation
including total failures of the rotors as well as unknown mass and inertia, all using a single
controller with fixed coefficients.

Keywords: Multicopter, Fault-Tolerant Control, Robust Adaptive Control, Gain-Scheduling,
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1. INTRODUCTION

The ability of multicopter unmanned aerial vehicles
(UAVs) to perform vertical take-off and landing as well
as stationary hover flight makes them intensively useful
for various commercial and military applications (e.g.,
reconnaissance and exploration, parcel delivery, or search-
and-rescue operations). In order to achieve high autonomy
and safety flight, UAVs should possess a fault-tolerant
ability to accommodate malfunctions in actuators, sensors
or other system components. Several fault tolerant control
(FTC) approaches have been developed in the literature
but typically limited to a specific platform. Designing
a universal fault-tolerant controller which is capable of
maneuvering for a variety of multicopter UAVs seems to
be an open research problem.

An adequate survey on two main categories of FTC (active
and passive) can be found in (Zhang and Jiang, 2008). In
this paper, we consider an active FTC system for a multi-
copter that uses an online automatic redesign mechanism.
Various methods have been developed in the literature
such as gain-scheduling (GS) (Zhang et al., 2013; Nguyen
et al., 2017), control allocation (CA) (Yoon et al., 2016;
Falconi and Holzapfel, 2016; Nguyen et al., 2018), or robust
adaptive control (Mallavalli and Fekih, 2018). As reported
in (Zhang et al., 2013), a gain-scheduled proportional-
integral-derivative (PID) controller was implemented on
a quadcopter and experimentally tested with a 18% loss
of actuator effectiveness (LAE) in all motors. However,
the fault detection and diagnosis (FDD) module was not

? This work was supported by NSERC under grant numbers RGPIN-
2014-03942 and RGPIN-2012-122106.

integrated into the complete FTC system. Furthermore,
the use of look-up tables to store pre-computed controller
gains and switching between them during the flight can
produce undesirable transients (Zhang and Jiang, 2008).
In order to alleviate these problems, an integrated sys-
tem composed of a two-stage Kalman filter (TSKF) and
an H∞ gain-scheduled controller was proposed in our
previous works (Nguyen et al., 2017). In this case, the
scheduled gains are automatically adjusted as functions of
the scheduling variables, i.e., the LAE factors given by the
TSKF. A good behavior in fault recovery after multiple
successive losses of control effectiveness in a quadcopter
was shown. In addition, a combination of this control
design technique and structured H∞ synthesis can offer
a more robust performance (Gahinet and Apkarian, 2011;
Lhachemi et al., 2014).

By dealing directly with the loss of effectiveness of each
actuator, this control design exhibits a good behavior in
fault recovery. However, the more actuators the vehicle
has, the more complex the control design is. In fact,
the computational cost becomes more expensive due to
the larger number of faulty models considered as well
as controller coefficients. Moreover, the control law de-
pends on the multicopter configuration, meaning that it
is different for each kind of UAV. On the other hand,
the computational burden of updating the controller gains
is not suitable for low-cost implementations. To tackle
the problem, we propose a FTC scheme relying on the
loss of virtual control effectiveness (LVE), given by an
appropriate FDD system. The parametric gains are chosen
as smooth functions of LVE factors, rather than in terms
of LAE. The goal is to reduce the complexity of the tuning
process and to find a general control structure applicable
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to any UAVs including fixed-wing vehicles. Besides, using
slower-varying LVE is more suitable with gain scheduling
control (Rugh and Shamma, 2000).

We are also interested in the design of a generalized control
law which is applicable to most traditional multicopters.
Indeed, the effect of the motors is the same: they create
a thrust force and a reaction torque along a body fixed
axis. Then, using the normalized virtual inputs, the control
strategy is not dependent on the multicopter configura-
tion. In order to adapt to the design requirements as well
as the system uncertainties, a model reference adaptive
control (MRAC) augmentation is proposed. The algorithm
computes propeller’s thrust force to track the reference
position and orientation with respect to the dynamic fea-
sibility of the specific platform.

In summary, the proposed controller has many advantages
such as simplification of the control structure with explicit
formulas to redesign automatically in real-time, smooth
transitions between operating points in the presence of
actuator faults, low computational load during the offline
optimization process, as well as applicability for different
platforms with the same controller parameters. The re-
mainder of the paper is organized as follows. Section 2 de-
scribes the mathematical model of a multicopter UAV. The
detailed design procedure of the proposed FTC system is
presented in Section 3. Section 4 introduces the adaptive
augmentation strategy. Simulation and experimental re-
sults are given in Section 5. Finally, the conclusion and
future works are conducted in Section 6.

2. PLANT DESCRIPTION

This section first introduces the modeling of a multicopter
UAV, followed by the simplified model and the plant
linearization that will be used for the controller design.
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Fig. 1. Frames of reference with illustrations of a quad-
copter (left) and an hexacopter (right).

2.1 Multicopter Dynamics

Let Fi denote the inertial frame centered at a fixed local
reference point and respecting the East-North-Up (ENU)
orientation convention, and let Fb denote the body frame
with origin at the UAV’s center of mass (CM) with the
Forward-Left-Up (FLU) convention as in Fig. 1. In the
following, the superscript of a vector indicates the frame
in which it is expressed, e.g., pi or pb.

The position vector of the CM in Fi is denoted by
piCM/i = [x y z]>, and the orientation of Fb relative to

Fi is described by three Euler angles Φ = [φ θ ψ]>,
representing respectively roll, pitch and yaw. The rotation
matrix Rb/i resulting from a yaw-pitch-roll sequence reads:

Rb/i =

[
cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

]
with cx := cosx, sx := sinx.

The rotation matrix Rb/i belongs to the special orthogonal

group SO(3), and thus one has Ri/b = R−1b/i = R>b/i.

The angular kinematics of the UAV is given by Euler’s
kinematic equation:

Φ̇ = H(Φ)ωbb/i (1)

where ωbb/i = [p q r]> is the angular velocity of Fb
with respect to Fi expressed in Fb, and H(Φ) is the
transformation matrix for angular velocities given by:

H(Φ) =

[
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

]
with tx := tanx

The application of Newton’s second law yields the dynamic
equations of motion:

mp̈iCM/i = mgi + Ri/bF
b (2)

Ibω̇
b
b/i = −ωbb/i × Ibω

b
b/i + Mb (3)

where Fb and Mb are the forces and the moments created
by the rotors, gi = [0 0 −g]> the gravity vector, m the
mass of the multicopter, Ib the inertia matrix about the
center of mass and × the cross product. In frame Fb, the
forces and the moments are denoted by:

Fb = [0 0 T ]>, Mb = [L M N ]>

with T represents the total thrust, L, M and N the roll,
pitch and yaw moments respectively.

Considering a multicopter system with n actuators (rotors
and propellers) attached to a rigid body frame. Each
actuator i ∈ {1, . . . , n} produces a thrust Ti and a reaction
torque Mi along the zb-axis given by:

Ti = kTω
2
i , Mi = − sign(ωi)kDω

2
i

where kT the thrust coefficient, kD the drag factor, and
ωi the rotor rotational speed. According to the zb-axis
pointing upwards (Fig. 1), ωi is positive if the i-th rotor
rotates anticlockwise and vice versa. The relation between
the virtual control input vector v = [T L M N ]> and the
thrust vector generated by the actuators u = [T1 . . . Tn]>

is obtained from:
v = BCAu (4)

where BCA is the control allocation (CA) matrix depend-
ing on the multicopter configuration. For example, an
hexacopter UAV model with standard NPNPNP 1 rotor
arrangement (Fig. 1) has the following mapping matrix:

BCA =


1 1 1 1 1 1
d
2 d d

2 −d2 −d −d2
−d
√
3

2 0 d
√
3

2
d
√
3

2 0 −d
√
3

2
−c c −c c −c c


with d the arm length and c = kD/kT the force-to-moment
scaling factor. In the case of a quadcopter according to the
“ + ” configuration (Fig. 1), the CA matrix is given by:

1 The letters P and N denote a positive and a negative reaction
torque about the zb-axis, respectively.
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BCA =

 1 1 1 1
0 d 0 −d
−d 0 d 0
−c c −c c


Instead of controlling individually motor’s thrust force,
it can be more convenient to use the virtual input v to
command particular movements of the drone. Thus, the
desired thrust force for each motor is allocated by:

u = B†CAv (5)

where † is the Moore-Penrose pseudo-inverse.

2.2 Simplification and Linearised model

Since all UAVs share the same dynamic equations (1-
3) with different parameters (mass and inertia), we first
define the normalized forces and moments as follows:

v̄ =
[
T̄ L̄ M̄ N̄

]>
=
[
T/m

(
I−1b Mb

)>]>
(6)

Thus, we are interested in the design of a single controller
with fixed parameters that generate the normalized vector
v̄. The change of system input requires an additional
mapping equation to get the virtual control signal:

v = Υv̄ with Υ = diag (m, Ib) (7)

Such a universal controller can be used on most types of
multicopter UAVs. Besides, due to the fact that the proper
parameters of each multicopter are not considered in the
controller formulation, an adaptive mechanism is proposed
to address this issue.

Moreover, the following assumptions about the simplified
model are required during the design of the controller:

Assumption 1. The UAV structure is symmetric with di-
agonal inertia matrix, i.e., Ib = diag (Ixx , Iyy , Izz ).

Assumption 2. The actuator dynamics, including rotor
speed controllers, are considered sufficiently fast to neglect
them; thus the control inputs are directly the thrust forces
created by the propellers.

Assumption 3. The position piCM/i, attitude Φ, linear and

angular velocities ṗiCM/i, ω
b
b/i of the UAV are known.

These assumptions are justified for the majority of tradi-
tional multicopter UAVs.

In order to design the controller, the nonlinear model (1-
3) is trimmed and linearized by assuming hovering flight
(T = mg, L = M = N = φ = θ = 0) with CM position
at the origin of Fi (x = y = z = 0) and null yaw (ψ = 0)
for simplicity’s sake. To this end, each rotor i delivers
Ti = mg/n. This yields the classic linearized equations:

∆ẍ = g∆θ ∆ṗ = ∆L̄ ∆φ̇ = ∆p

∆ÿ = −g∆φ ∆q̇ = ∆M̄ ∆θ̇ = ∆q

∆z̈ = ∆T̄ ∆ṙ = ∆N̄ ∆ψ̇ = ∆r

(8)

where ∆ denotes the deviation of a variable from its
equilibrium value 2 .

3. UNIVERSAL FTC DESIGN

As reported in our previous works, a state feedback con-
troller of a quadcopter (Nguyen et al., 2017) and a control

2 Actually 0 for most of them.

allocation algorithm of a hexacopter (Nguyen et al., 2018)
relying on gain-scheduling control in the framework of
structured H∞ synthesis showed a good fault recovery
capability in both simulation and experimental results.
Taking advantage of this design approach, we propose
a generalized fault-tolerant controller that produces the
normalized virtual input v̄, which is capable of perform-
ing on most multicopter UAVs. Note that the system
uncertainties such as unknown mass are not taken into
account during the design of the controller. In order to
compensate the effect of unknown parameters, an adaptive
augmentation will be introduced in the next section.

In order to facilitate the FTC design, the control architec-
ture is separated into four state feedback controllers with
integral actions (Fig. 2). Due to the similarity in the design
process, only the x-pitch controller is further explained.

Altitude controller

y-Roll controller

x-Pitch controller

Yaw controller

 

?? 

Multicopter states
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
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Fig. 2. Universal FTC architecture for design purposes.

3.1 Multi-models and gain-scheduling synthesis

Assuming no uncertainties in the plant dynamic, the
reduced LTI state-space model used for x-pitch FTC
design including the LVE factor can be represented as:

∆ẋx =

0 1 0 0
0 0 g 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Ax

∆xx +

 0
0
0

1− γM


︸ ︷︷ ︸

Bx

∆M̄ (9)

with the sub-model state vector ∆xx = [∆x ∆ẋ ∆θ ∆q]>

and γM ∈ [0, 1] represents the loss of pitch moment
effectiveness, as will be discussed later in this section.
γM = 1 means that the vehicle can not generate any pitch
moment and γM = 0 means that it is completely healthy.
In the framework of x-pitch FTC design, a set of 17 plant
models for different values of γM in the interval [0, 0.8] is
considered. It is worth noting that a larger range of γM
can cause a violation of design requirements due to high
gains or, worse, a divergence of the tuning process.

The control formulation is achieved by augmenting the
linear system matrices (9) with the new state ∆exI that
represent the integral of the error signal:

∆ėxI = ∆xr −∆x

where ∆xr is the reference input of the regulated output
∆x = [1 0 0 0] ∆xx = Cx∆xx. The system representa-
tion is then augmented with the new state as follows:[

∆ẋx
∆ėxI

]
=

[
Ax 0
−Cx 0

]
︸ ︷︷ ︸

Aa

[
∆xx
∆xi

]
+

[
Bx

0

]
︸ ︷︷ ︸
Ba

∆M̄ +

[
0
1

]
∆xr

where 0 denotes the null vector of appropriate dimensions.
The augmented pair (Aa,Ba) is controllable if and only if
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γM 6= 1. In this case, the state feedback control law with
integral action that will bring the output tracking error
∆ėxI to zero is then:

∆M̄ = −Kx∆xx +Ki,x∆exI

Nominal controller In the nominal case (γM = 0), the
controller gains Kx = [Kx Kẋ Kθ Kq] and Ki,x can be
designed using LQR synthesis or classical linear control
techniques. Thanks to the knowledge gathered on our
system through flight experiments, the closed-loop poles
are placed at [−2.5, −2.25± 3.85j, −1.45± 1.65j].

Fault-tolerant controller The goal of the FTC is to
maintain the system stability and to meet acceptable
performance in both nominal and degraded modes of
operation. To this end, the state feedback gain Kx and the
integrator gain Ki,x are modeled as quadratic functions of
the scheduling variable γM .

Kx = Kx0
+ Kx1

γM + Kx2
γ2M

Ki,x = Ki,x0
+Ki,x1

γM +Ki,x2
γ2M

The entries of the matrices Kxj
∈ R1×4 and the scalars

Ki,xj
, for j ∈ [0, 2], are the tunable parameters of the

corresponding gains. Thus, there are 15 coefficients that
the tuning software adjusts to meet the tuning goals on
the entire set of models. In order to precisely compare the
performance of the nominal and the proposed controllers
in the same context, the coefficients Kx0 and Ki,x0 can
be fixed by the nominal gain values, i.e., are not free to
be tuned. Indeed, the same control inputs are generated
by the nominal and proposed controllers in the fault-free
situation (γM = 0). Moreover, only 10 coefficients have
to be tuned in this design. Note that the normalized
value of γM in range [−1, 1] can be used to improve
the performance of the optimization solver. However, the
desired behavior in the nominal operation will be changed.

In this paper, we use the Matlab Robust Control Toolbox
function systune to tune these coefficients 3 subject to
specified design requirements. The tuning is performed
by leveraging on the multi-model capabilities of systune.
Indeed, several models with different LVE values can be
considered at the same time during the synthesis. The
tuning procedure is detailed in the next subsection.

3.2 Robust H∞ synthesis

In the framework of structured H∞ control, the design re-
quirements can be defined as frequency weights with Mat-
lab function frd to create the frequency-response data
(FRD) model. For example, in order to reject disturbances,
the FRD model created by frd([0.01 0.01 1], [0 0.1 1])
ensures that a disturbance injected at actuator inputs is
suppressed at the output by a gain less than 0.01 (−40 dB),
in the low frequency range [0, 0.1] rad/s. This tuning goal
is converted into the regularized formulation of H∞ con-
straint by systune:

‖WT‖∞ < 1 (10)

where T denotes the closed-loop transfer function from
specified inputs to outputs and W is a frequency weighting
function specifying the requirement. In this case,

3 Defined with the Matlab function tunableGain.

W =
1

(s+ 0.1)2

is a low-pass filter obtained using the Matlab function
getWeight. Similarly, the noise introduced by the sensors
is attenuated at the output using the FRD model specified
by frd([1 1 0.001 0.0001], [0 10 100 1000]). The equivalent
regularized weighting function W2 of this requirement is a
high-pass filter:

W2 =
1250000(s+ 10)3

(s+ 125000)(s+ 100)2

More control requirements for a medium size multicopter
can be found in Tab. 1 such as response time, overshoot,
closed-loop pole confinement constraints, etc. Due to the
fact that the control design is not for aggressive tracking
purpose, the tracking requirement is only restricted in the
low frequency range 4 [0, 0.1] rad/s. This relaxation makes
it easier to achieve the desired performance.

Table 1. Design requirements.

Requirement Objective

1 tracking (x, y, z) response time 3 s
steady-state error < 0.01%

tracking (ψ) response time 4 s
steady-state error < 0.01%

2 overshoot 1%
3 close-loop poles damping constant > 0.6

decay rate > 1.5
4 open-loop stability gain margin > 12 dB

phase margin > 45◦

5 disturbance rejection frd([0.01 0.01 1], [0 0.1 1])
6 noise rejection frd([1 1 10−3 10−4], [0 10 100 1000])
7 actuator saturation frd([0.05 0.5 5], [0 0.1 1])

The robust tuning algorithm systune is performed on a
quad-core PC using Matlab 2019b. After 40 iterations,
the highest H∞ norm of this synthesis is 1.19 as summa-
rized in Tab. 2. Therefore the requirements are not entirely,
but almost satisfied.

Table 2. H∞ norm of tuning goals.

Requirement 1 2 3 4 5 6 7

H∞ norm 1.18 0.93 1.19 0.6 0.25 1 0.44

The synthesis yields the resulting gain curve given in
Fig. 3. By estimating online the LVE factor γM , the
controller gain can be updated in real time to maintain an
adequate level of performance. In fact, using the proposed
controller, the closed-loop poles still remain in the required
damping region (Fig. 4a). Hence the system’s stability and
performance are always guaranteed (Fig. 4b). Conversely,
the feedback system using the nomimal controller (not
scheduled with γM ) begins to be unstable when γM ≥
0.6. Considering the full system, the instability can come
earlier due to the losses of other virtual control inputs as
it will be seen in Sec. 5.

To complete the design, the robustness of both nominal
and proposed controllers with respect to actuator faults
are compared using the H∞ norm of the combined objec-
tive for different faulty models (γM from 0 to 1). As shown
in Tab. 3, the nominal controller is rather sensitive to

4 Specified by the Focus property of the TuningGoal object.
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Fig. 3. Evolution of controller gains versus the LVE.

(a) Closed-loop poles (b) Step response

Fig. 4. Closed-loop system response.

change in the losses of control effectiveness and unstable if
γM ≥ 0.6, while the scheduledH∞ controller is very robust
to these faults as expected. This significant improvement
is the main advantage of the proposed synthesis.

Table 3. Final H∞ norm for different faulty models.

γM 0 0.1 0.2 0.4 0.6 0.8 0.9 1

Nominal 1.19 1.43 1.80 3.71 ∞ ∞ ∞ ∞
FTC 1.19 1.16 1.14 1.18 1.11 1.19 3.69 ∞

3.3 Fault detection and diagnosis

Since the proposed fault-tolerant control system requires
the magnitude of LVE to recalculate its gains, the fault
estimation is also an important task. However it is worthy
to note that the FDD design is not the main focus of the
paper. First, we define the virtual control effectiveness as
the possibility to generate the total thrust, roll, pitch and
yaw moments of the vehicle. For example, the LVE of an
hexacopter is related to its LAE by the following equation:γTγLγM

γN

 =

1/6 1/6 1/6 1/6 1/6 1/6
1/8 1/4 1/8 1/8 1/4 1/8
1/4 0 1/4 1/4 0 1/4
1/6 1/6 1/6 1/6 1/6 1/6


γ1...
γ6

 (11)

where γi ∈ [0, 1] represents the LAE of the ith actuator:
γi = 0 means that the ith actuator is completely healthy
and γi = 1 means that it is completely faulty. The
parameters γT/L/M/N that are also in the interval [0, 1]
denote respectively the losses of total thrust, roll, pitch

and yaw moments. For a quadcopter in the plus “+”
configuration, it would be:γTγLγM

γN

 =

1/4 1/4 1/4 1/4
0 1/2 0 1/2

1/2 0 1/2 0
1/4 1/4 1/4 1/4


γ1...
γ4

 (12)

Due to the symmetric configuration, the transformation
matrix from LAE to LVE of an “×” quadcopter is 1

414,
with 14 denoting the 4× 4 matrix of ones.

To achieve a successful control system reconfiguration, we
use a simple FDD module to estimate the LAE levels as
quickly as possible. The fault information can be easily
calculated by comparing the individual motor command
and the actual rotational speed provided by the encoders
that are available on our experimental platform. In order
to verify the robustness of the proposed control under a
more realistic LAE and LVE identification from FDD, the
two-stage Kalman filter is performed on a quadcopter as
in (Zhang et al., 2013; Nguyen et al., 2017).

In addition, the LVE estimation could be performed by a
separated FDD scheme instead of using (11) with the LAE
levels. However it is out of the scope of the present paper.

3.4 Implantation on the nonlinear system
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Fig. 5. Controller implementation.

After the synthesis, the universal controller is implemented
on the nonlinear system where the current heading angle
ψ has to be taken into account. Regarding the natural
decoupling of the linearized system (8) and the subsequent
feedback matrices, the inner and outer loops can be derived
as depicted in Fig. 5. The inner loop focuses on the altitude
and the attitude of the UAV while the outer loop focuses
on its position in the xi-yi plane. First, the altitude and
yaw controller loops are directly deduced as:

T̄ = g +Ki,z

∫
(zr − z) dt−Kzz −Kż ż (13)

N̄ = Ki,ψ

∫
(ψr − ψ) dt−Kψψ −Krr (14)

Since multicopters are underactuated systems, x and y
positions are controlled through combined pitch and roll
angle demands. By design, the proposed controller only
works for ψ = 0, and a change of coordinates must be
operated to take into account the current value of ψ. To
control UAV’s position, the outer loop computes command
signals in inertial frame Fi:

uix = Ki,x

∫
(xr − x) dt−Kxx−Kẋẋ

uiy = Ki,y

∫
(yr − y) dt−Kyy −Kẏ ẏ

(15)

These signals are converted to body frame Fb by perform-
ing a rotation of angle ψ around zi-axis:[

ubx
uby

]
=

[
cosψ sinψ
− sinψ cosψ

] [
uix
uiy

]
(16)
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The inner loop control laws which directly produce the
normalized virtual control inputs are then :

L̄ = uby −Kφφ−Kpp

M̄ = ubx −Kθθ −Kqq
(17)

Finally, the mapping equation (7) and the classical control
allocation law (5) are used to generate the thrust force to
each motor. Moreover, the control signals are filtered by a
first order low-pass filter with a time constant of 0.01 s to
consider the unmodeled actuator dynamics.

4. MRAC AUGMENTATION DESIGN

This section introduces an adaptive strategy to address
the system uncertainties. The design is based on a MRAC
augmentation of the universal fault-tolerant controller
developed in the previous section. The general architecture
is depicted in Fig. 6.

Regarding the controller implementation (Fig. 5), only the
inner loop is influenced by the system uncertainties, i.e,
mass and inertia. In order to simplify the design without
missing the current heading angle ψ in the implementa-
tion, the following plant is considered:

ẋ = Ax + BΛv + Brr (18)

where x = [z ż ezI φ p θ q ψ r eψI ]
>

is the extended state
vector with the integral of the tracking errors ezI and
eψI , v is the same input vector as in (4), Λ ∈ R4×4

is an unknown positive definite diagonal matrix, and

r =
[
zr u

b
y u

b
x ψr

]>
is considered as an external bounded

command vector. The block matrices A, B and Br are
known and can be obtained from Eqs. (6-8). 5 Regarding
the UAV dynamic, the pair (A,BΛ) is controllable if and
only if Λ has no zero diagonal element.

To restore the expected FTC tracking performance in
the presence of the uncertain matrix Λ, the controller is
augmented with an adaptive element vad:

v = v0 + vad (19)

where v0 = Υ0v̄ = −Υ0Kx is the output of the state
feedback fault-tolerant controller and Υ0 represents the
nominal mapping. Substituting (19) into (18) yields:

ẋ = (A−BΥ0K)x + BΛ [vad + Θv0] + Brr (20)

where Θ := I4 −Λ−1, with I4 the 4× 4 identity matrix.

Let consider the following reference model:

ẋref = Aref xref + Brr (21)

where Aref = (A−BΥ0K) is Hurwitz by FTC design and
xref (t) represents the system behavior in the nominal case
Λ = I4. The control goal is to force the system state x(t)
to globally asymptotically track the state xref (t) of the
reference model. In other words, the state tracking error
e(t) = xref (t)−x(t) globally asymptotically tends to zero,
as t→∞. Comparing (20) with the desired dynamic (21),
the adaptive element vad is chosen as:

vad = −Θ̂v0 (22)

where Θ̂ is the estimation of the unknown matrix Θ. It
can be seen that if the ideal adaptive gain Θ̂ = Θ exists,
the perfect model matching is hold, but it is not the case in
practice due to the unknown parameter Λ. The dynamics
5 In this section, the deviation notation ∆ is omitted for brevity.

of the adaptive gain is then defined using the Lyapunov-
based approach with the classical law:

˙̂
Θ = Γv0e

>PB (23)

where Γ, P and Q are symmetric positive definite matrices
of appropriate dimension. Furthermore, Γ is diagonal and
represents the rate of adaptation. P is the unique solution
of the algebraic Lyapunov equation PAref + A>ref P = −Q

for an adequately chosen Q = Q> > 0.

In order to prove the stability of the overall system, con-
sider the tracking error dynamic obtained by subtracting
(20) from (21):

ė = Aref e−BΛ∆Θv0 (24)

where ∆Θ := Θ − Θ̂ is the parameter estimation error.
Consider the following radially unbounded Lyapunov can-
didate function:

V = e>Pe + trace
(
∆ΘΓ−1∆Θ>Λ

)
The time derivative of V , evaluated along the trajectory
of the error model (24), is given by:

V̇ = −e>Qe + 2 trace
[
∆Θ

(
Γ−1

˙̂
Θ− v0e

>PB
)

Λ
]

It can be proved that the adaptive law (23) leads to V̇ ≤ 0.
By using Barbalat’s lemma, the closed-loop error dynamic
is globally asymptotically stable (Lavretsky and Wise,
2012). As a results, the tracking error asymptotically tends
to zero, i.e., limt→∞ e(t) = 0.

Universal FTC
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Fig. 6. Overview of the controller architecture.

Remark 1. The reference model can be simply chosen as
Aref = (A − BΥ0K0) where K0 is the scheduled gain
value in the fault-free situation. This choice makes sure
that the reference model is not changed during the flight.

Remark 2. In order to adapt the design requirements for
specific multicopter UAVs, an appropriate reference model
Aref can be chosen by designers. In this case, its diagonal
block structure has to be respected.

Remark 3. The unknown matrix Λ can represent the
losses of control effectiveness. It means that the proposed
adaptive algorithm also has the ability of a passive fault-
tolerant controller. However, this aspect is not the main
focus of the present paper.

5. RESULTS

Simulation and flight experiment results are conducted to
verify the effectiveness of the proposed scheme. First, to
demonstrate the portability of the proposed FTC system,
the controller is implemented in two different platforms:
a small quadcopter and a medium hexacopter, whose
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physical parameters including actuator constraints can be
found in (Nguyen et al., 2017, 2018). Table 4 summarizes
the test cases considered in this work. Results of both
hovering and trajectory tracking performances subject to
actuator faults including total failures of the rotors (case
2) and system uncertainties (case 3) are presented.

Table 4. Test scenarios

Case Multicopter Type Faults/Uncertainties

1
Hexacopter
NPNPNP

Experiment
Hovering

γ1 = 0.2, γ2 = 0.9

2
Hexacopter
NNPPNP

Simulation
Hovering

γ1 = γ3 = 1

3 Quadcopter
Simulation
Tracking

γ1 = 0.35
m = 1.5m0, Ib = 1.5Ib,0

Furthermore, the same adaptive parameters and scheduled
gains are utilized for both multicopters. Using the simpli-
fied model and design requirements gathered in Tab. 1, the
synthesis yields the following scheduled feedback gains:

Kx = [30.0 17.7 56.3 9.9] + [11.4 17.4 54.8 12.2] γM

+ [−6.6 −5.3 46.3 22.9] γ2M
Ky = [−27.6 −15.4 51 9.3] + [−80.8 −50.4 156 29] γL

Kz = [9.6 4.4] + [7.8 8.2] γT

Kψ = [5.1 3.2] + [7.1 5.7] γN

and scheduled integral gains:

Ki,x = 24.5− 3γM − 3.3γ2M Ki,y = −21.4− 61.6γL
Ki,z = 8 + 2.8γT Ki,ψ = 3.2 + 4.5γN

The adaptive augmentation algorithm is designed using:

Γ = diag (10, 1, 1, 10)

Q = diag (I3, 0.5I2, 0.5I2, 5I3)

Note that the evolution of x-pitch controller gains versus
the LVE (Fig. 3) is almost linear. Therefore, we chose affine
functions instead of quadratic functions in the design of y-
roll, z and ψ controllers, for simplicity.

5.1 Case 1

The proposed FTC system is implemented in the As-
ctec Firefly hexacopter from Ascending Technologies. The
overall system setup can be found in (Nguyen et al.,
2018). Here, the loss of actuator effectiveness is artificially
injected by introducing a weight on the individual motor
speed commands. A total rotor failure is not appropri-
ate to operate on our hexacopter due to its traditional
NPNPNP rotor arrangement. Indeed, the hexacopter is
immediately uncontrollable if one motor fails. On the other
hand, the test case with two rotor degradation levels of
90% and 20% can be considered as an approximate test
scenario. A limit has been imposed on the rotor rotational
speeds, i.e., ωi ≤ 10000 rpm leading to the thrust limit,
Ti ≤ 9.37 N. The moment inputs are limited as follows:
−2 N·m ≤ L,M ≤ 2 N·m and −0.2 N·m ≤ N ≤ 0.2 N·m.

As shown in Fig. 7, the LAE/LVE factors are precisely
calculated using measured motor speeds. Due to sensor
noises, some small data jumps are also observed.

Figure 8 provides the evolution of the proportional gains
versus the LVE value during flight test.

Fig. 7. Case 1: Calculated LAE and LVE.

Fig. 8. Case 1: Evolution of controller gains.

Using the proposed reconfiguration, the controller can
rapidly regulate the thrust of each motor as illustrated
in Fig. 9. We can also observe that steady-state motor’s
speeds before the fault are not similar due to the fact that
the hexacopter is not perfectly symmetric.

Fig. 9. Case 1: Motor commands.

As a result, the UAV can return to its hover position (at
an altitude of 1m) after the fault occurs as shown in Fig.
10. The result is better than expected, since the nominal
controller (without reconfiguration) failed in maintaining
the system stability. The nearest faulty situation that it
can handle is about 20% and 65% faults in the two first
motors. It can be noticed that the instability comes from
the biggest loss of roll moment (25%). In this case, a
significant change of the proposed y−roll controller gains
(Fig. 8) would be able to generate an appropriate torque
acting on the UAV to maintain its stability.

5.2 Case 2

In the second case, we use RotorS 6 to simulate an AscTec
Firefly hexacopter testbed on Gazebo using Robot Operat-
6 https://github.com/ethz-asl/rotors simulator
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Fig. 10. Case 1: NPNPNP Hexacopter stability improve-
ment with LAE1 20% and LAE2 90%.

ing System (ROS). The goal is to evaluate the performance
of the controller in a more challenging situation where
two complete losses of the first and the third rotor are
introduced at t = 5s and t = 10s respectively. The gain
profile and system response are given in Fig. 11.

(a) Fault recovery (b) Controller gains

Fig. 11. Case 2: NNPPNP Hexacopter stability improve-
ment with two successive rotor failures.

It can be seen that the nominal controller failed in main-
taining the system stability while the proposed controller
was still working well with an appropriate reconfiguration.

5.3 Case 3

Finally, the control algorithm is required to track the
following trajectory:

[xr yr zr ψr ]
>

= [cos(t) sin(t) 1.5 0]
>

To evaluate as completely as possible the performance of
the proposed FTC system, a loss of 35% control effec-
tiveness was injected to the first motor of a small size
quadcopter with unknown mass and inertia (Tab. 4).

Fig. 12. Case 3: Quadcopter tracking performance with
unknown mass, inertia and actuator fault.

As displayed in Fig. 12, the nominal controller with simple
integral actions can not handle the fault while the univer-
sal FTC keeps the drone tracking the desired trajectory. In
addition, the system performance is considerably improved
by the adaptive augmentation. Its efficiency is shown with
smaller heading angle, faster fault recovery as well as
better landing curve.

6. CONCLUSION

This paper introduced a universal adaptive fault toler-
ance strategy subject to actuator faults and system un-
certainties, which is applicable to most traditional mul-
ticopters. Several simulation and experimental tests were
successfully performed on different UAVs using the same
controller with constant parameters. High performance of
the proposed scheme was shown in both fault recovery
capability and adaptation. Future work will focus on the
LVE estimation as mentioned in 3.3 and experiment tests
on other multicopters.
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