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Abstract:
Stress-induced hyperglycaemia is a frequent complication in the intensive therapy that can be
safely and efficiently treated by using the recently developed model-based tight glycaemic control
(TGC) protocols. The most widely applied TGC protocol is the STAR (Stochastic-TARgeted)
protocol which uses the insulin sensitivity (SI) for the assessment of the patients state. The
patient-specific metabolic variability is managed by the so-called stochastic model allowing the
prediction of the 90% confidence interval of the future SI value of the patients. In this paper
deep neural network (DNN) based methods (classification DNN and Mixture Density Network)
are suggested to implement the patient state prediction. The deep neural networks are trained
by using three years of STAR treatment data. The methods are validated by comparing the
prediction statistics with the reference data set. The prediction accuracy was also compared with
the stochastic model currently used in the clinical practice. The presented results proved the
applicability of the neural network based methods for the patient state prediction in the model
based clinical treatment. Results suggest that the methods’ prediction accuracy was the same
or better than the currently used stochastic model. These results are the initial successful step
in the validation process of the proposed methods which will be followed by in-silico simulation
trials.

Keywords: machine learning, artificial intelligence, mixture density network, deep neural
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1. INTRODUCTION

Stress-induced hyperglycaemia is a frequent complication
in the intensive therapy (McCowen et al. (2001); Ali et al.
(2008)). Forcing the blood glucose (BG) level of these
hyperglycaemic patients into the normal, so-called normo-
glycaemic range shows definite clinical benefits (Van Den
Berghe et al. (2001); Krinsley (2004); Reed et al. (2007);
Chase et al. (2010)). This therapy is called in general as
tight glycaemic control (TGC) that includes insulin ther-
apy and occasionally moderation of the nutrition intake of
the patient.

The recently developed model-based TGC protocols suc-
cessfully implement safe and efficient patient treatment
(Benyo et al. (2012a); Stewart et al. (2016); Dubois et al.
(2017); Le Compte et al. (2012); Schultz et al. (2012)).
The STAR (Stochastic-TARgeted) TGC protocol is the
most widely applied among them, it is used in four dif-
ferent countries (Stewart et al. (2016)). STAR uses a
clinically validated physiological model, called Intensive
Control Insulin-Nutrition-Glucose (ICING) to describe the
glucose-insulin dynamics, and a population-based stochas-
tic model to manage patient-specific metabolic variability
(Evans et al. (2012)).

STAR uses the patient-specific insulin sensitivity (SI) as
a key parameter (Chase et al. (2011); Suhaimi et al.
(2010)) to define the state of the patient. SI describes
the patient metabolic response to insulin. SI is identified
from the clinical treatment data (insulin dosing, nutrition
intake and BG measurements) during the treatment of the
patients. The optimal treatment selection method consists
of three main steps shown in Figure 1.

In the so-called 2D stochastic model of insulin sensitivity,
the conditional density function defining the conditional
probability distribution of SI(t + 1) for a given SI(t)
(shown in Figure 2) (Le Compte et al. (2011); Lin et al.
(2008)) is used to define the 90% confidence interval of SI
in the future, in one, two, or three hours. This is a key
step in the STAR protocol to handle the future variability
of the patients’ state directly. The 2D stochastic model
was created based on the treatment data of the SPRINT
protocol using kernel fitting (Lonergan et al. (2006); Benyo
et al. (2012a); Lin et al. (2008)).

In this paper two versions of Artificial Intelligence (AI),
especially Neural Network (NN) based methods are pre-
sented to create an alternative stochastic model for the
STAR protocol. The primary aim of this research is to
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Fig. 1. Illustration of optimal treatment selection method
of STAR tight glycaemic control protocol.

Fig. 2. Conditional density function defining the condi-
tional probability distribution of SI(t+1) for a given
SI(t).

develop and validate an alternative methodology for SI
prediction and asses its accuracy in the patient treatment.

The potential benefits of using an NN based method are
the flexibility of the method to involve further patient
parameters into the prediction and the opportunity to
incrementally modify the stochastic model based on the
results of recent patient treatments. The benefits of involv-
ing further patient parameters into the SI prediction have
been already shown by the development of the so-called
3D stochastic model (Uyttendaele et al. (2018, 2019)).

The option of regularly modifying the stochastic model
by using the recently treated patients is logical and may
have the benefit to follow the trends of general behaviour
of the patients’ state change. The NN based stochastic
model creation approach provides this opportunity as well.
However, the prerequisite of the development of these
opportunities the development of the methodology that
provides so accurate SI prediction than the one is used in
the original version of the STAR protocol.

In the subsequent sections, after the brief introduction
of the ICING model the neural networks used for the
prediction of future SI values are defined. The prediction
accuracy of the proposed methods are compared with each
other and with the reference data in the section Results.
The section Discussion will analyze the clinically relevant

Fig. 3. Schematic representation of the physiological pro-
cesses described by the ICING model.

aspects of the outcomes. The results are summarized in
the section Conclusion.

2. METHODS AND DATA

2.1 ICING model

ICING is a pharmacokinetic-pharmacodynamic model de-
veloped by Lin et al. (2011) defining glucose-insulin ki-
netics and dynamics in the human body. Schematic rep-
resentation of the physiological processes described by the
model is shown in Figure 3. Complete description of the
model and the model parameters are given in Lin et al.
(2011), the equation describing the blood glucose (G),
interstitial insulin (Q), and plasma insulin (I) are defined
as follows:

dG(t)

dt
= −pGG(t)− SI(t)G(t)

Q(t)

1 + αGQ(t)
+

P (t) + EGP−CNS

VG
,

(1)

dQ(t)

dt
= nI(I(t)−Q(t))− nC

Q(t)

1 + αGQ(t)
, (2)

dI (t)

dt
= −nKI(t)− nL

I(t)

1 + αII(t)
−

nI(I(t)−Q(t)) +
uex(t)

VI
+ (1− xL)

uen(t)

VI
.

(3)

2.2 SI Prediction Problem

During the patients’ STAR treatment the SI value - repre-
senting the actual state of the patient - is identified every
hour using equation (1). The stepwise time function of
SI is used to create the {SI(t);SI(t + 1)} data pairs.
The SI(t+ 1) prediction from SI(t) was achieved via pa-
rameter estimation of a stochastic variation of the ICING
model represented by stochastic differential equations, see
(Paláncz et al. (2016); Benyó et al. (2016)) and by using a
stochastic model. In current research the stochastic model
will be defined by an Neural Network based Artificial
Intelligence method. Thus, our problem is to define the
function giving SI(t + 1) for given SI(t) based on this
data set.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16557



Fig. 4. Input data points defined by the SI(t) and SI(t+1)
data pairs. The histogram of the values are shown on
the top and right side of the figure.

Deep neural networks as supervised machine learning will
be suggested to learn the mapping between the input
SI(t) and the output SI(t + 1) values. The NN based
classification models are used to predict the class of a given
input and the NN based regression models are used to
predict continuous output values. One of the presented
methods will apply classification model and the other
regression. The classification model is a classification deep
neural network (CDN) with several hidden layers. Since
we have to predict the distribution of the SI(t+ 1) value
instead of a single SI(t + 1) value a Mixture Density
Network (MDN) will be applied as a regression model.

2.3 Patient Selection and SI Data Set Used

All the patents treated by STAR between June 2016 and
August 2019 in Christchurch Hospital, New Zealand were
included into the study cohort. The following exclusion
criteria were applied:

• patients treated less than 10 hours by STAR;
• sections of treatments where the higher border of the
BG target band was above 9 mmol/L;

• sections of treatments where lower border of the BG
target band was above 6 mmol/L.

Data points used for the creation of the prediction models
are created for each real BG measurements. The actual
SI(t) and SI(t+ 1) values are identified using equation 1
based on the treatment data. The input data points are
shown in Figure 4. The histogram of the data points are
shown on the top and right side of the figure. The total
number of data points was 26, 033.

It can be seen that the distribution of the input data points
is uneven, 97% of the SI values are below 0.001 mmol/l.
Thus in the evaluation phase the lowest 10% of the SI
codomain will be used.

2.4 SI Prediction Based on Deep Neural Network

To apply the classification deep neural network (CDN)
for the prediction of the SI(t + 1) distribution based on
SI(t) the codomain of SI was divided into 100 equal size
intervals. Each interval was associated with one output

class. The input of the CDN is the SI(t) value. The output
layer of the CDN consists of 100 nodes, associated with the
classes defined above. The CDN nodes will define for each
output class the probability that the SI domain associated
with the given class includes the predicted SI(t+1) value.

Thus, the size of the output layer of the network is defined,
it is equal with the number of classes which is 100 in our
case. The input of the network is the SI(t) value so there
is only a single node in the input layer. The training data
set contains pairs of a real number, as an input and a
vector of 100 numbers between 0 and 1, interpreted as a
probability, as an output. The real number is the SI(t)
value which will be the input of the CDN, the 100-element
vector is the (discrete) probability distribution of SI(t+1)
which will be the output of the CDN.

The training data set is created in a way that all of these
vectors contain 99 zero values and a single one value. The
one value belongs to the class which has an associated SI
domain that includes the SI(t + 1) value predicted from
the SI(t).

Several network topologies have been tested, in Table 1
the best performing CDN topology is defined.

Table 1. Classification deep neural network
topology definition

layer type size activation function
input 1 -
hidden 10 tanh
hidden 20 tanh
hidden 30 tanh
hidden 40 tanh
hidden 60 tanh
output 100 softmax

The deep neural network used for SI prediction was
implemented in Python using TensorFlow and Keras Gulli
and Pal (2017). 80% of the input data set was used for
training. The training consisted of 20 epochs.

The final output of the SI prediction is calculated by fitting
a Gaussian distribution to the output of the deep neural
network which is considered in this case as a histogram.
This calculation is illustrated in Figure 5. In this figure
the output of the deep neural network prediction is shown
as a blue histogram. The fitted Gaussian distribution is
the green line. The mean value of the Gaussian will be the
predicted SI(t+1). The 5% and 95% percentile values are
also shown by blue and red lines.

2.5 SI Prediction based on Mixture Density Network

The Mixture Density Network (Bishop (1994)) is a deep
network with input SI(t) and with Mean values, Standard
Deviations, and the Weights of the Normal Distributions
providing the statistical mixture model for SI(t+ 1). For
finding these parameters in the teaching phase this net-
work was embedded in a larger network having additional
input SI(t + 1), see Figure 6. Teaching this network the
parameters of the embedded network can be computed,
and then this network can be employed for the SI(t + 1)
prediction.
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Fig. 5. Output of the CDN network prediction for a given
SI(t) value. The fitted Gaussian distribution (green)
and the 5% and 95% percentile values (blue and red
bars) are also shown.
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Fig. 6. Topology of Mixture Density Networks proposed
for the SI prediction for learning the statistical pa-
rameters of the model of the mixture distribution of
the ten normal distributions.

NetTrain Results

summary batches: 944000, rounds: 2000,

time: 12min, examples/s: 85005

data training examples: 30155,

processed examples: 60416000,

skipped examples: 0

method ADAMoptimizer, batch size64, CPU

round loss:-3.94
rounds

lo
ss

500 1000 1500 2000

-4.

-3.

-2.

Fig. 7. Training parameters and training results of the
MDN.

The training results of the network implemented in Wol-
fram Mathematica (Wolfram Language and Documenta-
tion Center (2019)) is shown in Figure 7.

Fig. 8. Mean (red dashed line), standard deviation (two
dotted blue lines), and the 5% and 95% percentile
values (enveloping black solid lines) of the SI(t + 1)
in function of SI(t) in the training data set.

Fig. 9. Output of the CDN network prediction in function
of input SI(t) values. Mean value (middle solid line),
standard deviation (two solid lines around the mean),
and the 5% and 95% percentile values (enveloping
solid lines) of the SI(t+ 1) are shown.

3. RESULTS

The SI(t + 1) prediction accuracy of the proposed NN
based prediction methods were evaluated by comparing
the mean value, the standard deviation and the 5% and
95% percentile values with the reference data in the
intervall of SI(t) values including the majority (97%) of
the data points. The reference data is shown in Figure 8.

The output of the CDN network prediction in function of
input SI(t) values is shown in Figure 9. It can be seen
that the dependency of the mean value (middle solid line)
is closer to linear from the SI(t) value. The standard
deviation (two solid lines around the mean) also grows
proportionally with the SI(t). The 5% and 95% percentile
values (enveloping solid lines) show similar behavior to the
standard deviation.

In Figure 10 the output of the CDN network prediction
is compared with the reference data. The prediction accu-
racy, based on the two momentums are quite impressive.

In Figure 11 the output of MDN network prediction can
be seen. The curves of the mean value (middle red dashed
line), the standard deviation (two dotted blue lines around
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Fig. 10. Comparison of the output of the CDN network
prediction with the reference data in function of input
SI(t) values (notations are given in Figure 9 and 8.)

Fig. 11. Output of the MDN network prediction in func-
tion of input SI(t) values. Mean value (middle red
dashed line), standard deviation (two dotted blue
lines around the mean), and the 5% and 95% per-
centile values (enveloping solid lines) of the SI(t+ 1)
are shown.

the mean) and the 5% and 95% percentile values are
very much the same as the prediction output of the CDN
network. This similarity can be confirmed in Figure 12.
The curves representing the statistical parameters of the
predicted distributions of the SI(t + 1) values defined by
the two networks are side by side, almost covering each
other.

The prediction accuracy of one of the neural networks -
the CDN network - was compared with the prediction
accuracy of the currently used stochastic model of the
STAR protocol. In Table 2 the 90% confidence interval
of the SI(t + 1) prediction was compared with the real
SI(t+1) value extracted from the treatment records. The
prediction true rate in the first row of the table shows the
proportion of the cases when the neural network 90% con-
fidence interval includes the real SI(t+1) value. Similarly,
the first column of the table shows the proportion of the
cases when the currently used STAR stochastic model 90%
confidence interval includes the real SI(t+1) value. Table
also shows the proportion of the cases when the currently
used STAR stochastic model and the CDN 90% confidence
intervals do not include the real SI(t+ 1) value (columns
and rows with False heading).

Fig. 12. Comparison of the output of the CDN network
prediction with the MDN prediction in function of
input SI(t) values. Mean values (middle dashed line),
standard deviations (two dotted lines around the
mean), and the 5% and 95% percentile values (en-
veloping solid lines); red: CDN network prediction;
blue: MDN prediction.

Table 2. True and False prediction rate table.
The total true and false prediction rates of
STAR and CDN predictions (bold numbers)
and the size of the intersections of the given

sets.

STAR CDN
True False Total

CDN True 0.885279 0.053680 0.938959
False 0.015954 0.045087 0.061041

STAR Total 0.901233 0.098767

4. DISCUSSION

Considering the comparison of the statistical parameters
of the proposed prediction methods and the reference data
set (Figure 10 and 12) it can be clearly seen that there is
almost no difference in the accuracy, the 90% confidence
intervals of the predicted SI(t + 1) distribution cover
each-other. Thus, both of the suggested neural network
based model were able to accurately predict the SI(t+ 1)
distribution from the SI(t) value. These results confirm
the applicability of the presented AI methods in the
STAR treatment. The study was limited to the statistical
evaluation of the prediction results on the given data
set. Prior to clinical application of the results extensive
validation will be necessary.

The neural network based methods were also compared
with the STAR stochastic model currently used in the
clinical treatment, see Table 2. It can be seen in this
table that the total true rate – i.e. the proportion of
cases when the 90% confidence internal defined by the
given method – of the neural network is almost 4% higher
(93.90% vs. 90.12%) than the true rate of the current
STAR prediction. In 5.3% of the cases the classification
deep neural network suggests an appropriate confidence
interval so that the STAR prediction was not accurate in
the given case and only 1.59% of the cases happens it on a
revers way. These numbers suggest that the classification
deep neural network somewhat better in the prediction
accuracy from the aspect of the STAR clinical application.
However, the quantitative differences are relatively small
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so the accuracy differences should be further investigated
by in-silico trials.

5. CONCLUSION

Two neural network based insulin sensitivity prediction
methods were presented that can be used in the STAR
tight glycaemic control protocol. The suggested methods
prediction accuracy was the same or better than the
currently used stochastic model accuracy. These results
are the initial successful step in the validation process of
the proposed methods which will be followed by in-silico
simulation trials.

The presented results proved the applicability of the neural
network based methods for the patients state prediction in
the model based clinical treatment. These methods allow
more flexible inclusion of additional patient parameters
into the patient state prediction process which is a promis-
ing opportunity for better clinical treatment.
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