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Abstract: Fast stochastic model predictive control (FSMPC) is a multivariable control
algorithm that explicitly takes constraints and probabilistic parametric uncertainties into
account while having low online computational cost for dynamical systems of high state
dimension. This article extends FSMPC to be applicable to model uncertainty descriptions
that include unstable dynamical systems. The proposed control structure, which embeds output
feedback into past FSMPC formulations, is illustrated in a numerical example. Two different
options for designing the embedded output feedback are compared and discussed.
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1. INTRODUCTION

Model predictive control (MPC) is heavily used in industry
to control multivariable processes, due to its ability to
explicitly take constraints into account. The uncertainties
that arise when modeling manufacturing systems have
motivated extensions of MPC algorithms. The objective
of robust MPC formulations is to optimize the worst-case
scenario, which can result in sluggish closed-loop perfor-
mance even in cases in which the worst-case behavior has
vanishingly small probability of occurrence. The alterna-
tive approach of stochastic MPC explicitly takes probabil-
ity distributions of the uncertain model parameters into
account, which enables the optimization of the distribution
of the controlled process outputs (Mesbah, 2016).

Another consideration when formulating MPC algorithms
is that most manufacturing systems have high state di-
mension, with many thousands of states being common.
The large number of states relative to the small number
of inputs and outputs (typically on the orders of tens)
means that the states in models for manufacturing systems
are rarely observable, which makes the implementation
of state-space MPC algorithms infeasible in practice. In
industrial implementations, this situation is addressed by
using input-output model formulations. For example, an
MPC formulation widely applied in industrial manufac-
turing systems is dynamic matrix control (DMC), which
was first developed at Shell Oil Company (Cutler and
Ramaker, 1979). DMC uses an input-output step response
model to optimize the control moves and the computa-
tional cost scales with the number of inputs and outputs.
This is typically much lower than the number of system
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states, leading to low on-line computational cost, even for
process systems of high state dimension.

Past work extended the DMC algorithm to explicitly take
probabilistic parametric uncertainty into account (Paulson
et al., 2014, 2018). The fast stochastic MPC (FSMPC)
algorithm based on a realistic model of a manufacturing
system with approximately 8000 states had an on-line
computational cost of less than one second per sampling
instance due to the input-output model formulation, which
was much less than the sampling time of one minute. Ex-
tensions to the FSMPC formulation were derived that were
proven to have zero steady-state error to step changes in
the setpoints and disturbances (von Andrian and Braatz,
2019). The FSMPC formulations required that the step
response coefficients are bounded for all realizations of
uncertain model parameters, in other words, all models
within the uncertainty set were required to be asymp-
totically stable. This assumption holds for most manu-
facturing systems, as the MPC algorithm is implemented
on top of lower level regulatory control loops that have
been designed to stabilize the individual unit operations.
On the other hand, cases can arise in which the process
model is unstable for some model parameter values within
the probability distribution. Such cases can arise especially
at the tails of the probability distributions for the model
parameters. Despite having a very low probability of oc-
currence, the unstable system dynamics can dominate the
step response model and make the model unusable in the
design of FSMPC based on step response models.

This article proposes a combination of FSMPC with em-
bedded output feedback to control systems in which the
process model uncertainty set can include unstable dynam-
ics. The article is organized as follows. A description of the
control structure and synthesis of the FSMPC is followed
by application to an example system with two different
designs for the embedded controller. The article ends with
a discussion and conclusion.
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2. METHODS

This article employs Polynomial Chaos Theory (PCT),
which propagates parametric uncertainty through the pro-
cess model to quantify the resulting uncertainty in process
outputs (Xiu and Karniadakis, 2002). A stochastic MPC
formulation with low on-line computational cost can be
achieved by incorporating PCT to optimize the predicted
expected value and variance of the outputs resulting from
current and future control moves (Paulson et al., 2014;
von Andrian and Braatz, 2019). The derivations of prior
fast stochastic MPC (FSMPC) algorithms are available in
these papers and are not repeated here due to space con-
straints. This section describes the changes made to extend
the formulations to handle unstable process dynamics by
embedding an additional output feedback within any of
the past FSMPC formulations.

The structure of the FSMPC with output feedback is
shown in Fig. 1. The control signal of the feedback con-
troller u is complemented by an adjustment signal v, before
being sent to the process as u+v. The adjustment signal v
is calculated by the FSMPC to ensure constraint satisfac-
tion while taking uncertainties into account. This article
uses proportional integral (PI) control and unconstrained
quadratic DMC (QDMC) as the feedback controller, al-
though any other stabilizing output feedback controller
could be used. The main idea behind this structure –
combining MPC with other controllers – has been applied
successfully with other MPC formulations (Lee and Park,
1991) to enable control of (partially) unstable processes
with previously presented FSMPC.

Fig. 1. Structure of FSMPC applicable to unstable sys-
tems, where ysp is the setpoint, e is the control error,
u is the feedback controller output, v is the feedback
controller adjustment, and y is the process output.

At each time instance k, the optimization

min
∆v(k)

v(k)>Wvv(k) (1)

s.t. ymin ≤ E [ŷ(k)] ≤ ymax

umin ≤ E [û(k)] + v(k) ≤ umax

∆umin ≤ E [∆û(k)] + ∆v(k) ≤ ∆umax,

(2)

is performed in the FSMPC, where

v(k) ≡



v1(k)
v1(k + 1)

...
v1(k + c− 1)

v2(k)
...

vnu
(k + c− 1)


∈ Rcnu×1

is the calculated input adjustment of all nu inputs over the
control horizon c at time instance k; Wv ∈ Rcnu×cnu is a
diagonal matrix with positive weights selected according
to the relative importance of each input; ymin and ymax

∈ Rpny×1 are the output constraints of all ny outputs over
the prediction horizon p; E[ŷ(k)] ∈ Rpny×1 is the expected
value of all predicted process outputs over the prediction
horizon with entries ordered analogously to v(k); umin,
umax, ∆umin, ∆umax are the constraints on the process
inputs, which have to be fulfilled by the sum of expected
value of predicted feedback controller output E[û(k)] and
adjustment signal v(k) over the control horizon and the
change of the respective signals E[∆û(k)] = E[û(k)] −
E[û(k − 1)] and ∆v = v(k)− v(k − 1), all ∈ Rcnu×1. The
mathematical formulation implies that all setpoint track-
ing is done by the feedback controller and the FSMPC only
ensures constraint satisfaction with minimal adjustment.

As with regular QDMC, at the heart of the FSMPC is a
step response model of the Polynomial Chaos Expansion
(PCE) coefficients, which provides information on how a
step in controller input will influence process output. The
formulation considers two input signals: the adjustment
signal v and the desired process output ysp which is treated
as a measured disturbance in the FSMPC framework. For
a step in each input, the corresponding output signals
are recorded to form the step response model. In addition
to the process output y, information about the feedback
controller outputs u is needed to predict the future values,
which are part of the constraints (2).

To derive the step response model in the original FSMPC
formulation, PCE is applied to the uncertain process pa-
rameters θ, states x, and outputs y. Uncertainties are
propagated through the process and feedback controller
loop to the process outputs. PCE is applied additionally
to the feedback controller input e, possible feedback con-
troller states, and the feedback controller output u, which
makes PCE also necessary for the process inputs.

The respective step response coefficients are stored in the
matrices Gv,y ∈ Rpny×cnu , Gv,u ∈ Rcnu×cnu , Gysp,y ∈
Rpny×pny , Gysp,u ∈ Rcnu×pny in the same triangular pat-
tern as in QDMC. The matrix dimensions are given in
terms of the number of input variables nu, the number of
output variables ny, the length of the prediction horizon
p, and the length of the control horizon c. In contrast
to QDMC, a row of zeros is appended to the top of the
matrices Gv,u and Gysp,u. These rows are inserted because
at time instance k, from the perspective of the FSMPC,
the feedback controller output u(k) is already calculated
and only the next c− 1 values need to be predicted.

Analogously to QDMC, the optimization (1)–(2) can be
formulated as a quadratic program with linear constraints.
The objective function (1) is expressed as a quadratic
function in terms of the decision variables:

min
∆v

v>Wvv = min
∆v

1

2
∆v>H∆v + ∆v>h, (3)

with the matrix defined by

H ≡ (Inu ⊗ IcL)>Wv(Inu ⊗ IcL) ∈ Rcnu×cnu , (4)

where I is the identity matrix with the indicated size, IL
is a square lower triangular matrix with the indicated size
with ones on and below the main diagonal, and ⊗ is the
Kronecker product, and the vector defined by

h ≡ (Inu ⊗ IcL)>Wv(Inu ⊗ 1c)v(k − 1) ∈ Rcnu×1, (5)

where 1 is a vector of ones with the indicated length, and
v(k − 1) ∈ Rnu×1 is the vector of past input adjustments.
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The expected value of the future process outputs E[ŷ(k)]
is predicted as a function of the decision variables ∆v,
utilizing the step response matrices analogously to QDMC,
with the difference that both, adjustment and setpoint
signals are included. The expected value is equivalent to
the 0th PCE coefficient, with the 0 subscript omitted here
for ease of notation. Note that

ŷ(k) ≡



y1(k + 1|k)
y1(k + 2|k)

...
y1(k + p|k)
y2(k + 1|k)

...
yny(k + p|k)


= (Iny ⊗T)fy(k)+

Gv,y∆v(k) + Gysp,y∆ysp(k) + wy ∈ Rpny×1,

(6)

where the matrix T ∈ Rp×n shifts the free response
fy(k) ∈ Rn×1, as in QDMC. The integer n is the length
of the step response model at which steady state is
reached. In addition to the process output prediction, the
expected value of the feedback controller output E[û(k)]
is estimated into the future over the control horizon c
to ensure constraint satisfaction. The PCE coefficient
subscript 0 is omitted to simplify notation. Note that

û(k) ≡



u1(k|k)
u1(k + 1|k)

...
u1(k + c− 1|k)

u2(k|k)
...

unu(k + c− 1|k)


= (Inu ⊗Tu)fu(k)+

Gv,u∆v(k) + Gysp,u∆ysp(k) + wu ∈ Rcnu×1.

(7)

For the prediction of the feedback controller output û, the
free response fu does not need to be shifted, only short-
ened, so the matrix Tu is an identity matrix concatenated
with zeros: Tu ≡ [Ic 0c×(n−c)] ∈ Rc×n. For both v̂ and
û, the free response is the respective prediction due to
past input and setpoint changes, if no future input or
setpoint changes occur. After the optimal trajectory of
input adjustments is calculated, both free responses are
updated, as in QDMC. The future setpoint changes over
the prediction horizon is ∆ysp(k) ∈ Rpny×1 is, with the
elements arranged in the same order as for ŷ(k). The bias
terms wy and wu account for unmeasured disturbances
and uncertainties, calculated as the difference between
predicted and measured process and feedback controller
outputs at time instance k, respectively. The bias is as-
sumed to remain constant over the prediction horizon.

With (6)–(7), the constraints (2) can be written as linear
inequalities in terms of the decision variables ∆v as

A∆v ≤ b, (8)

with

A ≡


Gv,y

−Gv,y

Gv,u

−Gv,u

(Inu ⊗T′)Gv,u + Icnu

−(Inu ⊗T′)Gv,u − Icnu

 ∈ R(2pny+4cnu)×cnu ,

b ∈ R(2pny+4cnu)×1 given in Fig. 2, v(k − 1) and u(k − 1)
are the input adjustment and feedback controller output
implemented at time k − 1 respectively, t′ is the vector
t′ ≡ [1 0 0 . . . 0]> ∈ Rc×1, and

T′ ≡


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −1 1

 ∈ Rc×c.

To avoid the potential for infeasibility of the quadratic
program (3) and (8), the output constraints are softened
by adding slack variables (Ricker et al., 1988).

The difference between cascade control and the proposed
control structure is that the FSMPC is sending a correc-
tion signal v directly to the process, rather than sending
a setpoint to a lower level controller. To guarantee input
(movement) constraint satisfaction, the sampling time of
the FSMPC and the feedback controller are identical.

As in past FSMPC formulations, terms can be added to
the objective function (1) to minimize not only the input
adjustment v, but also to minimize the sum of the square
of the expected value of the output error and/or the sum
of the variance across different parameter realizations.

3. NUMERICAL EXAMPLE

Consider the single-input single-output system
dx

dt
= −θx+ u, y = x, (9)

with state x, time t, uncertain parameter θ, input u,
and output y. The probabilistic parametric uncertainty of
θ ∼ U(−0.5, 1.5) with nominal value θnom = 0.5 results
in a nominally stable system and the system is stable for
θ > 0 but is unstable for θ < 0. Due to the instability for
some values of the model parameter θ, FSMPC cannot be
directly applied, because the step response of the expected
value is dominated by the unstable system behavior and
never reaches a steady state.

Applying a third-order PCE to the system gives the
extended system for the PCE coefficients

d

dt

x0

x1

x2

x3

=

−0.5 −1/3 0 0
−1 −0.5 −0.4 0
0 −2/3 −0.5 −3/7
0 0 −0.6 −0.5


x0

x1

x2

x3

+

u0

u1

u2

u3

,
[y0 y1 y2 y3]

>
=[x0 x1 x2 x3]

>
,

(10)

which is used to generate the step response coefficients.
This system is unstable due to a positive eigenvalue of the
system matrix, which results from the unstable values for
θ within the probabilistic uncertainty description.

Here two different feedback controllers are considered in
Fig. 1: a PI controller and an unconstrained QDMC. PCE
is applied to each controller to yield a closed-loop step
response, the process output, and the feedback controller
output PCE coefficients yi and ui, respectively.

3.1 PI control as output feedback controller

The discrete PI controller equation in velocity form is

u(k) = KP (e(k)− e(k− 1)) + ∆tKIe(k) + u(k− 1), (11)
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b ≡


(Iny ⊗ 1p)ymax − (Inu ⊗T)fy(k) −Gysp,y∆ysp(k) −wy
−(Iny ⊗ 1p)ymin + (Inu ⊗T)fy(k) + Gysp,y∆ysp(k) + wy

(Inu ⊗ 1c)umax − (Inu ⊗Tu)fu(k) −Gysp,u∆ysp(k) −wu − (Inu ⊗ 1c)v(k − 1)
−(Inu ⊗ 1c)umin + (Inu ⊗Tu)fu(k) + Gysp,u∆ysp(k) + wu + (Inu ⊗ 1c)v(k − 1)

(Inu ⊗ 1c)∆umax − (Inu ⊗T′) ((Inu ⊗Tu)fu(k) + Gysp,u∆ysp(k) + wu) + (Inu ⊗ t′)u(k − 1)
−(Inu ⊗ 1c)∆umin + (Inu ⊗T′) ((Inu ⊗Tu)fu(k) + Gysp,u∆ysp(k) + wu) − (Inu ⊗ t′)u(k − 1)


Fig. 2. Definition of the vector b in the quadratic program (8) that is solved online.

where KP and KI are the proportional and integral gains,
e = ysp − y is the error, and ∆t is the time interval. In
order to obtain a closed-loop step response model of the
PCE coefficients of both the process output and the PI
controller output, PCE is applied to the PI controller:

u0(k) = KP (ysp(k)− y0(k)− ysp(k − 1) + y0(k − 1))

+∆tKI(ysp(k)− y0(k)) + u0(k − 1)
(12)

ui(k) = KP (−yi(k) + yi(k − 1)) + ∆tKI(−yi(k))

+ui(k − 1), i = 1, 2, . . . , L
(13)

where L+1 is the number of PCE coefficients. An analysis
of the PCE of the PI controller indicates that the PCE
is almost identical for all coefficients, except that the
higher order coefficients do not depend on ysp. This
structure can be interpreted as independently operating
PI controllers with a setpoint of 0 for the higher order
PCE coefficients. The controller drives the expected value
(0th PCE coefficient) to the setpoint ysp and the variance,
calculated from the higher order PCE terms, to zero, with
the same tuning (KP andKI) used for all PCE coefficients.

The step response coefficients for the closed loop are cal-
culated by simulating a unit step in v and ysp respectively
and recording the resulting change in y and u. The time
interval is ∆t = 0.1, the proportional constant is KP = 1
and the integral constant is KI = 1. The step response
coefficients are shown in Fig. 3 and all step responses settle
to a steady state, indicating a stable closed-loop response
for all realizations of θ.
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Fig. 3. Step response coefficients for process output y (left),
resulting from a unit step in v (top) and ysp (bottom)
and for PI controller output u (right), resulting from
a unit step in v (top) and ysp (bottom).

The unit step in input adjustment v is treated as a
disturbance by the PI controller and is quickly rejected,
as can be seen by the return to zero of the expected value
of the process output y0 (Fig. 3 top left) and the step
to −1 of the expected value of the PI controller output
u0 (Fig. 3 top right). This compensation happens for all
realizations of the uncertain parameter θ, which can be
seen by the higher order PCE coefficients returning to zero,
indicating a variance of zero. However, at the beginning of
the step, the process will behave differently for different

realizations of θ, as evidenced by the nonzero values of
the higher order PCE coefficients, indicating a nonzero
variance across different realizations of θ.

The unit step in process output setpoint ysp is followed
by the controller, as can be seen by the step to 1 of the
expected value of the process output y0 (Fig. 3 bottom
left). The new setpoint is reached by all realizations of the
uncertain parameter θ, as shown by the higher order PCE
coefficients returning to zero, indicating a variance of zero.
The step in process output is achieved by a step in the PI
controller output u, with this step being different for each
realization of θ, because for each realization, a different
process input u is necessary to achieve the same process
output y (Fig. 3 bottom right). This can be seen by the
first PCE coefficient u1 not returning to zero, resulting in
a nonzero variance across different realizations of θ.

The performance of the PI controller alone for a step in
output setpoint ysp and an input disturbance is shown in
Fig. 4 for different realizations of θ, drawn from its uniform
distribution. The closed-loop response is overdamped or
underdamped, depending on the value of θ.

-0.5 0 0.5 1 1.5
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Fig. 4. PI control: process output y with constraints
(left), and controller output u with constraints (right).
Tested for a step in ysp from 0 to 4 at t = 0 and back
to 0 at t = 10 and a disturbance in process input (+3)
between t = 20 and t = 30.

Combining the FSMPC with the PI controller, as shown
in Fig. 1, allows input and output constraints to be taken
explicitly into account. To demonstrate the effectiveness
of the FSMPC, constraints are chosen that are violated
when using only the PI controller. The input constraints
are implemented as hard constraints, while the output
constraints are implemented as soft constraints in order to
avoid feasibility problems of the quadratic program. The
tuning parameters and constraints are listed in Table 1.

The results of the PI controller together with the FSMPC
are shown in Fig. 5, where it can be seen that both the
PI controller output signal u and the FSMPC adjustment
v individually violate the input constraints (bottom), but
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Table 1. SQDMC parameters

Parameter Value Constraints Value

∆t 0.1 umin −5
p 199 umax 5
c 100 ∆umin −0.75
n 200 ∆umax 0.75
wv 1 ymin −1
wε 1000 ymax 4.5
Wε 1000
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Fig. 5. FSMPC with PI as feedback controller: process
output y with constraints (top left), and process input
u+v with constraints (top right). PI controller output
u (bottom left) and FSMPC output v (bottom right).
Tested for a step in ysp from 0 to 4 at t = 0 and back
to 0 at t = 10 and a disturbance in process input (+3)
between t = 20 and t = 30.

the sum of both signals strictly satisfies the constraints
(top right). For the realization of θ = 1.5, this results
in the PI controller continuously increasing the control
signal between time 0 and 10 in an attempt to reach the
setpoint ysp, and the FSMPC adjusting for it to satisfy
the input constraints. In this case, the input constraints
prevent the process from reaching the output setpoint.
During the setpoint changes and the input disturbances,
the (soft) output constraints are violated, as can be seen
in Fig. 5 (top left), which is caused by the underdamped
closed loop response of the PI controller, for the particular
realizations of θ. In those cases, the FSMPC is unable to
adjust for the large PI controller action.

In comparison to PI control only (Fig. 4), the proposed
combined approach (Fig. 5) is able to strictly satisfy the
input constraints and reduce the number of realizations of
θ, for which output constraint violations are observed.

3.2 Unconstrained QDMC as output feedback controller

For dynamical systems with multiple inputs and outputs, a
multivariable controller has to be used as the feedback con-
troller. Because the nominal process is stable, a QDMC can
be designed, but PCE can be applied only to the closed-
form solution of the optimization in the unconstrained
QDMC. Therefore, no constraints are considered within
the feedback controller, analogously to the PI controller.
The unconstrained QDMC is designed with the same pa-

rameters in Table 1 and a weight for the error term of
Wy = 10 and a weight for the input movement of Wu = 1.
The closed-form solution for multiple inputs and multiple
outputs can be expressed as

u∗(k) = αupast(k) + βe(k), (14)

where α and β are constant matrices. Like the PI con-
troller, the unconstrained QDMC is linear in terms of
upast(k) and e(k), and the PCE is

u∗0(k) = αu0,past(k) + β(ysp − y0(k)), (15)

u∗i (k) = αui,past(k)− βyi(k)), i = 1, 2, . . . , L, (16)

which can be interpreted as L + 1 individual controllers,
bringing the expected process output (0th PCE coefficient)
to the setpoint for every realization of θ. This can be
seen by the variance calculated from the higher order
PCE coefficients being brought to zero. However, all L+ 1
controllers are designed equal, utilizing the nominal step
response, which might not be an accurate description for
each PCE coefficient.

The step response coefficients for the closed loop are cal-
culated by simulating a unit step in v and ysp respectively
and recording the resulting change in y and u (Fig. 6). All
step responses settle at a steady state, indicating a stable
closed loop response for all realizations of θ.
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Fig. 6. Step response coefficients for process output y (left),
resulting from a unit step in v (top) and ysp (bottom)
and for QDMC output u (right), resulting from a unit
step in v (top) and ysp (bottom), with ∆t = 0.1.

The step responses of the PCE coefficients for the closed
loop response with QDMC (Fig. 6) are similar to the
closed-loop step response with the PI controller, discussed
above, with the difference that the QDMC is tuned more
aggressively, i.e. reaches a steady state sooner.

Fig. 7 shows the results of unconstrained QDMC together
with FSMPC as outlined in Fig. 1. For this single-input
single-output system, the result is similar to using a PI
controller as the feedback controller, while also being ap-
plicable to multivariable control. Both the QDMC output
signal u and the FSMPC adjustment v violate the input
constraints individually (bottom), but the constraints are
strictly satisfied by the sum of both signals u + v (top
right). For the realization of θ = 1.5, the process output
does not reach the desired setpoint ysp between time 0
and 10, because the process input u+ v reaches the upper
constraint. During that time, the QDMC increases the
input u to reach the setpoint ysp, but the FSMPC adjusts
the signal to satisfy the input constraints, thus the input
constraints prevent the process from reaching the output
setpoint. The (soft) output constraints are violated during
setpoint changes and input disturbances, Fig. 7 (top left).
For those particular realizations of θ, the process gain is
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Fig. 7. FSMPC with QDMC as feedback controller: process
output y with constraints (top left), and process input
u + v with constraints (top right). QDMC controller
output u (bottom left) and FSMPC output v (bottom
right). Tested for a step in ysp from 0 to 4 at t = 0
and back to 0 at t = 10 and a disturbance in process
input (+3) between t = 20 and t = 30.

particularly high and the FSMPC is unable to adjust the
controller action as would be required.

3.3 Minimization of the expected error with unconstrained
QDMC as output feedback controller

An error term is added to the objective function of the
FSMPC, as shown at the end of Section 2, so that the
magnitude of the adjustment signal v is minimized along
with the predicted expected value of the process output
error. The same unconstrained QDMC as before is used
as feedback controller. The results in Fig. 8 show a similar
performance for inputs and outputs in terms of constraint
violations as before, and an improved setpoint tracking
performance, particularly during time t = 5 to t = 10.

4. DISCUSSION

The proposed output feedback control scheme extends fast
stochastic model predictive control to unstable dynamical
systems by integration with a pre-stabilization of the com-
plete set of uncertain systems by an unconstrained output
feedback control. For either output feedback control de-
signs – PI controller or unconstrained QDMC – including
the error term in the FSMPC formulation resulted in
improved overall closed-loop performance.

Although the control algorithms are demonstrated here for
a system with one input and output, the unconstrained
QDMC as feedback controller readily applies to multi-
variable control. Due to the input-output formulation of
the controllers, the online computational cost is low and
independent of the number of states in the system.

5. CONCLUSION

Fast stochastic MPC algorithms are extended to dynam-
ical systems with probabilistic parametric uncertainties
in which the process dynamics can be unstable for some
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Fig. 8. FSMPC with QDMC as feedback controller and
with additional error term in the objective function,
resulting in tighter control compared to Fig. 7. Pro-
cess output y with constraints (top left) and process
input u+ v with constraints (top right). QDMC con-
troller output u (bottom left) and FSMPC output v
(bottom right). Tested for a step in ysp from 0 to 4
at t = 0 and back to 0 at t = 10 and a disturbance in
process input (+3) between t = 20 and t = 30.

parameter values. With the presented FSMPC and out-
put feedback structure, such processes can be controlled
successfully when the nominal system is stable and the
system can be pre-stabilized by an output feedback con-
troller for all uncertainty realizations. Then the FSMPC
ensures constraint satisfaction while explicitly taking the
probabilistic parameter uncertainties into account.
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