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Abstract: In this paper, the problem of designing a nonlinear Sliding Mode (SM) regulator is
addressed for nonlinear affine control systems in Regular form subject to unmodeled disturbance.
In particular, the error feedback SM regulator problem is defined, taking the concepts related to
the zero output tracking submanifold as a starting point. Applying the internal model concept
to the time-invariant SM equation, the solvability conditions to the problem are derived. A
Proportional-Integral (PI) nonlinear observer is proposed, and using the observer state, a
sliding manifold on which the tracking error is ultimately bounded, is formulated. A SM control
algorithm is proposed to ensure the designed manifold to be attractive, achieving robustness
with respect to allowed uncertainties. The effectiveness of the proposed method is demonstrated
by the application to the Pendubot system.
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1. INTRODUCTION

One of the many control techniques used for trajectory
tracking of nonlinear systems is associated with the term
of regulation. The regulation problem for nonlinear sys-
tems is defined as finding a feedback law that is capable
of forcing the system trajectories to track a predefined
reference, the latter provided by an external system, or
exosystem. In the classical regulation theory, the solution
is found by performing a mathematical analysis that leads
to the solvability of the Francis-Isidori-Byrnes equations.
The internal model principle, for regulation based on the
output of the system is presented. Both procedures will
generate the feedback control law that produces the de-
sired steady state behaviour, Isidori (1995). For a more
realistic approach, the presence of unmodeled disturbances
in the plant, that is, perturbations not generated by the
exosystem, could be considered, nevertheless, the corre-
sponding regulator equations cannot be solved since the
perturbation term appears explicitly and is unknown. An
alternative approach for dealing with this problem is to
combine the regulation theory with SM control techniques,
Utkin et al. (2009), which allows to decompose and sim-
plify the regulator design procedure and impose robustness
properties with respect to at least matched perturbations,
Draženović (1969), El-Ghezawi et al. (2007). The combi-
nation of these two techniques has been broadly studied in
the last two decades by several authors (see, among others,
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Jeong and Utkin (1999), Elmali and Olgac (1992), DZ et al.
(2001), Zheng and Zhong (2013), Govindaswamy et al.
(2014)), for minimum phase systems in general form. Few
works were addressed to non-minimum phase systems, see
for example, Jeong and Utkin (1999), Utkin and Utkin
(2014), Bonivento et al. (2001).

In Loukianov et al. (2018), a robust SM state-feedback
regulator is proposed for systems in general and Regular
form, which is able to compensate matched time-varying
perturbations, and using the equivalent control technique
Utkin et al. (2009), the autonomous nonlinear regulator
equation as in the classic regulation theory, can be used
for the SM dynamics. The error-feedback regulator is left
out of this work.

On the other hand, for a specific class of nonlinear sys-
tems, that includes electro-mechanical sub-actuated non-
minimum phase systems, the transformation to Regular
form eases the synthesis of the SM and the corresponding
regulator equations. Furthermore, it allows to perform the
analysis of the SM behaviour in an explicit form, since
to derive the SM dynamics, the equivalent control Utkin
et al. (2009) is not needed.

In this paper, the error feedback SM regulator problem
for nonlinear systems in Regular form subject to matched
unmodeled perturbations is formulated and the solution
existence conditions are derived using the regulator equa-
tion that correspond to the SM equation. The solution
to this equation is used to define the control error and
its dynamics, as well as a local center manifold on which
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the output error is zeroed. To estimate the unmeasured
control error and exosystem state variables, a nonlinear
Proportional-Integral (PI) observer, based on Beale and
Shafai (1988), is designed. Using the estimated control
errors, a sliding manifold is formulated, and a reaching
discontinuous control law is proposed. Additionally, a sta-
bility analysis of the complete closed-loop system is pre-
sented.

The rest of this work is organized as follows. The error
feedback SM regulator problem for nonlinear systems in
Regular form is presented in Section 2, along with the
conditions for the solution of the problem. A nonlinear
PI observer, sliding manifold, and discontinuous control
action are designed in Section 3; along with the stability
analysis of the closed-loop dynamics. To show the effective-
ness of the proposed method, the SM regulator is designed
for an electro-mechanical system, the so-called Pendubot
in Section 4. Finally, Section 5 concludes this work.

2. PROBLEM STATEMENT

Consider a time-varying nonlinear perturbed system de-
scribed by

ẋ = f(x) +B(x)u+D(x)w + ∆(x, t) (1)

e = h(x)− q(w) (2)

where x ∈ X ⊂ <n is the state of the system, u ∈ <m is
the control input, e ∈ <p represents the output tracking
error and ∆(x, t) comprises the perturbation due to plant
parameter variations, unmodeled dynamics and external
disturbance, rank B(x) = m; the exogenous signal w ∈
W ⊂ <q represents the modeled disturbance and desired
reference signal q(w) generated by the exosystem

ẇ = s(w). (3)

The control objective is to design an error feedback control
law such that a solution of the closed-loop system is locally
stable and the regulated output error e(t) (2), uniformly
asymptotically approaches zero or at least uniformly ulti-
mately bounded in presence of perturbation, ∆(x, t). This
problem is called Output Regulation Problem.

In the classical setup Isidori (1995), in absence of the
perturbation, that is, ∆(x, t) = 0, it has been shown that
the solvability of the Output Regulation Problem can be
stated in terms of the existence of a pair of mappings
x = π(w) and u = c(w) with π(0) = 0 and c(0) = 0
which solve the following Regulator Equation:

∂π(w)

∂w
s(w) = f(π(w)) +B(π(w))c(π(w)) +D(π(w))w

0 = h(π(w))− q(w).

and the classical control provided by a continuous error
feedback can stabilize the system (1) in the first approx-
imation ensuring the output error e(t) (2) decays to zero
as time tends to infinity.

In presence of ∆(x, t), the system (1) becomes time-
varying; therefore, it is assumed that there exist smooth
functions πs(w, t) and cs(w, t) with πs(0, t) = 0 and
cs(0, t) = 0 such that the following expression holds, Yang
and Huang (2012):

dπs(w, t)

dt
= f(w, t) +B(w, t)cs(w, t) +D(w, t)w + ∆(w, t)

0 = h(πs(w, t))− q(w).

It can be seen that these equations are impossible to solve
since ∆(π(w), t) is unmodeled and unknown. To overcome
this problem, in Loukianov et al. (2018), the SM technique
was used and a state feedback SM regulator was designed
under assumption that the state vectors x and w are
available for measurement.

In this paper, we consider a more realistic situation when
only the components of the error e are available for
measurement. Defining constant matrices A and B as

A =

[
∂f

∂x

]
(0)

B0 = B(0)

the following assumptions are introduced:

• A1. The pair A, B is stabilizable.

• A2. The matrix S =
[
∂s(w)
∂w

]
(0)

has all its eigenvalues

on the imaginary axis.
• A3. The perturbation ∆(x, t) satisfies the following

matching condition:

∆(x, t) = B(x)δ(x, t), δ ∈ <m. (4)

• A4. For a specific class of systems, namely, the
ones where the conditions of Frobenius’ theorem
are satisfied for the corresponding Pfaffian system,
Lukyanov and Utkin (1981), a local diffeomorphism
z = T (x) can be obtained in order to represent the
system (1)-(2) in Regular form, as

ż1 = f1(z1, z2) +D1(z1, z2)w (5)

ż2 = f2(z) +D2(z)w +B2(z)(u+ δ(z, t)) (6)

e = h(z1, z2)− q(w), (7)

where z ∈ Z ⊂ <n, z = [z1, z2]T , z1 ∈ Z1 ⊂ <n−m,
z2 ∈ Z2 ⊂ <m, and rank B2(z) = m.

The Error Feedback SM Regulator Problem can be defined
as finding a dynamic discontinuous controller

ξ̇ = η(ξ, u, e) (8)

u =

{
u+(ξ) if σ(ξ) > 0

u−(ξ) if σ(ξ) < 0
(9)

with ξ ∈ Ξ ⊂ <n, and the sliding manifold

σ(ξ) = 0, σ = [σ1, . . . , σm)]T (10)

such that the following conditions are satisfied:

• C1. Finite-time convergence of the closed-loop sys-
tem states to the sliding manifold σ(ξ) = 0.

• C2. Asymptotic stability of the SM dynamics in the
first approximation in absence of the perturbation.

• C3.
· A. For the case of ‖δ(z, t)‖ ≤ γ1, γ1 > 0, there are
b > 0, T0 > 0 and a neighborhood Z0 ⊂ Z×W×Θ
of the origin where

‖e(t)‖ ≤ b, ∀ t ≥ T0.
· B. For the case of ‖δ(z, t)‖ ≤ γ2‖x‖, γ2 > 0,

there is a neighborhood Z0 ⊂ Z ×W ×Θ of the
origin where

lim
t→∞

e(t) = 0.
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3. SOLUTION OF PROBLEM FOR NONLINEAR
SYSTEMS IN REGULAR FORM

In this section, a solution for the Error Feedback SM
Regulator problem for nonlinear systems in Regular form
(5)-(6) will be proposed. First, a control error dynamics is
defined, and then we propose an observer that will produce
the estimated states which are used to design a sliding
manifold.

3.1 Control error dynamics

Let us introduce the mappings zi = πi(w), i = 1, 2, so
we can define the control error or local center manifold,
Isidori (1995), as

ε1(z1, w) = 0 ε1 = z1 − π1(w) (11)

ε2(z2, w) = 0 ε2 = z2 − π2(w), (12)

From (5)-(6), the control error dynamics become

ε̇1 = f1(ε1, ε2, w) +D1(ε1, ε2, w)w − ∂π1(w)

∂w
s(w) (13)

ε̇2 = f2(ε, w) +D2(ε, w)w − ∂π2(w)

∂w
s(w)

+B2(ε, w)(u+ δ(ε, w, t))
(14)

e = h(ε1, ε2, w)− q(w). (15)

The linear approximation of (13)-(15) is presented as[
ε̇1
ε̇2
ẇ

]
=

[
A11 A12 H1

A21 A22 H2

0 0 S

][
ε1
ε2
w

]
+

[
0
B2

0

]
u+

[
φ1(ε, w)
φ2(ε, w)
φw(w)

]
(16)

e = [C1 C2 (C1Π1 + C2Π2 −Q)]

[
ε1
ε2
w

]
+ φe(ε, w)

(17)

where linear matrices A11, A12 were previously defined,

and A2i =
[
∂f2
∂zi

]
(0,0)

, Hi = Ai1Π1 + Ai2Π2 − ΠiS + Di,

Πi =
[
∂πi

∂w

]
(0)

, Di = Di(0), Ci =
[
∂h
∂zi

]
(0,0)

, for i = 1, 2;

and B2 = B2(0), Q =
[
∂q
∂w

]
(0)

. Here, φ1, φ2, φw, and

φe contain nonlinear terms and they vanish at the origin,
along with their first derivatives.

Let us define the following matrices:

Ā =

[
A11 A12 H1

A21 A22 H2

0 0 S

]
(18)

C̄ = [C1 C2 (C1Π1 + C2Π2 −Q)] , (19)

therefore, the following assumption can be stated:

• A5. The pair Ā, C̄ is detectable.

3.2 SM dynamics

With the purpose of designing a discontinuous control law,
the sliding manifold is formulated as

σ = ε2 + σ0(ε1). (20)

When σ = 0, the state variable ε2 can be seen as a virtual
control for equation (13), and from (20)

ε2 = −σ0(ε1). (21)

Therefore, the reduced-order SM dynamics can be ob-
tained by introducing (21) in (13), resulting in

ε̇1 = f1(ε1,−σ0(ε1), w) +D1(ε1,−σ0(ε1), w)

− ∂π1(w)

∂w
s(w).

(22)

The linear representation of the SM dynamics can be
obtained by using the previously defined linear matrices

ε̇1 = (A11 −A12Cs)ε1 +H1w + φ1(ε1, w), (23)

where Cs =
[
∂σ0

∂ε1

]
(0)

.

3.3 Proportional-Integral Observer

Since the sliding manifold (20) uses the umnmeasured
control error variables, the following observer is proposed
to design the system (8) taking ξ = [ε̂1, ε̂2, ŵ, ξ1]T :

 ˙̂ε1
˙̂ε2
˙̂w

 =

 f1(ε̂1, ε̂2, ŵ) +D1(ε̂1, ε̂2, ŵ)ŵ − ∂π1(ŵ)

∂ŵ
s(ŵ)

f2(ε̂, ŵ) +D2(ε̂, ŵ)ŵ − ∂π2(ŵ)
∂ŵ s(ŵ) +B2(ε̂, ŵ)u

s(ŵ)


+ L1(e− ê) + L2ξ1

(24)

ξ̇1 = e− ê (25)

where ξ1 =
∫

(e − ê)dt; ε̂1, ε̂2, and ŵ are the estimates
of ε1, ε2 and w, respectively, ê = h(ε̂1, ε̂2, ŵ) − q(ŵ),
and L1 = [L11, L12, L13]T , L2 = [L21, L22, L23]T are the
observer gain matrices.

Using (13)-(14) with its linearization (16) and (24) aug-
mented with (25), the observer error dynamics result in

˙̃ε1
˙̃ε2
˙̃w

ξ̇1

 = R

ε̃1ε̃2w̃
ξ1

+ δ1(ε̃, w̃, t), (26)

with [ε̃1, ε̃2, w̃]
T

= [ε1 − ε̂1, ε2 − ε̂2, w − ŵ]
T

, and

R =

[
Ā− L1C̄ −L2

C̄ 0

]

δ1(ε̃, w̃, t) =

 φ1(ε̃, w̃) + L11φe(ε̃, w̃)
φ2(ε̃, w̃) + L12φe(ε̃, w̃) +B2δ(ε, w, t)

φw(ε̃, w̃) + L13φe(ε̃, w̃)
φe(ε̃, w̃)

 .
3.4 Conditions of existence of solution

By setting the sliding manifold with the estimated states

σ = ε̂2 + Csε̂1, (27)

where Cs ∈ <n−m is a control gain matrix, the solvability
conditions can be established in the following proposition:

Proposition 1. Under A1-A5, if there exist Ck(k ≥ 2)
mappings z1 = π1(w) and z2 = π2(w), with π1(0) = 0
and π2(0) = 0, defined in a neighborhood W of the origin,
satisfying the following conditions:

f1(π1(w), π2(w)) + d1(π1(w), π2(w))w =
∂π1(w)

∂w
s(w)

(28)

h(π1(w), π2(w))− q(w) = 0 (29)
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then, the Error Feedback SM Regulator problem for sys-
tems in Regular form (5)-(6), as defined through conditions
C1 - C3, is solvable.

Proof. Selecting the discontinuous control in (9) as a
common signum function

u = −MB−12 (ε̂, ŵ) sign(σ(ε̂)),M > 0 (30)

it can be seen that for M > ‖B2(ε̂, ŵ)ueq(ε̂, ŵ)‖, where
ueq(ε̂, ŵ) is calculated from σ̇ = 0, ensures the finite-time
convergence of the closed-loop system (13)-(14) with (30)
to the sliding manifold σ = 0, satisfying condition C1.

The sliding manifold (27) can be expressed in terms of real
states ε and observation error states ε̃ as

σ = ε2 − ε̃2 + Cs(ε1 − ε̃1).

Once sliding mode occurs, that is σ = 0, then

ε2 = −Csε1 + ε̃2 + Csε̃1,

and from (22), the SM dynamics become

ε̇1 = f1(ε1, (−Csε1 + ε̃2 + Csε̃1, w))− ∂π1(w)

∂w
s(w)

+D1(ε1, (−Csε1 + ε̃2 + Csε̃1, w))w.
(31)

Thus, the following linear approximation of the SM dy-
namics is presented

ε̇1 = (A11 −A12Cs)ε1 +H1w + R̃1 + φ(ε1, w), (32)

where R̃1 = A12(ε̃2 + Csε̃1).

Rearranging equations (26), (32), and (3) the closed-loop
system motion on the manifold σ = 0 is described by

ε̇1 = (A11 −A12Cs)ε1 +H1w − R̃1 + φ1(ε1, w) (33)
˙̃ε1
˙̃ε2
˙̃w

ξ̇1

 = R

ε̃1ε̃2w̃
ξ1

+ δ1(ε̃, w̃, t) (34)

ẇ = Sw + φw(w) (35)

e = h(ε1, ε2, w)− q(w) (36)

In the absence of the perturbation ∆(x, t), the term
δ1(ε̃, w̃) in (34) vanishes at the origin, and under assump-
tion A3, matrices L1 and L2 can be chosen in order to
make matrix R Hurwitz, thus making the system (34)

locally asymptotically stable. Moreover, the term R̃1 in
(33) will vanish as well, and if condition (28) is satisfied,
then

f1(π1(w), π2(w)) + d1(π1(w), π2(w))w − ∂π1(w)

∂w
s(w) =

(A11Π1 +A12Π2 −Π1S +D1)w + φ1(0, w) = 0.
(37)

Under assumption A1, matrix (A11−A12Cs) is Hurwitz by
selecting Cs accordingly, and the system (33)-(35) admits a
local center manifold given by z = T (π(w)), thus achieving
asymptotic stability of the system (33) origin, fulfilling
condition C2.

Defining the vector χ = [ε1 ε̃1 ε̃2 w̃ ξ1]
T

and considering
(37), the SM dynamics (33)-(35) can be represented as

χ̇ = Aχ+ δ̄(ε1, w, t) + Φ(ε1, ε̃, w̃) (38)

where

A =

[
A11 −A12Cs ?

0 R

]

δ̄(ε1, w, t) =


0 0

B2δ(ε1, w, t)
0
0




Φ(ε1, w, ε̃, w̃) =


φ1(ε1, w)

φ1(ε̃, w̃) + L11φe(ε̃, w̃)
φ2(ε̃, w̃) + L12φe(ε̃, w̃)
φw(ε̃, w̃) + L13φe(ε̃, w̃)

φe(ε̃, w̃)

 .
From C3.A, it follows that there are γ3 > 0 and γ4 > 0
such that

‖δ̄(ε1, w, t)‖ ≤ γ3, γ3 > 0 (39)

‖Φ(ε1, w, ε̃, w̃)‖ ≤ γ4‖χ‖, γ4 > 0 (40)

in some admissible region Ωc.

Since matrices (A11 − A12Cs) and R are Hurwitz, matrix
A is Hurwitz as well; thus, the Lyapunov function V (χ) =
χTPχ can be proposed with P > 0 the solution of the
Lyapunov equation ATP + PA = −Q for Q > 0.

Taking the derivative of V (χ) along the trajectories of (38)
and using (39) - (40), we obtain

V̇ (χ, t) ≤ −(λmin(Q)− 2λmax(P )γ4)‖χ‖2

+ 2γ3λmax(P )‖χ‖.
Suppose now λmin(Q)− 2λmax(P )γ4 = α, α > 0, then

V̇ (χ, t) ≤ −α‖χ‖2 + 2γ3λmax(P )‖χ‖
≤ −(1− θ)α‖χ‖2 > 0

for ‖χ‖ ≥ 2γ3λmax(P )
αθ with 0 < θ < 1. Thus, the solution

of (38) is locally uniformly ultimately bounded with an
ultimate bound

b =
2γ3λmax(P )

αθ

√
λmax(P )

λmin(P )

fulfilling condition C3.

4. EXAMPLE

The Pendubot is an under-actuated electromechanical,
non-minimum phase nonlinear system, ideal to evaluate
the effectiveness of the proposed method. The mathemat-
ical model of this system in regular form is presented as

ż1 = z3 − f11(z)

ż2 = z4
ż3 = f31(z)

ż4 = f41(z) + b4(z2)(u+ δ(z, t)) (41)

y = z2 (42)

where the expressions f11(z) = D22

D12(z2)
z4, f31(z) =

b3(z2)p1(z) + D22

D12(z2)
b4(z2)p2(z) + D22

D12(z2)
2C3(z2, z4), and

f41(z) = b4(z2)p2(z). The terms p1(z), p2(z), D11(z2),
D12(z2), C3(z2, z4), and D22, depend on operations be-
tween plant parameters and elements of the state, along-
side with b3(z2) = D22

D11(z2)D22−D2
12(z2)

, and b4(z2) =

− D12(z2)
D11(z2)D22−D2

12(z2)
.
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The reference signal to be tracked, q(w) = w2 will be
generated by the exosystem

ẇ =

[
0 α
−α 0

] [
w1

w2

]
,

thus, the tracking error becomes e = z2 − w2.

Defining the control error as εi = zi − πi(w), i = 1, ..., 4,
the control error dynamics are described by

ε̇1 = ε3 + π3(w)− f11(ε+ π(w))− ∂π1
∂w

s(w)

ε̇2 = ε4 + π4(w)− ∂π2
∂w

s(w)

ε̇3 = f31(ε+ π(w))− ∂π3
∂w

s(w)

ε̇4 = f41(ε+ π(w)) + b4(ε2, w)(u+ δ(ε, w, t))

− ∂π4
∂w

s(w)
(43)

where π(w) = [π1(w), . . . , π4(w)]T , and ε = [ε1, . . . , ε4]T .

From Theorem 1 and (43), the corresponding Regulator
Equations are given by

∂π1
∂w

s(w) = π3(w)− f11(π(w)) (44)

∂π2
∂w

s(w) = π4(w) (45)

∂π3
∂w

s(w) = f31(π(w)) (46)

0 = π2(w)− w2. (47)

From (47) and (45) it follows that π2(w) = w2, and
π4(w) = −αw1. Since the solution of π1(w), and π3(w),
involves solving partial differential equations; we take a
simpler approach by proposing a polynomial approxima-
tion for π1(w) as

π1(w) = a0 + a1w1 + a2w2 + a3w1w2 + a4w
2
1 + a5w

2
2+

a6w1w
2
2 + a7w

2
1w2 + a8w

3
1 + a9w

3
2 +O4(‖w‖),

and from (44),

π3(w) =
∂π1
∂w

s(w)− D22

D12(w2)
αw1. (48)

The values for a0, . . . , a9 can be found by assigning a value
to α and performing a Taylor series expansion in both sides
of equation (46), thus leaving a set of algebraic equations
to solve.

From (24)-(25), the PI Observer for the Pendubot system
has the following form


˙̂ε1
˙̂ε2
˙̂ε3
˙̂ε4
˙̂w

 =



ε̂3 + π3(ŵ)− f11(ε̂+ π(ŵ))− ∂π1
∂ŵ

s(ŵ)

ε̂4 + π4(ŵ) + αŵ1

f31(ε̂+ π(ŵ))− ∂π3
∂ŵ

s(ŵ)

f41(ε̂+ π(ŵ)) + b4u−
∂π4
∂ŵ

s(ŵ)

αŵ2

−αŵ1


+ L1(e− ê) + L2ξ

ξ̇ = e− ê,
where e = z2 − w2 = ε2, and ê = ε̂2.

Fig. 1. Output tracking signal z2 (solid blue), and reference
w2 (dotted gray).

With the estimation of the states defined, the sliding
manifold can be designed as

σ = ε̂4 + Cs[ε̂1, ε̂2, ε̂3]T , (49)

and the discontinuous control is selected as in (30).

4.1 Numerical Evaluation

Using Table 1, the linear matrices A11, A12, are nu-
merically evaluated. The matrix Cs is computed using
an LQR algorithm aiming to obtain a feedback law
that minimizes a cost functional, thus obtaining Cs =
[49.64, 48.64, 8.0203]T . By consequence, the matrix (A11−
A12Cs) has the eigenvalues (−0.99,−6.21 + 0.44i,−6.21−
0.44i).

The PI Observer gains, L1 and L2, are computed as
in Beale and Shafai (1988), obtaining L1 = (1 ×
104)[−1.4097, 0.0260,−8.8378, 1.9860, 0.5930,−0.4517],
L2 = (1 × 104)[−0.0386, 0.0100,−1.6190,−0.0186,
0.6034,−0.0168], which ensures the matrix R has the
eigenvalues (−150,−70,−18,−13,−7,−2.5,−2).

Setting α = 1.5, the following values for the coefficients
of the regulator equations were found: a0 = 1.57, a1 =
−0.008, a2 − 0.98, a3 = a4 = a5 = 0, a6 = −0.57 × 10−4,
a7 = 0.01, a8 = −2.57× 10−5, a9 = −0.007.

In order to test the efficiency of the proposed method,
a numerical simulation was implemented, and the plant
parametrs values from Table (1) were used along with the
following initial conditions:

z1(0) = 1.57rad, z2(0) = z3(0) = z4(0) = 0,

w1(0) = w2(0) =
1√
2

0.35.

The external perturbation element in (41) is considered
as δ(z, t) = 0.0001 sin (0.1t) and is present from t > 7.

Link 1 Link 2

Mass (kg) 0.0551 0.0237

Length (m) 0.0825 0.2197

Center of mass distance (m) 0.0523 0.0799

Moment of inertia (kg m2) 6.272×10−5 1.759×10−4

Friction coefficient (kg m2s−1) 5.5286×10−4 9.8895×10−5

Table 1. Nominal values for parameters
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Fig. 2. a) Observation error. b) Zoomed figure

Fig. 1 shows the output of the Pendubot z2, tracking
the desired reference π2(w) = w2. At t = 7, a small
transient response can be appreciated due to the effect
of the perturbation, however, the proposed scheme is
robust enough to compensate its effect. In Fig. 2 the
boundedness of the observation error is shown, whereas
in Fig. 3 the discontinuous control action appears, along
with the equivalent control, depicted only for illustration
purposes. It can be seen that the equivalent control has a
slight offset from the origin line, which can be interpreted
as a consequence of the switching control law that enforces
a sliding motion on the surface σ(ε̂) = 0, and since the
observation error is not zero, σ(ε̂) 6= σ(ε).

5. CONCLUSION

The Error Feedback SM Regulator problem for nonlinear
systems in regular form with unmodeled external matched
perturbations was analyzed, and conditions for existence of
solution were derived. It is worth to note that the stability
analysis shown the explicit bound of the solution, which is
proportional to the bound of the external perturbation.
Using a nonlinear PI observer, a sliding manifold was
proposed that used the estimated states. The effectiveness

Fig. 3. a) SM control signal u(t). b) Equivalent control
ueq(t).

of the proposed method is demonstrated by the application
of the regulator to the Pendubot system.
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