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Abstract: The output tracking problem for a class of sampled-data nonlinear systems exposed
in Nonlinear Block Controllable (NBC) form is faced. This paper considers both matched
and unmatched perturbations. To formulate a desired sliding manifold on which the impact
of unmatched perturbation is attenuated, the Block Control technique combined with the
perturbation estimation, is implemented. A discrete-time sliding mode non-switching controller
is synthesized such that the system state is driven toward a vicinity of the designed sliding
manifold and stays there for all sampled time instants, avoiding chattering and reducing
the matched perturbation effect. The effectiveness of the proposed technique is confirmed by
simulation.
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1. INTRODUCTION

Since modern control systems are implemented by compu-
ters, the stabilisation and output tracking control design
for sampled-data systems remain as important topics of
the Sliding Mode (SM) control theory (Utkin et al., 2009).

The main attention has been payed to reaching control
design and numerous significant results have been obtained
in Furuta (1990); Weibing Gao et al. (1995); Wang et al.
(2009). In the proposed SM reaching laws, the switching
term was preserved from continuous time SM control to
suppress the effect of matched bounded perturbations.
However, this term can produce undesired numerical cha-
ttering phenomenon in the vicinity of the sliding manifold.
This effect was suppressed by implicit Euler discretization
of the discontinuous term in Huber et al. (2016) as well
by the time variation of the discontinuous term parameter
(Chakrabarty and Bandyopadhyay, 2015) or by increasing
the relative degree and correspondingly the order of SM
(Levant and Livne, 2015; Koch et al., 2016).

To avoid the chattering problem, non-switching reaching
controllers has been proposed in Golo and Milosavlje-
vic (2000); Bartoszewicz and Latosinski (2016), including
Equivalent-Control-Based (Utkin et al., 2009) and adap-
tive (Bartolini et al., 1995; Bartoszewicz and Adamiak,
2018) SM controllers. However, as a result of the lack of
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perturbation for calculating the equivalent control, sliding
manifold reaches a boundary layer O(τ) with τ as the
sample period. In order to mitigate this obstacle, in some
researches as Su et al. (2000); Abidi et al. (2007); Sharma
and Janardhanan (2019); Zapata-Zuluaga and Loukianov
(Dec, 2018), an estimator of perturbation using its pre-
vious step has been designed, and an accuracy of O(τ2)
in the boundary layer of the sliding manifold has been
achieved.

On the other hand, the design of the desired sliding mani-
fold is of great interest. Basely, a classical linear sliding
manifold has been synthesized for linear time-invariant
(LTI) systems in Utkin et al. (2009); Furuta (1990), and
those with matched perturbation in Wang et al. (2009);
Huber et al. (2016); Chakrabarty and Bandyopadhyay
(2015); Koch et al. (2016). Using multirate ouput feedback
technique, a nonlinear sliding manifold has been formu-
lated in Hou and Zhang (2018), again for LTI systems.

In practice, control plants dynamics are nonlinear and can
be affected by both matched and unmatched perturba-
tions, and the unmatched part affects the SM dynamics.
Therefore, in this case, the central issue is to guarantee
the precision bound for the state regulation or smallness
of the tracking error. This problem has been analyzed in
Abidi et al. (2007), however, again for LTI systems.

This work deals with the aforementioned approach, we
consider a SM output tracking problem for a class of non-
linear systems presented in Nonlinear Block Controllable
(NBC) form (Loukianov, 2002), with both matched and
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unmatched unmodeled perturbations. The considered class
is quite wide and includes, for example, electromechanical
systems (robot manipulators, quadrotors, electric motors
and etc.). The principal aim is, first, using Block Control
(BC) feedback linearization (FL) technique combined with
the perturbation estimation, to design a desired nonlinear
sliding manifold on which the system motion satisfies a
specified transient response, and the effect of unmatched
perturbation on the output tracking error is reduced.
Then, a discrete-time SM controller, based on the equi-
valent control combined with the perturbation estimation,
is formulated such that the system state is driven into a
smaller bounding layer of the designed sliding manifold
and stays there for all sampled time instants, avoiding
chattering and reducing the matched perturbation effect.

It is worth to note that this work can be considered as
a continuation and improvement of the result obtained
in the work Zapata-Zuluaga and Loukianov (Dec, 2018)
where only part of the nominal dynamics is linearized
and, and the rest part is considered as a perturbation.
It the present work, the complete nominal dynamics are
canceled and linearized; as result, the region of attraction
can be incremented. Moreover, in the present work, it is
considered a general structure of the NBC form when the
dimensions of the blocks are different, i.e., ni ≤ ni−1, as in
the considered example, permanent magnet synchronous
motor control design.

2. PROBLEM FORMULATION

Consider a nonlinear uncertain system

ẋ = q(x) +G(x)u+ g(x, t)

y = h(x),
(1)

where x ∈ Rn is the state vector, y ∈ Rp is the output
vector, u ∈ Rm is the control vector, rank(G(x)) = m for
all x ∈ Rn and t ≥ 0, with p ≤ m; the unknown mapping
g(x, t) characterizes external disturbances and parameter
variations.

Assume that the system (1) can be presented (possible,
under an appropriate nonlinear transformation) in the
following NBC form (Loukianov, 2002):

ẋi = qi(x̄i) +Gi(x̄i)x̄i+1 + gi(x, t)

ẋr = qr(x) +Gr(x)u+ gr(x, t)

y = x1, i = 1, . . . , r − 1,

(2)

where x =
[
x>1 . . . , x

>
r

]>
, xj ∈ Rnj , j = 1, . . . , r;

x̄1 = x1, x̄i =
[
x>1 , . . . , x

>
i

]>
, i = 2, . . . , r − 1. The indices

n1, . . . , nr defines the structure of system (2) and satisfies

n1 ≤ n2 ≤ . . . ≤ nr ≤ m,
r∑
j=1

nj = n, p = n1. (3)

The matrix Gj(x̄j) in each block of (2) has full rank,

rank(Gj(x̄j)) = nj ∀x ∈ Rn, j = 1, ..., r.

Now, applying explicit Euler method to the system (2),
the sampled-data system becomes

xi,k+1 = fi(x̄i,k) +Bi(x̄i,k)x̄i+1,k + di(xk, k)

xr,k+1 = fr(xk) +Br(xk)uk + dr(xk, k)
(4)

yk = x1,k, i = 1, ..., r − 1 (5)

where fi(x̄i,k) = xi,k + τqi(x̄i,k), di(xk, k) = τgi(xk, k)
and Bi(x̄i,k) = τGi(x̄i,k), i = 1, ..., r, with k ∈ Z+ ∪ {0}
denotes the discrete time where Z+ is the set of the
positive integers and xk, x1,k, . . . , xr,k, are the discrete
approximation of x(t), x1(t), . . . , xr(t), respectively.

The control objective is to force the output yk (5) to track

a reference signal yrefk , reducing the effects of unmatched
di(x̄i,k, k), i = 1, ..., r − 1, and matched dr(xk, k) pertur-
bations.

This will be achieved in presence of constraint on the input

‖u(t)‖ ≤ umax, umax > 0. (6)

The following assumptions are considered hereinafter.

Assumption 1. All the state variables are available for the
measurement.

Assumption 2. The matrix Bi (x̄i,k+1) can be decomposed
into two parts: the nominal part B̄i (x̄i+1,k) and unknown
part ∆B̄i (xk, k), namely

B̄i(x̄i,k+1) = B̄i(x̄i+1,k) + ∆B̄i(xk, k) (7)

with B̄i(x̄i,k) = B̄i−1(x̄i,k)Bi(x̄i,k), k, i = 1, . . . , r − 1.

Remark 1. Assumption 2 means that in the expression

B̄i(x̄i,k+1) = B̄i(φ(x̄i+1,k + di(xk, k)),

φ(x̄i+1,k) = fi(x̄i,k) +Bi(x̄i,k)x̄i+1,k

the nominal part can be distinguished, and the rest part is
considered as a disturbance. This is possible, for example,
in the case of system parameter variations and additive
disturbances.

3. BLOCK TRANSFORMATION

In this section, the concept of Block Control method,
adopted for discrete-time setup, is used to transform the
original system to a desired form. The relation (3) means
ni = ni+1 or ni < ni+1. To include in the design procedure
both cases, we consider the following structure:

n1 = n2 < n3 < . . . < nr = m. (8)

Taking in the account the structure (8), the following
transformation is introduced:

z1,k = x1,k − α1,k := ψ1(x1,k)

z2,k = B1(x̄1,k)x2,k − α2,k := ψ2(x̄2,k)

zi,k = B̄i−1(x̄i−1,k)xi,k − αi,k := ψi(x̄i,k)

i = 3, ..., r

(9)

where zi,k is (ni × 1) vector, i = 1, ..., r;

B̃i =

[
B̄i
Ei,1

]
∈ Rni×ni , B̄i = (B̄i−1Bi) ∈ Rni−1×ni ,

Ei,1 = [0 Ini−ni−1 ] ∈ R(ni−ni−1)×ni , i = 3, ..., r − 1;

α1,k = yrefk , α2,k = K1z1,k − f1(x1,k)− d̄1,k−1

αi+1,k =

[
Kizi,k − f̄i(x̄i,k)− d̄i,k−1

0

]
, i = 2, ..., r − 1.

with the design matrices Ki, i = 1, ..., r − 1.

Theorem 1. Under Assumption 2, using the transforma-
tion (9), the system (4) with the structure (3) can be
presented in the following desired form:

z1,k+1 = K1z1,k + z2,k + δ1,k
zi,k+1 = Kizi,k + Ei,1zi+1,k + δi,k, i = 2, ..., r − 1

zr,k+1 = f̄r(zk) + B̄r(zk)uk + d̄r,k

(10)
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where zk = [z>1,k, . . . , z
>
r,k]>, δj,k = d̄j,k − d̄j,k−1 for

j = 1, . . . , r − 1.

The proof is given in Appendix.

It is worth to note that the original systems (4) is repre-
sented in the control error system (10) where the nominal
part is completely linearized by the transformation (9),
and the perturbation unmatched terms δi,k, i = 1, ..., r−1
are of the order O(τ2).

4. DISCRETE-TIME SLIDING MODE CONTROL

To generate sliding mode in (10), the sliding variable is
chosen as Loukianov (2002) σk = zr,k and its dynamics
can be obtained from (10) as

σk+1 = f̄r,k + B̄r,kuk + d̄r,k (11)

with f̄r,k = f̄r(zk), B̄r,k = B̄r(zk).

To induce chattering-free sliding mode on σk = 0 reducing
the matched perturbation d̄r,k effect and considering the
control constraint (6), the control uk is selected of the form

uk =

{
ũeq,k for ‖ũeq,k‖ ≤ umax

umax
ũeq,k

‖ũeq,k‖ for ‖ũeq,k‖ > umax.
(12)

with
ũeq,k = −B̄†r,k

(
f̄r,k + d̄r,k−1

)
(13)

where the perturbation d̄r,k−1 can be obtained from (11)
of the form d̄r,k−1 = σk − f̄r,k−1− B̄r,k−1uk−1 resulting in

ũeq,k = us,k + B̄†r,k
[
−σk + f̄r,k−1 + B̄r,k−1ũeq,k−1

]
us,k = −B̄†r,kf̄r,k.

(14)

Applying the control (14) to (11), the closed-loop system
becomes

σk+1 = δr,k, δr,k = d̄r,k − d̄r,k−1. (15)

To analyze stability of closed-loop system (11)-(12) motion
over the manifold σk = 0, let us represent the structure
of system (11) and control (13), by imposing the term
σk + ψr,k = 0, ψr,k = ψr(xk)|xk=ψ

−1
r (zk)

, into

σk+1 = σk + ψ̄r,k + B̄r,kuk + d̄r,k (16)

ũeq,k = −B̄†r,kσk − B̄
†
r,k

(
ψ̄r,k + d̄r,k−1

)
, (17)

where ψ̄r,k = f̄r,k + ψr,k.

For the case ‖ũeq,k‖ > umax, it is assumed that the
available control is sufficient to stabilize the system, i.e.

umax > sup
k

[‖B̄†r,k‖‖ψ̄r,k + d̄r,k‖]. (18)

Substituting the control (12) with (17) in (16) yields

σk+1 =σk + ψ̄r,k + d̄r,k −
umax(σk + ψ̄r,k + d̄r,k−1)

‖B̄†r,k(σk + ψ̄r,k + d̄r,k−1)‖

=(σk + ψ̄r,k + d̄r,k)

(
1− umax

‖B̄†r,k(σk + ψ̄r,k + d̄r,k−1)‖

)

+
umaxδr,k

‖B̄†r,kσk + ψ̄r,k + d̄r,k−1‖
.

Thus,

‖σk+1‖ =‖σk + ψ̄r,k + d̄r,k−1 + δr,k‖×(
1− umax

‖B̄†r,k(σk + ψ̄r,k + d̄r,k−1)‖

)

+
umaxδr,k

‖B̄†r,k(σk + ψ̄r,k + d̄r,k−1)‖

=‖σk + ψ̄r,k + d̄r,k‖+
umax‖δr,k‖

‖B̄†r,kσk + ψ̄r,k + d̄r,k−1‖

− umax‖σk + ψ̄r,k + d̄r,k−1‖+ ‖δr,k‖
‖B̄†r,k(σk + ψ̄r,k + d̄r,k−1)‖

≤‖σk‖+ ‖ψ̄r,k + d̄r,k‖ −
umax

‖B̄†r,k‖
< ‖σk‖

(19)

due to (18). Thus, as ‖σk‖ decreases monotonically, ũeq,k
(17) does too, and there will be a time instant k̄ such that
‖ũeq,k‖ ≤ umax, for k > k̄. At this time, the equivalent
control ũeq,k (13) or (14) is applied, bringing the closed-
loop system trajectory in an O

(
τ2
)
-neighborhood of the

sliding manifold (Su et al., 2000), i.e.

‖σk‖| = O(τ2), k > k̄

achieving quasi-sliding mode.

Remark 2. Stability analysis (19) can be considered as an
extension for the perturbed systems of the results obtained
in Bartolini et al. (1995) for the nominal case.

5. SLIDING MODE DYNAMICS

Now, SM dynamics will be investigated, i.e. when the
closed-loop system motion appears in the O(τ2) vicinity
of the manifold σk = zr,k = 0. This motion is governed by
the reduced SM equation derived from (10) and (15) as

z1,k+1 = K1z1,k + z2,k + δ1,k
zi,k+1 = Kizi,k + Ei,1zi+1,k + δi,k, i = 2, ..., r − 1

zr−1,k+1 = Kr−1zr−1,k + Er−1,1σk + δr−1,k

or in compact form

z̄r−1,k+1 = Asz̄r−1,k + δk (20)

where z̄r−1,k =
[
z>1,k z

>
2,k . . . z

>
r−1,k

]>
and

Ia = subdiag(In1
, . . . , Inr−1

),

As = diag(K1, . . . ,Kr−1) + Ia,

δk =
[
δ>1,k, . . . , δ

>
i,k, . . . , (δ

>
r−1,k + σk)

]>
.

Then, a solution of the system (20) is defined by

z̄r−1,k = Aks z̄r−1,0 +

k−1∑
i=1

Aisδk−i−1.

Since As is a Schur matrix, the steady state solution can
be estimated by

‖z̄r−1,k‖ ≤
k−1∑
i=1

‖Ais‖‖δk−i−1‖. (21)

From δi,k = O(τ2), i = 1, ..., r − 1 and ‖σk‖ = O(τ2) it
follows δk = O(τ2). Selecting the poles of order O(1) of
the matrix As, yields

‖z̄r−1,k‖ = O(1)O(τ2) = O(τ2), (22)
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resulting in the tracking error z1,k (9) ultimate bound

‖z1,k‖ = O(τ2). (23)

The obtained results are formulated in the following the-
orem.

Theorem 2. Consider the robust tracking problem for the
system (4) with the output (5) and the constraint control
input (6). Let Assumption 2 with condition (18) are
satisfied. Then, a solution of the system (4) closed by the
control (12) with (14) is ultimately exponentially bounded
by (22), and the tracking error z1,k defined in (9) is
ultimately bounded by (23).

6. SIMULATION RESULTS

To show the effectiveness of the proposed approach, the
permanent magnet synchronous motor (PMSM) control
design problem is considered, and a simulation is carried
out. The mathematical model of PMSM in the rotor
reference frame is presented as follows (Zhang et al., 2019):

θ̇ = npω

ω̇ =
1

J

(
3

2
npλf iq −Bvω − TL

)
i̇d =

1

L
(Vd −Rid + Lnpωiq)

i̇q =
1

L
(Vq −Riq − Lnpωid − λfnpω) ,

(24)

where ω is the rotor angular velocity; id and iq are d-
and q-axis stator currents, respectively; Vd and Vq are
d- and q-axis stator voltages, respectively; TL is the load
torque; np is the number of poles-pairs, equals 6; R is the
stator resistance, equals 6.9Ω; L is the stator inductance,
equals 21mH; λf is the magnetic flux linkage, equals
0.3342Wb; J is the moment of inertia, equals 0.002kgm2;
Bv is the frictional coefficient, equals 0.0014N m s/rad. The
control objective is to realize tracking of a given desired
rotor position reference signal α1 = sin(4πt)rad under an
unknown load torque, assumed as

TL =


0N m 0 ≤ t ≤ 0.5

0.5 sin(20πt) + 0.5N m 0.5 < t ≤ 1

0.5N m other case,

(25)

Applying the explicit Euler’s method to discretize the
system (24), yields 1

x1,k+1 = x1,k + b1x2,k
x2,k+1 = x2,k + a2x2,k +B2x3,k + d2,k
x3,k+1 = x3,k + τf3(xk) + τB3uk + d3,k

yk = x1,k

(26)

with b1 = τnp, d2,k = ∆a2x2,k + ∆B2x3,k − hTL

J , d3,k =
∆f3,k+∆B3uk and: where ∆a2, ∆B2, ∆f3,k and ∆B3, are
parametric perturbations in a2, B2, f3(xk) and B3, respec-
tively. τ = 1ms is the sampling time, x1,k = θk, x2,k = ωk
and x3,k = [id,k iq,k]

>
are the discrete approximation of

θ(t), ω(t) and [id(t) iq(t)]
>

, respectively. Note that the
blocks in this example fulfill (8), i.e. n1 = n2 = 1 < n3 =
m = 2, where ni = dim(xi), for i = 1, 2, 3

1 Due to space limitations, the expressions a2, B2, f3(xk) and B3

are omitted. For more details of those functions see Zhang et al.
(2019)
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Fig. 1. Rotor position response θ(t) with proposed con-
troller.
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Fig. 2. Rotor angular velocity response ω(t) with proposed
controller.
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Fig. 3. (a) Sliding variable σk, (b) zoom of the same graphic
on (a).
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Fig. 4. Control input Vd applied to the system.

Parametric variations are considered in J and L as follows:
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Fig. 5. Control input Vq applied to the system.

J =


Jn t ≤ 0.1

−5Jn(t− 0.1) + Jn 0.1 < t < 0.2

0.9Jn t ≥ 0.2

L =


Ln t ≤ 0.3

−Ln(t− 0.3) + Ln 0.3 < t < 0.4

0.5Ln t ≥ 0.4

,

(27)

where Jn and Ln are the nominal values of J and L
respectively. The control gains (see (20)) are settled as
K1 = 0.8 and K2 = 0.3, and the control input is saturated
at umax = 240V. Initial conditions of the system are

adjusted in x0 = [0 0 0 0]
>

. Fig. 1 shows the rotor position
response and the reference signal when the proposed
controller is implemented. It can be seen that the controller
drives the system output to track the desired value and it
remains in such value despite the external perturbation TL
(25) and parametric variations (27). Respectively, velocity
response ω(t) is depicted in Fig. 2. Sliding variable σk =
z3,k response is presented in Fig. 3. It can be seen that it
remains in a boundary layer with thickness O(τ2); this
result agrees with the theoretical design. Finally, Figs.
4-5 illustrate the control applied to the system, where a
continuous signal is obtained, and it stays in the control
constraint (6) ‖uk‖ ≤ 240V.

7. CONCLUSIONS

In this paper, based on SM control and perturbance
estimation, a robust discrete-time controller was designed
for a nonlinear system presented in NBC form with both
matched and unmatched perturbations. The proposed
controller enables to achieve the O(τ2) order precision
of the tracking error. The effectiveness of the proposed
control scheme is confirmed by application to PMSM
system output tracking control.
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Appendix A. PROOF OF THEOREM 1

To prove the theorem, a constructive step-by-step trans-
formation to the new system (10) will be formulated.

Step 1. On the first step, having the output tracking error
z1,k = x1,k − α1,k, the first block of (4) is represented as

z1,k+1 = f1(x1,k) +B1(x1,k)x2,k + d̄1,k (A.1)

where d̄1,k = d1(xk, k)− α1,k+1.

In this case, n1 = n2, the n2 × 1 vector x2,k , considered
in the system (A.1) as a virtual control, is chosen as

x2,k = −B−11 (x1,k)f1(x1,k)+B−11 (x1,k)[K1z1,k+z2,k−d̄1,k−1]
(A.2)

with K1 a Schur matrix. From (A.2), the new variable z2,k
is expressed as

z2,k = ψ2(x̄2,k), ψ2(x̄2,k) = B1(x1,k)x2,k − α2,k,

α2,k = K1z1,k − f1(x1,k, k)− d̄1,k−1
(A.3)

resulting in first transformed block (10), namely,

z1,k+1 = K1z1,k + z2,k + δ1,k, δ1,k = d̄1,k − d̄1,k−1 (A.4)

The term d̄1,k−1 is obtained from (A.1) as

d̄1,k−1 = z1,k − f1(x1,k−1)−B1(x1,k−1)x2,k−1. (A.5)

Step 2. At this step, under Assumption 2, namely (7),

B1(x1,k+1) = B̄1(x̄2,k) + ∆B1(xk, k) (A.6)

we define
B̄2(x̄2,k) = B̄1(x̄2,k)B2(x̄2,k). (A.7)

Using (A.3), (A.6) and (A.7), the second block of (4) is
transformed into

z2,k+1 = f̄2(x̄2,k) + B̄2(x̄2,k)x3,k + d̄2,k (A.8)

where f̄2(x̄2,k) = B̄1(x̄2,k)f2(x̄2,k) and d̄2,k = −α2,k+1 +
B̄1(x̄2,k)d2(xk, k) + ∆B1(xk, k)x2,k+1.

Taking into account the structure n2 < n3, the virtual
n3 × 1 control x3,k in (A.8) is chosen of the form

x3,k =B̄†2(x1,k)[K2z2,k + E3,1z3,k − d̄2,k−1]

− B̄†2(x1,k)f̄2(x̄2,k),
(A.9)

with pseudo inverse matrix B̄†2(x1,k) and E3,1 = [In2
0] ∈

Rn2×n3 where In2
is identity matrix.

Now, the transformation (A.9) is extended as

B̄2(x̄2,k)x3,k =− f̄2(x̄2,k) +K2z2,k + E3,1z3,k − d̄2,k−1
M2(x̄2,k)x3,k =E3,2z3,k

(A.10)

where the matrix M2(x̄2,k) is selected such that the matrix

B̃2(x̄2,k) =

[
B̄2(x̄2,k)
M2(x̄2,k)

]
∈ Rn3×n3 has rank n3; E3,2 =

[0 In3−n2 ] ∈ R(n3−n2)×n3 and In3
=

[
E3,1

E3,2

]
∈ Rn3×n3 .

From (A.10), the new variable z3,k is obtained as

z3,k = ψ3(x̄3,k), ψ3(x̄3,k) = B̃2(x̄2,k)x3,k − α3,k,

α3,k =

[
−f̄2(x̄2,k) +K2z2,k + E3,1z3,k − d̄2,k−1

0

]
.

Thus, the second transformed block (10) becomes

z2,k+1 = K2z2,k + E3,1z3,k + δ2,k (A.11)

δ2,k = d̄2,k − d̄2,k−1 (A.12)

where d̄2,k−1 is obtained from (A.8) as

d̄2,k−1 = z2,k − f̄2(x̄2,k−1)− B̄2(x̄2,k−1)x3,k−1. (A.13)

Step i. At this stage, after (i − 1) steps, we have (i − 1)
transformed blocks of the system (10):

z1,k+1 = K1z1,k + z2,k + δ1,k
...

zi−1,k+1 = Ki−1zi−1,k + Ei−1,1zi,k + δi−1,k,

(A.14)

with zi,k = ψi(x̄i,k), ψi(x̄i,k) = B̃i−1(x̄i−1,k)xi,k − αi,k.
Proceeding in the same way, under Assumption 2, namely

B̃i−1(x̄i−1,k+1) = B̄i−1(x̄i,k) + ∆Bi−1(xk, k), (A.15)

we define

B̄i(x̄i,k) = B̄i−1(x̄i,k)Bi(x̄i,k). (A.16)

Using then (A.14)-(A.16), the (i)-th block of (4) is trans-
formed into

zi,k+1 = f̄i(x̄i,k) + B̄i(xi,k)xi+1,k + d̄i,k (A.17)

where f̄i(x̄i,k) = B̄i−1(xi,k)fi(x̄i,k) and d̄i,k = −αi,k+1 +
B̄i−1(x̄i,k)di(xk, k) + ∆Bi(xk, k)xi+1,k.

With the structure ni < ni+1, the virtual (i+1)×1 control
xi+1,k in (A.17) is formulated as

xi+1,k =− B̄†i (x1,k)f̄i(x̄i,k) (A.18)

+ B̄†i (x1,k)[Kizi,k + Ei+1,1zi+1,k − d̄i,k−1],

with pseudo inverse matrix B̄†i (x1,k) and Ei+1,1 =
[Ini 0] ∈ Rni×ni+1 , Ini is identity matrix.

Now, the transformation (A.18) is extended as

B̄i(xi,k)xi+1,k = − f̄i(x̄i,k) +Kizi,k + Ei+1,1zi+1,k − d̄i,k−1

Mi(xi,k)xi+1,k =Ei+1,2zi+1,k (A.19)

where the matrix Mi(x1,k) is selected such that the matrix

B̃i(x1,k) =

[
B̄i(x1,k)
Mi(x1,k)

]
∈ Rni+1×ni+1 has rank ni+1;

Ei+1,2 = [0 Ini+1−ni ]
> ∈ R(ni+1−ni)×ni+1 and Ini+1

=[
Ei+1,1

Ei+1,2

]
∈ Rni+1×ni+1 is identity matrix.

From (A.19), it follows: zi+1,k = B̃i(x̄1,k)xi,k − αi+1,k

αi+1,k =

[
−f̄i(x̄i,k) +Kizi,k + Ei+1,1zi+1,k − d̄i,k−1

0

]
.

Substituting (A.18) into (A.17), results in

zi,k+1 = Kizi,k + Ei+1,1zi+1,k + δi,k, δi,k = d̄i,k − d̄i,k−1,

d̄i,k−1 = zi,k − f̄i(x̄i,k−1)− B̄i(x1,k−1)xi,k−1.

Step r. Finally, the variable zr,k = B̄r−1(x̄r−1,k)xk − αr,k
is introduced with dynamics

zr,k+1 = f̄r(xk) + B̄r(xk)uk + d̄r,k

where f̄r(xk) = B̄r−1(xk)fr(xk), B̄r(xk) = B̄r−1(xk)Br(xk)
and d̄r,k = Br−1(xk)dr (xk, k) − αr,k+1 + ∆Br−1 (xk, k)xr,k+1.
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