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Abstract:
In this paper, we will report our efforts in designing closed-loop feedback for the thruster-assisted
walking of bipedal robots. We will assume for well-tuned supervisory controllers and will focus on fine-
tuning the joints desired trajectories to satisfy the performance being sought. In doing this, we will devise
an intermediary filter based on reference governors that guarantees the satisfaction of performance-
related constraints. Since these modifications and impact events lead to deviations from the desired
periodic orbits, we will guarantee hybrid invariance in a robust way by applying predictive schemes
withing a very short time envelope during the gait cycle. To achieve the hybrid invariance, we will
leverage the unique features in our model, that is, the thrusters. The merit of our approach is that
unlike existing optimization-based nonlinear control methods, satisfying performance-related constraints
during the single support phase does not rely on expensive numeric approaches. In addition, the overall
structure of the proposed thruster-assisted gait control allows for exploiting performance and robustness
enhancing capabilities during specific parts of the gait cycle, which is unusual and not reported before.
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1. INTRODUCTION

Raibert’s hopping robots Raibert et al. (1984) and Boston
Dynamic’s BigDog Raibert et al. (2008) are amongst the most
successful examples of legged robots, as they can hop or
trot robustly even in the presence of significant unplanned
disturbances. Other than these successful examples, a large
number of humanoid robots have also been introduced. Honda’s
ASIMO (Hirose and Ogawa, 2006) and Samsung’s Mahru III
(Kwon et al., 2007) are capable of walking, running, dancing
and going up and down stairs, and the Yobotics-IHMC (Pratt
et al., 2009) biped can recover from pushes. Despite these
accomplishments, all of these systems are prone to falling over.
Even humans, known for natural and dynamic gaits, whose
performance easily outperform that of today’s bipedal robot
cannot recover from severe pushes or slippage on icy surfaces.
Our goal is to enhance the robustness of these systems through
a distributed array of thrusters.

Here, in this paper, we report our efforts in designing closed-
loop feedback for the thruster-assisted walking of legged sys-
tems, currently being developed at Northeastern University.
These bipeds are equipped with a total of six actuators, and
two pairs of coaxial thrusters fixed to their torso. An example is
shown in figure 1.

These platforms combine aerial and legged modality in a single
platform and can provide rich and challenging dynamics and
control problems. The thrusters add to the array of control
inputs in the system (i.e., adds to redundancy and leads to over-
actuation) which can be beneficial from a practical standpoint
and challenging from a feedback design standpoint. Overac-
tuation demands an efficient allocation of control inputs and,
on the other hand, can safeguard robustness by providing more
resources.

Fig. 1. CAD model for a thruster-assisted bipedal robot de-
signed by the authors

The challenge of simultaneously providing asymptotic stability
and constraint satisfaction in legged system has been exten-
sively addressed Westervelt and Grizzle (2007). The method
of hybrid zero dynamics (HZD) has provided a rigorous
model-based approach to assign attributes such as efficiency
of locomotion in an off-line fashion. Other attempts entail
optimization-based approaches to secure safety and perfor-
mance of legged locomotion, see Galloway et al. (2015), Dai
and Tedrake (2016), and Feng et al. (2014).

Instead of investing on costly optimization-based schemes in
single support (SS) phase, we will assume for well-tuned su-
pervisory controllers found in Sontag (1983), Kokotovic et al.
(1992), and Bhat and Bernstein (1998). Instead will focus on
fine-tuning the joints desired trajectories to satisfy the perfor-
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mance being sought. In doing this, we will devise an intermedi-
ary filter based on the emerging idea of reference governors,
see Gilbert et al. (1994), Bemporad (1998), and Gilbert and
Kolmanovsky (2002). Since these modifications and impact
events lead to deviations from the desired periodic orbits, we
will guarantee hybrid invariance in a robust fashion by applying
predictive schemes withing a very short time envelope during
the gait cycle, i.e. double support (DS) phase. To achieve hy-
brid invariance, we will leverage the unique features in our
robot, i.e., the thruster. As a result, the merit of our approach
is that unlike existing methods satisfying performance-related
constraints during the single support phase does not rely on
expensive optimization approaches. In addition, the proposed
design approach allows to enhance performance and robust-
ness beyond the limits manifested by existing state-of-the-art
dynamic walkers.

This work is organized as follows. In section 2, the dynamics
for a planar three link biped is developed. The SS phase is mod-
eled following standard conventions, then a two-point impact
map and a non-instantaneous DS phase are introduced. In SS
phase gaits are first designed based on HZD method, constraints
are imposed on the states and inputs through an explicit ref-
erence governor (ERG). During DS phase a nonlinear model
predictive control (NMPC) scheme is utilized to steer states
back to zero dynamics manifold ensuring hybrid invariance.
Results are shown in section 3, and the paper is concluded in
section 4.

2. METHODOLOGY

In the sagittal plane, bipedal locomotion is simplified from
the full order model to an equivalent three-link model the
trajectories of which may be used on the full order system. A
single gait for a biped can be divided into two distinct phases
including 1) SS phase when only one feet is on the ground and,
2) a DS phase when both feet are grounded. The phases are
separated by a discrete transition caused by an impulsive impact
force acting on the biped when the swing foot makes contact
with the ground. An extended DS phase is considered, unlike
widely used assumption of instantaneous DS phase, see Grizzle
et al. (2001), Westervelt et al. (2003), Chevallereau et al. (2004)
Choi and Grizzle (2005), and Guobiao Song and Zefran (2006).
Here, the DS phase is used to make corrections for error brought
on by the impact event.

2.1 Brief overview of the hybrid model

During the SS phase the biped has 3 degrees of freedom (DOF)
and 2 degrees of actuation (DoA), which yields 1 degree of
underactuation (DoU). It is assumed that the stance leg acts as
an ideal pivot throughout the phase, i.e., it is fixed to the ground
with no slippage. The kinetic K (qs, q̇s) and potential V (qs)
energies are derived to formulate the Lagrangian, L (qs, q̇s) =
K (qs, q̇s)−V (qs), and form the equation of motion Westervelt
and Grizzle (2007):

Ds(qs)q̈s +Hs(qs, q̇s) = Bs(qs)u (1)

where Ds is the inertial matrix independent of the underactuated
coordinate, Hs matrix contains the Coriolis and gravity terms,
and Bs maps the input torques to the generalized coordinates
qs. The choice of configuration variables used are as follows:

(a) (b)

Fig. 2. Stick diagram of pinned model (a), and unpinned (un-
constrained) model (b).

q1 is the absolute stance leg angle which is also the under-
actuated coordinate; q2 is the angle of the swing leg relative to
stance leg; and q3 is the angle of torso relative to swing leg as
shown in Fig. 2a. The configuration variable vector is denoted
by qs = [q1,q2,q3]

T ∈Qs.

The transition between the end of SS phase and the beginning
of DS phase is caused by an impulsive impact event when the
end of the swing feet p2 makes contact with the ground. This is
denoted by a switching surface S d

s = {x ∈ T Q|pV
2 = 0, ṗV

2 <
0}. The impact map is modeled as in Hurmuzlu and Marghitu
(1994), which solves for post impact states and ground reaction
forces (GRF). In order to formulate this impact map, the planar
model from SS phase is now considered to be unpinned by
augmenting qs to include the hip position, qe = [qs, ph]

T . The
Lagrangian is reformulated and the impulsive GRF δFext is
added on

De(qe)q̈e +He(qe, q̇e) = Be(qe)u+δFext (2)

where Fext acts on the end of each feet p = [p1, p2]
T and is

expressed as

Fext = JT
λ =

[
∂ p1/∂qe
∂ p2/∂qe

]T [
λ1
λ2

]
here λ , is a Lagrange multiplier that assumes both legs are
fixated to the ground at the moment of impact impact and the
Jacobian matrix is given by J = ∂ p(qe)/∂qe. It is assumed that
the impact is inelastic, the angular momentum is conserved and
both legs ends are fixed to the ground.

The last assumption is ṗ− = Jq̇−e = 0, which means that the
feet end are fixed to the ground at the time of impact and
post impact. Combining this with the conservation of angular
momentum allows for the effect of impact to be solved:[

q̇+e
λ

]
=

[
De(q−e ) −J(q−e )

T

J(q−e ) 04×4

]−1 [De(q−e )q̇
−
e

04×1

]
(3)

where the superscript + denotes post-impact and − denotes
pre-impact states. The inertial matrix De is square, symmetric
and positive definite, and the Jacobian ∂ (p(qs) + ph)/∂qe is
always full rank, allowing for the matrix inversion shown on
the right hand side.

The impact event also marks the beginning of the next gait, so
the roles of legs are swapped post impact yielding
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q+1
q+2
q+3

=

q−2 −q−1
−q−2

q−3 −q−2

 (4)

which can be captured by a matrix Rd
s as x+e = [q+e , q̇

+
e ]

T =
Rd

s [q
−
e ,∆(q̇

−
e )]

T . Where ∆ : q−e 7→ q+e maps pre-impact to post-
impact velocities obtained from (2).

2.2 DS phase with thrusters

After impact as both feet stay fixed to the ground, this results in
a non-instantaneous DS phase, which we assume to occur for
a significantly shorter duration than that of the SS phase. The
unconstrained dynamics with the ground reaction forces λ and
the thrusters’ action Fth as shown in Fig. 2b are given by

Dd(qd)q̈d +Hd(qd , q̇d) = Bd(qd)η + JT
λ (5)

where the control input is augmented to incorporate the effect
of thrusters η = [u,Fth]

T , which was inactive during SS phase.
The orientation of the thrust vector with respect to the body is
assumed to be fixed along the torso link and only changes in the
magnitude are considered. A damping term (viscous damping)
is considered for numerical stability and ease of integration.
The kinematics of leg ends are resolved by

Jq̈d +
∂J
∂qd

q̇2
d +dJq̇d = 0 (6)

where d is the damping coefficient. The DS phase dynamical
model can then be written as:[

q̈d
λ

]
=

[
Dd(qd) −J(qd)

T

J(qd) 07×7

]−1
[

Bdη−Hd(qd , q̇d)

− ∂J(qd)
∂qd

q̇2
d−dJq̇d

]
(7)

The end of the DS phase leads to next SS phase and is initiated
by the end of swing foot breaking contact with the ground,
which is defined as S s

d = {x ∈ T Q|pV
2 > 0, ṗV

2 > 0}. The
initial SS states are simply the final DS states when the swing
leg lifts off.

2.3 Motion control

The trajectories for the actuated coordinates are designed
by imposing virtual constraints as in Westervelt and Grizzle
(2007). The restricted dynamics fz = f (xs) + g(xs)u∗ on the
zero dynamics manifold Z are prescribed by the feedback
linearizing controller u∗(x) = −LgL f h(x)−1(L2

f h(x)) and are
invariant of the SS dynamics. This idea is key to HZD-based
motion design widely applied to gait design and closed-loop
motion control by enforcing holonomic constraint y = h(x) =
qa−hd ◦θ(q) = 0. Where, qa = [q2,q3]

T is the vector of actu-
ated coordinates, and hd is parametrized over the zero dynamics
state θ(q). During the SS phase, the HZD method was used to
obtain desired trajectories for qa and an ERG-based framework
was then used to respect limits on inputs; during DS phase a
NMPC scheme is used to ensure impact invariance by leverag-
ing the thrusters.

2.4 SS phase control

To ensure the actuated coordinates follow the virtual con-
straints, a variety of finite time convergence controller can be
utilized. In our case, with a relative-degree 2 the feedback
linearizing control law is u = −LgL f h(x)−1(L2

f h(x)+ v) as in
Khalil (2002), where v = KPy+KDẏ is one of the simplest form

of controllers available. In order to ensure that the physical lim-
its on states and inputs are satisfied the idea of reference gov-
ernor described in Gilbert and Kolmanovsky (2002) is taken.
However, their work involves optimization and to avoid that we
took an optimization-free approach based on explicit reference
governor (ERG) idea described in Garone and Nicotra (2015).

The ERG acts as a supervisory controller which in our case
will manipulate velocity trajectories The main idea here is that
constraints on inputs and states can be satisfied by adding dy-
namics to the reference trajectories rather than assuming them
to be pre-defined. This changes the original output functions to:

ẏ = q̇a−w (8)

where w is the manipulated reference that estimates ḣd while
ensuring constraint satisfaction described below. The relative
degree of 2 is still preserved even with this change.

An approach based on Lyapunov argument is taken to formu-
late the manipulated reference dynamics ẇ. This is achieved
through setting an upper bound on a Lyapunov function of the
actuated coordinates such that state and control limits specified
in the vector C(xa,w) are always satisfied. This vector is defined
as following

C(xa,w) :=Cxxa +Cwxw +Climit ≥ 0 (9)

where xa = [qa, q̇a]
T , xw = [0,w]T and Cx, Cw and Climit arise

from the limits applied to the states and inputs, that is, |x| ≤ xmax
and |u| ≤ umax. These limits can be expanded as following:

−qmax ≤ q≤ qmax

−q̇max ≤ q̇≤ q̇max

−LgL f h−1(L2
f h+ v)≤ umax

−LgL f h−1(L2
f h+ v)≥−umax

(10)

where, v=KP(q−hd)+KD(q̇−w). These inequalities can then
be rearranged to fit the form in (9) as following:

Cx =

 I4×4
−I4×4

KP KD
−KP −KD

 Cw =

[ 08×4
0 KD
0 −KD

]

Climit =


xmax
xmax

LgL f h(x)umax−L2
f h(x)+KPhd

LgL f h(x)umax−L2
f h(x)+KPhd


(11)

The following Lyapunov function V (xa,xw) is considered

V (xa,xw) = (xa− xw)
T P(xa− xw) (12)

where P is a positive definite matrix consisting of controller
gains KP and KD (P = 1

2 diag(Kp,Kd) > 0). The dynamics of
the manipulated reference is defined such that the Lyapunov
function is bounded by a smooth positive definite function
Γ(w), as following

V (xa,xw)≤ Γ(w) (13)

Through a change of coordinates x̃ = P1/2(xa− xw), (9) takes
the form CxP−1/2x̃+Cxxw+Cwxw+Climit ≥ 0. By solving for x̃
at the boundary of the constraint C(xa,w) = 0, we obtain

x̃ =− P−1/2CT
x

CxP−1CT
x
(Cxxw +Cwxw +Climit) (14)

Then the upper bound can be defined as Γ(w) = x̃T x̃, which is
the distance from xw to the boundary of C(xa,xw).
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Table 1: Model Parameters
Parameter Value Description
mT 300.00 g Mass of torso
mh 200.00 g Mass of hip
mk 100.00 g Mass of each leg
lT 30.00 cm Length from hip to torso
l 63.25 cm Length of each leg

The time derivative of the manipulated reference w given by
ẇ := κ(Γ(w)−V (xa,w))sign(ḣd−w) (15)

yields Γ̇(w, ẇ) ≤ 0 where κ > 0 is an arbitrary large scalar.
This choice ensures that an attractive vector field is generated
pointing towards ḣd . Looking at the time derivative of (13),
which yields the following

V̇ (xa,w, ẇ)≤ Γ̇(w, ẇ) (16)

we see that V̇ (xa,w, ẇ) is negative semi-definite. Therefore,
asymptotic convergence to ḣd must be verified through LaSalle’s
principle by showing V (xa,w) = 0 holds true only for a finite
time. The time derivative of Γ(w) is found to be

Γ̇(w, ẇ) = 2x̃T P−1/2CT
x

CxP−1CT
x
(Cx +Cw)ẋw (17)

From (15) and (16) V̇ (xa,w, ẇ) = 0 is only possible when ẇ= 0.
This happens if w = ḣd , i.e. when convergence is achieved, or
when Γ(w) = V (xa,w). In the latter case, when ẇ = 0, Γ(w)
as well as w remain constant. For a constant reference V (xa,w)
will decrease after a finite time and convergence is resumed.

The controller must then be altered to account for this change:
u = β1(ẇ+ v)+β2 (18)

where β1 = −D3D−1
1 D2 +D4 and β2 = −D3D−1

1 H1 +H2 are
obtained by partitioning the dynamics in (1) and solving for q̈b
in ÿ. The dynamics are partitioned as follows:[

D1 D2
D3 D4

][
q̈1
q̈a

]
+

[
H1
H2

]
=

[
0
u

]
(19)

2.5 Impact invariance

The two-point impact renders all joints except the torso to be
fixed, causing a large deviation in velocities from the reference
trajectory and subsequently deviation from the zero-dynamics
manifold as well. For periodic gaits to be achieved, the SS phase
dynamics must be invariant to such deviations. Since the joint
actuators are not able to make corrections needed to steer the
states back to the zero dynamics manifold (Z ), the thrusters
are now leveraged in the DS phase to achieve hybrid invariance.
Impact invariance such that Π(∆(S ∩Z )) ⊂ Z is sought,
where Π : xd,0 7→ xd, f maps the initial states of DS phase xd,0
to initial states of SS phase xs,0. With this condition satisfied
hybrid invariance will ensure that each gait starts with the
same initial condition despite the impulsive effects of impact
and deviation from designed trajectories. When DS phase is
absent, hybrid invariance takes the from ∆(S ∩Z ) ⊂ Z as in
Westervelt et al. (2003).

As opposed to the SS phase, the constraints in the DS phase take
a more complex form where the ground reaction forces need to
be satisfied, xd, f must match the initial states at the SS phase
(xs,0) to ensure hybrid invariance. We apply a NMPC-based
design scheme to steer the post-DS states back to the zero-
dynamics manifold. This scheme is known for being costly,

however, the duration of the DS phase is significantly shorter
than SS.

Note that a reference for each DS state rd [k] is generated at
every k-th sample over the duration of the double support phase.
The reference can be a simple linear trajectory between the
post-impact states xd,0 and the initial SS phase state xs,0.

The continuous DS phase model in state space form is given by
ẋd = f (xd)+g(xd)η , this model is discretized and linearized at
each each sample time. The following optimization problem is
then solved, by minimizing the cost function φ(xd ,η):

min
η [k]

φ(xd ,η) =
N

∑
k=1

p

∑
i=1

wx,i(xd,i[k]− rd,i[k])+

N−1

∑
k=1

m

∑
j=1

wη , j∆η j[k]

subj. to:

xd [1] = Rd
s x+e

xd [k+1] = f (xd [k])+g(xd [k])η [k]
|η [k]|< ηmax

|xd [k]|< xd max

|λT [k]|< µs|λN [k]|
λN [k]> 0

(20)

where the initial state of DS phase xd [1] comes directly from
the post impact state x+e , after the roles of the legs have been
swapped which is denoted by Rd

s matrix. The subsequent con-
straint xd [k+1] ensures that the discrete states belong to the DS
phase from (5). Limits are imposed on both states and control
actions through ηmax and xd, max, respectively. And finally, the
ground contact condition must be satisfied for the DS phase
i.e., the ratio of tangential λT to normal forces λN is less than
the static coefficient of friction µs and normal force is always
positive.

With these constrained satisfied, the NMPC guides the DS
states towards the initial condition of SS phase, resulting in
impact and DS phase invariance.

3. RESULTS

For the three link model developed in section 2, a total of 10
steps were simulated. Each DS phase was simulated for a fixed
time envelope of 20 mili-seconds. A list of all model parameters
used are shown in table 1. The desired trajectories hd were
generated offline. Figure 3 shows the configuration variable
evolution. The angles (q1,2,3) are shown in the first row and the
angular velocities (q̇1,2,3) are shown in the second row.

Figure 4 shows that the feasibility conditions are satisfied
during the DS phase during the robustification process. The
tangential to normal load ratio for each feet is less than or equal
to the friction constant value µs at all times and the normal
forces are always positive, which indicates that the feet were
stuck to the ground throughout the DS phase. We note that
the static coefficient of friction is assumed to be µs = 0.3 for
this simulation study. We also note that that the normal forces
spiked to about 60 N and this unusually behavior would not
be possible without the inclusion of thrusters’ action in the
DS phase as the total weight of the biped is only 0.7 kg and
the inertial force contributions cannot be directly applied to
regulated the ground contact forces. Figure 5 shows the control
actions for the thrusters during the DS phase. In Fig. 5, the
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Fig. 3. Configuration angle (top row) and velocity (bottom)
trajectories of the biped walking 10 steps.

intermediate SS phases are omitted and the green vertical lines
separate consecutive DS phases at each gait cycle.

The synergistic thruster and joint action gait stabilization is
summarized in Fig. 6. The first row shows a generous limit on
the joint control actions during the SS phase whereas the third
row assumes for a conservative limitation. The phase portrait
for the under-actuated coordinate q1 corresponding to these two
scenarios are compared in Fig. 6, where the SS, DS phase and
the impact are in blue, red and green, respectively. In the case
where the control actions are saturated at a higher value the
states converge to the desired limit cycle and as the saturation
limits are reduced the tracking performance degrades and the
trajectories deviate from the limit cycle to satisfy the constraint.
This can raise hybrid invariance issues and during the DS phase
this issue is addressed as the NMPC algorithm steers the post
impact states to the beginning of the SS phase leading to impact
invariance as suggested by Fig. 6 (c), (f) and (i). This unusual
property of the gait cycles would not be possible without the
thrusters.

4. CONCLUSION

In designing closed-loop feedback for the thruster-assisted
walking of bipedal robots, we assumed for well-tuned super-
visory controllers and focused on fine-tuning the joint desired
trajectories to satisfy the performance being sought. We de-
vised an intermediary filter based on reference governors that
guaranteed the satisfaction of performance-related constraints.
We leveraged the thrusters in the system to robustify the gait
cycles. Since the gait modifications and impact events can
lead to deviations from the desired periodic orbits, hybrid in-
variance was achieved in a robust way by applying predictive
schemes. The merit of the proposed approach is that unlike
existing optimization-based nonlinear control methods, satisfy-
ing performance-related constraints during the single support
phase does not rely on costly numeric approaches. In addition,
the design allows for exploiting performance and robustness
enhancing capabilities during specific parts of the gait cycle,
which is unusual and not reported before.
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