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Abstract: We propose a novel probabilistic fault detection scheme with adjustable reliability
estimates. Our scheme consists of two phase, the first is the modelling phase, where a
probabilistic fault detection design is devised, while the second is the validation phase, where
reliability estimates of the design are adjusted online according to new operation records of
the plant and the validated reliability. The modelling phase is based on two methods: residual
generation, such as parity space, which is an important tool in fault detection problem, and
scenario approach, which is a seminal trick to transfer intractable optimization problem into
approximate tractable optimization problem and ensure reliability guarantees. The validation
phase leverages the state-of-art posteriori probabilistic bounds of convex scenario programs with
validation tests. Such a holistic design-and-validate scheme will can help technicians to make
better decision. The efficacy of the proposed approach is illustrated on a simulated case study.
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1. INTRODUCTION

Fault Detection (FD) has broken the ground into the
modern industry as a seminal tool to identify possible
anomalies in time, which is helpful for reducing the risk
of huge economic loss due to unexpected breakdown. Dur-
ing the past half century, model-based FD has received
remarkable attention and rich results have been achieved.
In Ding (2008), model-based FD techniques are divided
into observer based methods, parity space-based FD ap-
proaches and parameter estimation schemes. The primary
challenge of FD design lies in an appropriate trade-off
between the sensitivity to faults and the robustness against
unknown input. For example, with a higher alert threshold,
the false alarm rate (FAR) can be reduced, but at a price
of higher missed alarm rate (MAR).

Because FAR and MAR are essentially random proba-
bilities, probability distributions of unknowns must be
available. However, this is quite restrictive in practice.
On one hand, it is commonly difficult to attain exact
knowledge of distributions. On the other hand, even if the
distribution is known, one has to compute multiple inte-
grals to evaluate FAR and MAR, which is computationally
intensive. To address these issues, the so-called scenario
approach or randomized algorithm has been applied in FD
design recently (Zhong et al. (2016); Zhou et al. (2018);
Ding et al. (2019)). The idea is to take a finite number of
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constraints into consideration as an approximation based
on past samples of uncertainty. In this way, FAR can be
desirably controlled with a suitably high confidence level
(Campi and Garatti (2008)). Zhong et al. (2016) focused
on the problem of FD for a class of nonlinear systems
s.t. l2-norm bounded unknown input. Zhou et al. (2018)
proposed an approach using randomized algorithms to
design the FD system for ship propulsion systems. Ding
et al. (2019) put forward a probabilistic framework for
performance assessment and design of observer-based FD
systems.

However, the use of scenario approach in probabilistic
FD design has several limitations. On one hand, previous
works mainly focus on using random algorithms to set
the decision threshold only. This is because a plethora
of uncertainty samples are needed to make an integrated
FD design. On the other hand, due to the randomness
of uncertainty sampling, the design made by scenario
approach itself is random, and thus it is necessary to
evaluate its reliability. Unfortunately, abundant Bernoulli
trials as well as validation samples have to be made
towards this goal. These aspects heavily compromise the
practical use of scenario approach in FD design.

In this paper we propose a novel probabilistic integrated
FD scheme to improve the practicability of scenario-
based design, which is based on the a posteriori perfor-
mance guarantee of scenario approach with validation tests
(Shang and You (2019)). The entire scheme organically
integrates the design stage and validation stage, where
the design matrix and the threshold are simultaneously
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optimized in the design stage. To obtain a reliable esti-
mate of FAR, the structural information underlying the
optimal design, which is described by the number deci-
sive support constraints (Campi and Garatti (2018)), is
utilized together with the validation data. In this way, an
adaptive reliability estimate can be incrementally attained
in the validation stage, which allows the decision-maker to
adjust his/her belief in an online manner. It turns out that
the conservatism of traditional a-priori probability bound
(Campi et al. (2008)) can be significantly reduced based on
the proposed scheme, especially when a moderate sample
size is available.

The organization of this paper is given as follows. Section
2 sets up the system configuration and then introduces the
parity space technique, and translates the fault detection
into an optimization problem. Section 3 states our novel
FD design scheme. Section 4 presents a case study to verify
our contributions, followed by final conclusions.

2. PRELIMINARIES

2.1 Parity space based residual generation

First we introduce the system configuration. Consider
the following linear time invariant system where system
matrices are assumed to be known:{

x(k + 1) = Ax(k) +Bu(k) +Bdd(k) +Bff(k)
y(k) = Cx(k) +Du(k) +Ddd(k) +Dff(k)

(1)

where x is system state, u is input, d is disturbance, f is
fault and y is output, all with appropriate dimensions.

To detect a fault, we need to collect observations for a
period of time before we can make reliable diagnosis, which
is based on the so-called temporal redundancy or serial
redundancy (Ding (2008)). Suppose at time k, we trace
back a time interval of s to the start time of our induction,
i.e. k − s (Zhong et al. (2018)):

y(k) = Cx(k) +Du(k) +Ddd(k) +Dff(k)

= C(Ax(k − 1) +Bu(k − 1) +Bdd(k − 1)

+Bff(k − 1)) +Du(k) +Ddd(k) +Dff(k)

(2)

By proceeding in this way, we can arrive at the following
succinct expression, which is known as the I/O data model:

Ys(k) = HusUs(k) +Hosx(k − s) +HfsFs(k) +HdsDs(k)
(3)

where

Hus =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
. . .

. . .
. . .

...
CAs−1B · · · CAB CB D

 , (4)

Hos =
[
CT (CA)T · · · (CAs)T

]T
. (5)

Hds and Hfs are constructed by replacing (B,D) in
the Toeplitz matrix Hus with (Bd, Dd) and (Bf , Df ),
respectively. Ys(k) includes output measurements from k−
s to k in a batch form, i.e.,

Ys(k) =
[
y(k − s)T y(k − s+ 1)T · · · y(k)T

]T
(6)

Us(k), Fs(k) and Ds(k) can be constructed in a similar
manner.

Then, the residual e(k) is defined to measure the extent of
the deviation from normality:

e(k) = Ys(k)−HusUs(k)−Hosx(k − s)
= HfsFs(k) +HdsDs(k)

(7)

e(k) will be ideally zero when there is no fault (Fs(k) = 0)
and no disturbance (Ds(k) = 0) in the system. e(k) is
calculated through time series of sensor input Us(k) and
output Ys(k) and system state x(k − s) at base time
k − s. However, the existence of x(k − s) poses significant
challenges since it cannot be observed from sensors. To
overcome this problem, a parity space matrix V is designed
to let V Hosx(k − s) = 0. Multiplying V on both side of
the equation e(k) = Ys(k)−HusUs(k)−Hosx(k−s) yields
the residual for fault detection:
r(k) = V e(k) = V Ys(k)− V HusUs(k)− V Hosx(k − s)

= V Ys(k)− V HusUs(k)
(8)

which is obviously unrelated to x(k − s), and thus can be
calculated by sensor signals of inputs and outputs given the
design matrix V . s is also referred to the order of parity
space.

Existence of parity space matrix Parity space matrix V is
designed to let V Hosx(k − s) = 0. Given the uncertainty
of base time state x(k − s), to ensure that the equation
holds, V Hos = 0 must be satisfied. Thus V is established
through packing the left null vectors of Hos in rows.

v1Hos = v2Hos = ... = 0, V = [v1; v2; ...] (9)

Note that Hos =
[
CT (CA)T · · · (CAs)T

]T
, vHos =

C
∑s
i=1 viA

i = 0 implies that v can be deduced from the
characteristic polynomial p(λ) = det (λIn −A), because
it always satisfies p(A) = 0 from the Cayley-Hamilton
theorem. This ensures the existence of the parity space
matrix V provided that the order s is no lower than the
system order.

2.2 Translation into an optimization problem

In general, the parity space matrix serves as two different
roles in fault detection. First, it serves as a projector: it
projects e(k) = Ys(k) −HusUs(k) −Hosx(k − s) into the
left null space of Hos (orthogonal complement space of the
range space of Hos) in order to make sure that V Hosx(k−
s) = 0, thereby diminishing the unobservable system state
x(k − s). Second, it serves as a modulator: it modulates
the norm of e(k) by stretching or shrinking during the
projection r(k) = V e(k). The latter role is important in
the following paragraphs.

In fault detection, we transfer the residual vector r(k) to
a scalar form by residual evaluation function. The most
ordinary choice is the square of 2-norm of this particular
residual vector:

J(k) = r(k)T r(k) (10)

If J(k) is less than a pre-defined threshold Jth, it will be
reasonable to keep calm and no alarms are issued. Other-
wise, an alarm is issued to indicate ongoing abnormality.

Note that J(k) is a random variable because of the
randomness inherent in disturbance d. So from now on,
we will use Jδ(k) as a function of some random variable δ
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to denote its inherent randomness. Ideally, when there is
no fault (Fs(k) = 0), it is ideal to force J0

δ (k) (we adopt
the convention of using 0 to represent normality) under
Jth under any circumstances (i.e. under any realization of
random variable δ ) in order to suppress false alarm rate
(FAR) to zero:

J0
δ (k) ≤ Jth,∀δ ∈ ∆. (11)

where δ denotes the randomness, lying in an uncertainty
set ∆, and k denotes the current time. Such a robust
formulation takes all kinds of possible cases into consider-
ation, which makes the result convincing and reliable but
leads to too conservative result as a downside. In other
words (assume that extreme zero-measure set does not
matter),

P
{
δ ∈ ∆ : J0

δ (k) ≤ Jth
}

= 1 (12)

However, this ideal setting is not practical because of the
stringent requirement that FAR will be exactly zero. In
fact, there is a desirable trade off between false alarm
rate (FAR) and missed alarm rate (MAR), which allows
us to sacrifice a certain degree of FAR for a significant
improvement of MAR. To concretize such an intuition, the
previous robust-style constraint is transformed into a more
reasonable chance constraint with an admissible level of
FAR ε:

P
{
δ ∈ ∆ : J0

δ (k) ≤ Jth
}
≥ 1− ε (13)

Rewriting the above inequation as
P
{
δ ∈ ∆ : J0

δ (k) > Jth
}
≤ ε , we find that that the FAR

should be less than ε. Relaxing the upper bound of FAR
form 0 to ε will surely make more room for lowering the
MAR.

Then we proceed with the objective function. Since the
residual evaluation function is the square of 2-norm of
r(k) = V e(k), there are two conflicting requirements in the
design of V . First, it should amplify e(k) enough otherwise
J(k) = r(k)T r(k) will stay below threshold Jth even with
some fault; second, it should not magnify e(k) excessively
otherwise J(k) = r(k)T r(k) will exceed threshold Jth even
in the absence of faults. In a nutshell, there is an evident
trade-off between FAR and MAR. The constraints above
ensure that FAR is less than ε, and it is reasonable to add
a optimization objective function to reduce the MAR to
achieve the tradeoff. The amplification of matrix V can
be mathematically described in its own norm. What is
needed is that the norm is large enough to detect minor
fault, thereby reducing the MAR.

Now we arrive at the nascent optimization problem:

max ||V ||
s.t. P

{
δ ∈ ∆ : J0

δ (k) ≤ Jth
}
≥ 1− ε (FAR < ε)

V Hos = 0

(14)

However, the existence of chance constraint
P
{
δ ∈ ∆ : J0

δ (k)− Jth ≤ 0
}
≥ 1 − ε makes the problem

a NP-hard problem from the viewpoint of stochastic pro-
gramming (Prékopa (2013)), which adds significant diffi-
culty in devising an effective computational treatment.

3. A NOVEL PROBABILISTIC FD SCHEME

Fig. 1 depicts our integrated FD scheme, which consists of
two different phases. The first is modelling phase, where a

probabilistic fault detection design is devised; the second is
validation phase, where reliability estimate of the design is
adjusted online with the accumulation of operational data.

Fig. 1. Two-Phase Fault Detection Scheme

3.1 The first phase: Modelling phase

Applying Scenario approach An innovative technology
called scenario approach (Campi et al. (2008)) has been
created and well accepted to deal with chance constrained
programs at a very general level. The main thrust of this
technology is that tractability can be obtained through
random sampling of constraints, where δ(1), , . . . , , δ(N) are
N independent identically distributed samples from ∆:

max ||V ||
s.t. J0

δ(i)(k)− Jth ≤ 0, i = 1, . . . , N

V Hos = 0

(15)

By substituting the residual evaluation function J0
δ(i)

(k),
the concrete form of scenario-based optimization problem
can be stated as follows:

max ||V ||

s.t. e0δ(i)
T
V TV e0δ(i) − Jth ≤ 0, i = 1, . . . , N

V Hos = 0

(16)

For simplicity, we omit the current time k from now on
without bringing about confusions. To make sure that
the optimization is tractable, the objective function to
minimize must be convex while the objective function
to maximize must be concave. Unfortunately, the norm
is a convex function which is about to be maximised,
so it is not a convex problem. The way to resolve this
unpleasant issue is to redefine the optimization function.
As can be seen from previous explanation, the parity
space matrix serves as two roles, namely the projector and
the modulator. The “modulator” functions through V TV :
J = rT r = (V e)T (V e) = eTV TV e. If the Frobenius norm
of parity space matrix V is considered, it will be equal
to the trace of V TV which is affine thus concave. So it is
reasonable to change objective function from max ||V || to
max Trace(W ) where W = V TV , and then optimize over
W instead of V .

Remember that the role of V , “projector”, is reflected in
the constrains, which also need to be modify from V Hos =
0 to WHos = V TV Hos = 0. In fact, these two equations
are exactly the same. First, any V satisfying V Hos = 0
must also satisfy V TV Hos = 0. Second, let A = V Hos,
thus V TV Hos = 0 implies HT

osV
TV Hos = ATA = 0. Since
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the diagonals of ATA are squares of 2-norm of columns of
A, ATA = 0 means every column of A is zero vector, in
other words, A = 0.

Here arrives our final tractable optimization problem:

max Trace(W )

s.t. e0δ(i)
T
We0δ(i) − Jth ≤ 0, i = 1, , . . . , , N

WHos = 0

(17)

To recap, the δ is the unknown random variable modelling
the inherent randomness from disturbance, δ(i) i = 1 . . . N
are samples from this unknown distribution. As for e0

δ(i)
,

the superscript 0 denotes the normal working condition (no
fault occurs), the subscript δ(i) denotes the ith sample and
e denotes the deviation from normality which is a function
of random variable δ. The optimal W is thus represented
by W ∗

N , where the subscript N comes from the sample size
in scenario programming.

Violation probability of optimal solution

Definition 1. Violation Probability: The violation prob-
ability of a given optimization variable W ∈ Sn×n+ is
defined as the fraction of uncertainty set ∆ which makes
the constraint violated:

V (W ) = P
{
δ ∈ ∆ : e0δ

T
We0δ − Jth > 0

}
. (18)

Upon deriving the scenario-based FD design, our target
is to further estimate the reliability of scenario optimal
solution W ∗

N by the violation probability V (W ∗
N ). Note

that V (W ∗
N ) is essentially FAR, since e0δ

T
We0δ is exactly

the residual generation of possible residual e0δ when there
is no fault denoted by the superscript 0.

Estimate the prior reliability of optimal solution W ∗
N

is a random variable because of the dependence of W ∗
N

on δ(1), . . . , δ(N). Recall that from the definition, violation
probability is in fact FAR, so providing probability bounds
to keep it under control is vital for practical usage. The
main result of Campi and Garatti (2008) states that
the tail probability of V (W ∗

N ) is upper bounded by the
cumulative distribution function of binomial distribution.

Theorem 2. Assume that PN is a product probability
space due to independence of δ(1), . . . , δ(N), d is the num-
ber of optimization variables. It then holds that:

PN {V (W ∗
N ) > ε} ≤

d−1∑
i=0

(
N
i

)
εi(1− ε)N−i.

Note that the above theorem holds independently of the
true distribution P. To make N explicit from the equation,
we can resort to the following theorem, which simplifies the
determination of N given a prespecified confidence level β.

Theorem 3. Given a violation parameter ε ∈ (0, 1) and a
confidence parameter β ∈ (0, 1). If

N ≥ 2

ε

(
ln

1

β
+ d

)
then, with probability no smaller than 1−β, W ∗

N gives an
FAR no higher than ε, i.e. PN {V (W ∗

N ) ≤ ε} ≥ 1− β.

In order to get a acceptable confidence level, such as 1 −
0.00001, the required smallest sample size is astronomi-
cally high, which limits the application of this method

to situations where it is expensive to get sample from
experiments. For instance, when d = 55 , ε = 0.01
and β = 0.00001, the required size of sample is at least
2

0.01 (ln 1
0.00001 + 55) ≈ 13303, which is an unaffordable

number to obtain from expensive experiments. We can also
see from the result that N is susceptible to d, which will
also aggravate the situation.

3.2 The second phase: Validation phase

The scenario-based solution is essentially random since
it is calculated based on samples that are i.i.d random
variables, so the evaluation of the risk of the randomized
solution must be performed before its implementation in
real-world situations. A recently promising idea is that
there exists affluent information in these a posteriori
results, which leads to so-called ‘wait-and-judge’ scenario
approach (Campi and Garatti (2018)) by excavating a
particular structure property of the optimal solution—the
number of ‘decisive’ support constraints.

Definition 4. A constraint of the scenario program is a
support constraint if its removal changes the solution.

By removing each constraint one by one with others being
intact, we can solve a sequence of scenario convex opti-
mization programs and compare the new solution with the
original solution. The total number of altered solutions is
then equal to the number of support constraints. Given
the number of support constraints, we can use bisection
method to calculate the a posteriori estimation of proba-
bility bound, which will be referred to as BoundS in our
paper.

Assumption 5. Existence and uniqueness: For every N
and for every sample δ(i), i = 1 . . . N , equation 17 admits
solution, which becomes unique after the application of
the tie-break rule.

Assumption 6. Non-degeneracy : For every N , with prob-
ability 1 with respect to the sample δ(i), i = 1 . . . N ,
the solution to equation 17 with all constraints in place
coincides with the solution to the program where only the
support constraints are kept.

Theorem 7. (Campi and Garatti (2018)). Assume that s∗N
is the number of support constraints of solution W ∗

N ,
β ∈ (0, 1), d is the number of optimization, and N is sce-
nario sample size. For any k = 0, 1, . . . , d, the polynomial
equation in the t variable

β

N + 1

N∑
m=k

(
m
k

)
tm−k −

(
N
k

)
tm−k −

(
N
k

)
tN−k = 0

(19)

has one and only one solution t(k) in the interval (0, 1).
Letting ε(k) := 1 − t(k), under assumptions 5 and 6, it
then holds that

PN {V (W ∗
N ) > ε (s∗N )} ≤ β. (20)

In the above theorem, the estimate of the upper bound on
FAR becomes a function of s∗N , which allows a flexible
adjustment based on the realization of scenario-based
FD design. Meanwhile, an alternative yet more popular
strategy is to carry out validation test on a collection of
new instances of the uncertainty.
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Definition 8. Given M validation samples, the violation
frequency rM is the number of validation constraints that
are violated by the solution.

By generating more samples from the same probability
space and using them to validate the proposed solution,
the total number of inconsistent samples is the violation
frequency. Given the value of violation frequency, we can
readily calculate the posteriori estimation of probability
bound, which is essentially based on the hypothesis testing
of binomial trials and will be referred to as BoundV.

Theorem 9. rM is the violation frequency of solution W ∗
N

on M validation samples. Given a pre-defined confidence
level β∗ ∈ (0, 1), M is validation sample size, it then holds
that:

PM {V (W ∗
N ) > ηM (rM )} ≤ β∗. (21)

where the analytic form of ηM (·) is expressed as:

ηM (l) =

{
min
η
{η : BM (η; l) ≤ β∗} , if l 6= M

1, if l = M
(22)

The violation frequency on validation data can also be used
together with support constraints (Campi and Garatti
(2018)) to improve our estimates of reliability levels, as
proposed by Shang and You (2019). Next we will sketch
out the skeleton of how to compute improved estimates
with more information available in our hands.

Combine support constraints and violation frequency.
Because we have two posteriori information of the scenario
program, it is rather reasonable to estimate the probability
bound with all the information in hands. It can be proved
that the previous two bounds are specific cases of this more
general bound. which testifies the correctness and gener-
ality of this bound, which will be referred as BoundSV
(Shang and You (2019)).

Theorem 10. Assume that M is the validation sample size,
rM is the violation frequency. N is scenario sample size,
s∗N is the number of support constraints, β ∈ (0, 1) is the
confidence level, and weighting parameters {am} satisfy

am ≥ 0,m ∈ N0:N ,

N−1∑
m=d

am > 0,

N∑
m=0

am = 1. (23)

tN,M (k, l) is the root of the following polynomial function
in t:

hN,M (t; k, l) = β

N∑
m=k

am

(
m
k

)
tm−k

−
(
N
k

)
tN−kBM (1− t; l)

(24)

then it holds that PN+M {V (x∗
N ) > εN,M (s∗N , r

∗
M )} ≤ β

where εN,M (k, l) = 1− tN,M (k, l).

In this way, the reliability estimate of the FD design
can be adjusted flexibly using sequentially accumulated
validation data after the implementation of FD design.
Whenever another sample comes, we can test if it violates
the constraints to update the upper-bound estimate of the
violation frequency. With updated violation sample size
and violation frequency, the bounds can be recalculated
to incorporate the new finding in reality. From Shang and
You (2019), the tendency of the change in our beliefs

can be described by the following theorems, which exactly
match our intuitions and assure us of the rationale of the
estimation.

Theorem 11. BoundV holds that:

ηM (l) > ηM+1(l), ηM+1(l + 1) > ηM (l) (25)

Now we re-clarify the definition. M denotes the number
of validation sample size and l denotes the number of
violation frequency. The rationale is really simple: if the
next sample does not violate constraints (i.e. M + 1 and
l remains the same), we will have more confidence in the
reliability of the result, which leads to a tighter bound of
risk; on the other hand, if the next sample does violate
constraints (i.e. M and l both add by 1), we will lose some
confidence in the reliability of the result, which leads to a
looser bound of risk.

Theorem 12. BoundSV satisfies the following monotonic-
ity properties:

εN,M (k, l) > εN,M+1(k, l), εN,M+1(k, l + 1) > εN,M (k, l).
(26)

The interpretation of this theorem is similar to the previ-
ous one. In addition to M and l, N denotes the number of
scenario sample size and k denotes the number of support
constraints, but N, k are not changed during the course of
succesive validation.

4. CASE STUDY

4.1 System setup

To testify our findings, a discrete linear time invariant
system is constructed, the configuration of which is given
as follows:

A =

[
0.4170 0.3023 0.1863
0.7203 0.1468 0.3456
0.0001 0.0923 0.3968

]
;B =

[
0.5388 0.2045
0.4192 0.8781
0.6852 0.0274

]

C =

[
0.6705 0.5587 0.1981
0.4173 0.1404 0.8007

]
;D =

[
0.9683 0.6923
0.3134 0.8764

]
;

Bd = I,Dd = 0
(27)

Because of the controllability of the system, it is sensible
to devise a feedback of state to make all the eigenvalues lie
in the unit circle on the complex panel, which will make
the system stable.

We collect last 3 input and output signals to detect
possible fault, in another word the data window is set to
3. For the first batch of run, we accumulate 400 samples.
Then in another batch of run, 200 additional samples are
collected for usage in further validation step, as shown in
Table 1. In order to simulate immanent noise in the system,
a zero mean normal noisy with a standard deviation of
one is added in the input signal. In the fault detection
step, we set the threshold Jth to 0.05. The alarm threshold
can be modulated in practical usage by technicians in
a real plant to achieve an appropriate balance between
FAR and MAR. All data samples have to be collected
independently. In practice this requirement can be realized
by maintaining a large enough sampling gap between two
consecutive samples.
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Table 1. Parameter Setting of Simulation

Sample Size Validation Size Extra Validation Size
400 200 50

4.2 Results and discussions

Input and output series data are fed into the CVX software
to solve the convex optimization problem. Upon obtaining
the solution, a posteriori information is at hand to attain
different tighter bounds. In order to find out which bound
is better in reality, by using Monte Carlo simulation, 104

more samples are generated from the same probability
space for the validation step to get the true violation prob-
ability of the scenario solution, namely the TrueBound—
0.0215.

Table 2. Three different a-posteriori bounds

BoundS BoundV BoundSV TrueBound
0.0539 0.0689 0.0373 0.0215

After calculation of three bounds which substitute the
bound in P {V (W ∗

N ) > bound} ≤ β, the reliability of the
solution W ∗

N can be stated that: violation probability of
W ∗
N is less than bound with high confidence (1− 0.00001).

Here we compare 3 different posteriori probability bounds
with true value. Obviously, the third bound BoundSV
which accumulates two kinds of information (i.e. support
constraints and validation samples) is less conservative
than others.

It is worth mentioning that although we can run inex-
pensive simulations for thousands of times, in engineering
practice the cost of such experiments may be too high
to be conducted for the purpose of figuring out the vio-
lation probability. In this situation, previously proposed
probability bounds can serve as approximate indicators of
reliability with small validation sample size.

Online adjustment of posteriori bounds with accumulating
validation samples In order to illustrate our findings on
the online adjustment of posteriori bounds (i.e. BoundV
and BoundSV), we consider the practical case where in-
dependent validation scenarios are gradually accumulated
after W ∗

N is obtained. Once upon fetching a new validation
sample, we test whether it is violated or not and then
update the posteriori bounds (i.e. BoundV and BoundSV).
From the figure 2, we can see see that when the next new
validation sample violates the constraints (i.e. 1 in the top
gragh), both of the bounds (in the bottom graph) will
increase and vice versa, which matched our intuition and
the theoretical results in the preceding section.

5. CONCLUSION

In this paper, we have proposed a novel integrated fault de-
tection scheme which is suitable for real-world application.
Our design consists of two phase. The first is the modelling
phase, where a probabilistic fault detection design is de-
vised, and the second is validation phase, where reliability
estimate of the design is adjusted online according to new
operation records of the plant. The final remark is that
during the whole process, we do not hypothesize any priori
information about the distribution of noisy and achieve the
goal of distribution free, which ensures that the method

Fig. 2. Updated Bounds Based on Incrementally Arriving
Validation Data

proposed in this paper can be applied to wide range of
real plants without loss of efficiency.
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