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Abstract: We propose a method to efficiently estimate the Laplacian eigenvalues of an arbitrary,
unknown network of interacting dynamical agents. The inputs to our estimation algorithm are
measurements about the evolution of a collection of agents (potentially one) during a finite
time horizon; notably, we do not require knowledge of which agents are contributing to our
measurements. We propose a scalable algorithm to exactly recover a subset of the Laplacian
eigenvalues from these measurements. These eigenvalues correspond directly to those Laplacian
modes that are observable from our measurements. We show how our technique can be applied to
networks of multiagent systems with arbitrary dynamics in both continuous- and discrete-time.
Finally, we illustrate our results with numerical simulations.
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1. INTRODUCTION

The spectrum of the Laplacian matrix describing a net-
work of interacting dynamical agents provides a wealth of
global information about the network structure and func-
tion; see, e.g., Fiedler (1973); Mohar et al. (1991); Merris
(1994); Chung and Graham (1997); Mesbahi and Egerstedt
(2010); Bullo (2019), and references therein. For example,
the Laplacian spectrum finds applications in multiagent
coordination problems as in Jadbabaie et al. (2003); Olfati-
Saber et al. (2007), synchronization of oscillators in Pecora
and Carroll (1998); Dörfler et al. (2013), neuroscience such
as Becker et al. (2018), biology as in Palsson (2006), as
well as several graph-theoretical problems, such as find-
ing cuts (see Shi and Malik (2000)) or communities (see
Von Luxburg (2007)) in graphs, among many others, as
illustrated in Mohar (1997).

Due to its practical importance, numerous methods have
been proposed to estimate the Laplacian eigenvalues of a
network of dynamical agents. For example, Kempe and
McSherry (2008) proposed a distributed algorithm based
on orthogonal iteration (see Golub and Van Loan (2013))
for computing higher-dimensional invariant subspaces. In
the control literature, Franceschelli et al. (2013) define
local interaction rules between agents such that the net-
work response is a superposition of sinusoids oscillating at
frequencies related to the Laplacian eigenvalues; however,
this approach imposes a particular dynamics on the agents
in the network, which is unrealistic in many scenarios.
Aragues et al. (2014) proposed a distributed algorithm
based on the power iteration for computing upper and
lower bounds on the algebraic connectivity (i.e., the second
smallest Laplacian eigenvalue). An approach by Kibangou
et al. (2015) uses consensus optimization to deduce the
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spectrum of the Laplacian, but this requires a consensus
algorithm to be run on the network separately from the
dynamics. Using the Koopman operator, it has been shown
that the spectrum of the Laplacian may be recovered using
sparse local measurements, see Mauroy and Hendrickx
(2017); Mesbahi and Mesbahi (2019); unfortunately, these
methods require the system to be reset to known initial
conditions multiple times. Leonardos et al. (2019) pro-
posed a distributed continuous-time dynamics over mani-
folds to compute the largest (or smallest) eigenvalues and
eigenvectors of a graph.

We find in the literature several works more closely related
to the techniques used in this paper. For example, an ap-
proach known as Prony’s method reconstructs the parame-
ters of a uniformly sampled series of complex exponentials,
which is used for spectral estimation and deconvolution,
among other problems (see Potts and Tasche (2010); Kunis
et al. (2016)). In linear algebra we find a classical result,
referred to as the Newton-Girard equations (see, e.g., Her-
stein (2006)) which allows us to recover eigenvalues by
analyzing symmetric polynomials of the traces of powers
of the matrix. In a similar line of work, Preciado and
Jadbabaie (2013) used the spectral moments of a graph,
computed from local structural information, to compute
bounds on spectral properties of practical importance.
A related method uses tools from probability theory to
approximate the spectrum of a graph by counting the
number of walks of length k and then solving the classical
moment problem, as in Preciado et al. (2013); Barreras
et al. (2019). The latter approach requires only local
measurements of walks, but provides only bounds on the
support of the eigenvalue spectrum. Apart from estimating
the eigenvalues of a graph, we also find works aiming to
reconstruct the whole graph structure from the dynamics,
such as Shahrampour and Preciado (2013, 2014).
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In this paper, we propose an approach which uses only a
single sequence of measurements from the dynamics of a
multiagent system, without prior knowledge of the network
topology or initial condition. These measurements can
be taken locally from a single agent, or from any linear
combination of agents’ outputs; in any case, we do not
require knowledge of which agents are contributing to our
measurements. From this single sequence of measurements
we provide an efficient algorithm to estimate a subset
of Laplacian eigenvalues. In particular, we estimate the
eigenvalues corresponding to the observable modes of the
Laplacian dynamics. In comparison to other approaches,
our algorithm requires no parameter tuning, as the per-
formance does not depend on any parameters. These tech-
niques are applied in both discrete- and continuous-time
to networks of single integrators, as well as more general
multi-agent systems.

2. BACKGROUND AND NOTATION

Symbol Meaning

In n× n identity matrix
ei i-th vector in the canonical basis of Rn
V node set, V = {1, . . . , n}
E edge set, E ⊆ V × V

G = (V, E) graph with node set V and edge set E
⊗ Kronecker product

σ(X) := {λi}ni=1 eigenvalue spectrum of matrix X
δ(·) Dirac delta function

G = G(G) adjacency matrix of G, [G]ij = 1⇔ {i, j} ∈ E
D = D(G) degree matrix of G, [D]ii =

∑n

j=1
[G]ij

L = L(G) Laplacian matrix of G, L = D −G
L = L(G) normalized Laplacian of G, L = D−1G

Throughout this paper we use lower-case letters for scalars,
lower-case bold letters for vectors, upper-case letters for
matrices, and calligraphic letters for sets.

An undirected graph G = (V, E) has node set V and edge
set E , where {i, j} ∈ E means nodes i and j are connected.
In this paper, we assume G is a simple graph.

3. SPECTRAL ESTIMATION FOR DISCRETE-TIME
DYNAMICS

We begin our exploration by considering the discrete-time
dynamics of a network of single integrators. In this context,
we will present a methodology to estimate the eigenvalues
of the Laplacian matrix from a finite sequence of system
measurements. In Subsection 3.2 we will extend this result
to more general discrete-time agent dynamics, and will
consider the continuous-time case in Section 4.

3.1 Network of Discrete-Time Single Integrators

Consider the discrete-time dynamics of a collection of
single integrators,

x [k + 1] = Lx [k] , x [0] = x0,

y [k] = cᵀx [k] ,
(1)

where L := D−1G is the normalized Laplacian matrix, k ∈
N, and c,x0 are arbitrary (possibly, but not necessarily,
unknown) vectors in Rn. The evolution of the output
measurement is

y [k] = cᵀLkx0.

We may view our approach as a decentralized estimation
problem when c = ei, wherein agent i is attempting to
estimate all eigenvalues it can observe from only its own
outputs. In contrast, we may also view our approach as
an entirely centralized estimation problem if we have no
knowledge of the vector c. Between both extremes, we may
observe the weighted sum of the states of a subset S of
agents, hence c =

∑
i∈S⊆V βiei, which may correspond

to a group of agents collectively estimating the spectrum.
In what follows we propose an algorithm to recover the
eigenvalues of the normalized Laplacian L from the output
sequence y[0], y[1], . . . , y[2n− 1].

Let ui and wi be the i-th right and left eigenvectors
of L, respectively. Since L is always diagonalizable with
real eigenvalues (see Chung and Graham (1997)), we have
that L = UΛW , where Λ := diag(λ1, . . . , λn), U :=
[u1, . . . ,un], and W := [wᵀ

1 ; · · · ;wᵀ
n] = U−1; hence,

y [k] = (cᵀU) Λk (Wx0) =

n∑
i=1

ωiλ
k
i ,

where the λi are real, and the weights ωi are given by

ωi := [cᵀU ]i [Wx0]i = cᵀuiw
ᵀ
i x0. (2)

Define the following signed Borel measure on R:

µL(z) :=

n∑
i=1

ωiδ (z − λi) ,

which we refer to as the spectral measure of L. From (2),
we see that it is possible for ωi = 0 whenever cᵀui = 0
or wᵀ

i x0 = 0. Notice that if x0 is randomly generated,
then almost surely wᵀ

i x0 6= 0; hence, ωi = 0 for those
eigenvalues λi for which cᵀui = 0. Therefore, those eigen-
values corresponding to unobservable eigenmodes of the
Laplacian dynamics, according to the Popov-Belevitch-
Hautus (PBH) test (see Hespanha (2018)), will have ωi = 0
and it will be impossible to recover them from our obser-
vations. Moreover, for some (possibly deterministic) initial
condition x0, there are other (observable) eigenvalues that
our method will not be able to recover. In particular, it
may be that for some repeated eigenvalue λi, we have∑
j:λj=λi

ωj = 0. Hence, the support of µL is the set

SµL :=

λi ∈ σ (L) :
∑

j:λj=λi

ωj 6= 0

 .

Notice that, for a random initial condition x0, the set SµL
almost surely coincides with the set of eigenvalues corre-
sponding to observable eigenmodes in the PBH test. In
what follows, we state that the eigenvalues in this support
set are those that can be recovered by any algorithm using
these measurements, as demonstrated below.

Lemma 1. The eigenvalues which may be recovered from
the sequence of measurements (y[k])sk=0, for any finite s,
are exactly those in SµL .

Proof. Define I := {i ∈ {1, . . . , n} : λi ∈ SµL}, and then

y[k] =
∑
i∈I

ωiλ
k
i +

∑
i 6∈I:i≤j ∀j s.t. λj=λi

λki
∑

j:λj=λi

ωj .

By definition of SµL , the term
∑
j:λj=λi

ωj above is zero.

Hence, any eigenvalue λi 6∈ SµL will never appear in any
observation y[k]; therefore, this eigenvalue may not be
recovered from any finite sequence of measurements. 2
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In our algorithm, we use some tools from probability
theory, introduced below. The k-th moment mk of the
measure µL is defined by

mk :=

∫
R
zkdµL (z) =

∫
R
zk

n∑
i=1

ωiδ (z − λi) dz =

n∑
i=1

ωiλ
k
i .

(3)

Therefore y [k] = mk, i.e., the k-th observation from our
system is also the k-th moment of the spectral measure
µL. In what follows, we will propose a computationally
efficient methodology to recover the support of µL using
the sequence (y [k])

2n−1
k=0 = (mk)

2n−1
k=0 . Towards that goal,

we define the Hankel matrix of moments

H :=


m0 m1 · · · mn−1

m1 m2 · · · mn

...
...

. . .
...

mn−1 mn · · · m2n−2

 . (4)

The following result relates the rank of this Hankel matrix
to the cardinality of the support of µL.

Lemma 2. The rank of H in (4) satisfies

rk(H) = |SµL |.

Proof. Let us again define I = {i ∈ {1, . . . , n} : λi ∈ SµL}
and ω̄i :=

∑
j:λj=λi

ωj . Thus, we have mk =
∑
i∈I ω̄iλi.

Now let vi :=
[
1, λi, λ

2
i . . . , λ

n−1
i

]
, and then

H =



∑
i∈I

ω̄i
∑
i∈I

ω̄iλi · · ·
∑
i∈I

ω̄iλ
n−1
i∑

i∈I
ω̄iλi

∑
i∈I

ω̄iλ
2
i · · ·

∑
i∈I

ω̄iλ
n
i

...
...

. . .
...∑

i∈I
ω̄iλ

n−1
i

∑
i∈I

ω̄iλ
n
i · · ·

∑
i∈I

ω̄iλ
2n−2
i


=
∑
i∈I

ω̄iviv
ᵀ
i .

Post-multiplying H by an arbitrary vector z ∈ Rn, we
have that Hz =

∑
i∈I κivi where κi := ω̄iv

ᵀ
i z. Hence,

the column space of H is equal to the span of {vi}i∈I .
Since the λi for which i ∈ I are distinct, the vi are
linearly independent. Therefore, the rank of H is equal
to |I| = |SµL |. 2

With this Lemma in hand, we present our main result on
recovering the (observable) eigenvalues of the Laplacian.

Theorem 3. Given the sequence of observations (y [k])
2n−1
k=0

from the system in (1), define the following Hankel matrix

Y :=


y[0] y[1] · · · y[n− 1]
y[1] y[2] · · · y[n]

...
...

. . .
...

y[n− 1] y[n] · · · y[2n− 2]

 , (5)

and denote its rank by r. Then, the eigenvalues of L which
are in the support of µL are roots of the polynomial

pL (x) = xr + αr−1x
r−1 + · · ·+ α1x+ α0,

where the coefficients α0, . . . , αr−1 are given by
α0

α1

...
αr−1

=−


y[0] y[1] · · · y[r − 1]
y[1] y[2] · · · y[r]

...
...

. . .
...

y[r − 1] y[r] · · · y[2r − 2]


−1

y[r]
y[r + 1]

...
y[2r − 1]

.

Proof. By Lemma 1, we know that at most we may
recover all eigenvalues λi ∈ SµL . As before, let I =
{i ∈ {1, . . . , n} : λi ∈ SµL}. By Lemma 2, we know that
rk (H) = |I|, which we denote by r. For simplicity of
exposition, we re-index the λi so that I = {1, . . . , r}.
Define the following polynomial:

pL (x) :=
∏
i∈I

(x− λi) = xr + αr−1x
r−1 + · · ·+ α1x+ α0.

Notice that, since the eigenvalues are unknown, the coeffi-
cients of the polynomial are also unknown. In what follows,
we propose an efficient technique to find these coefficients.
Since the λi ∈ SµL are roots of pL, we have the following
system of equations:

λri + αr−1λ
r−1
i + · · ·+ α1λi + α0 = 0, ∀i ∈ I.

Multiplying each equation by the corresponding ωiλ
s
i , we

obtain

ωiλ
s
i

(
λri + αr−1λ

r−1
i + · · ·+ α1λi + α0

)
= 0, ∀i ∈ I,

Summing all the equations above over I, we obtain∑
i∈I

ωiλ
r+s
i + αr−1

∑
i∈I

ωiλ
r−1+s
i + · · ·+ α0

∑
i∈I

ωiλ
s
i

= mr+s + αr−1mr−1+s + · · ·+ α1m1+s + α0ms

= y[r+s] + αr−1y[r−1+s] + · · ·+ α1y[1+s] + α0y[s]

= 0,

where the first equality comes from the definition of mk in
(3) and the second comes from the fact that mk = y[k]
for all k. Considering the equations obtained for s ∈
{0, 1, . . . , r − 1}, we obtain a set of linear equations that
can be written in matrix form as follows:

y[0] y[1] · · · y[r − 1]
y[1] y[2] · · · y[r]

...
...

. . .
...

y[r − 1] y[r] · · · y[2r − 2]




α0

α1

...
αr−1

 = −


y[r]

y[r + 1]
...

y[2r − 1]

 .
Since rk (Hr) = r and mk = y[k], we can find a solu-
tion by a simple matrix inversion. Using the coefficients
{α0, . . . , αr−1}, we can compute the roots of pL to recover
the eigenvalues of L that are in the support of µL, i.e.,
those eigenvalues λi corresponding to the observable eigen-
modes of the Laplacian dynamics. 2

It is important to highlight the efficiency of this approach.
While Theorem 3 makes use of 2n observations (y [k])

2n−1
k=0 ,

in practice, fewer observations may be required. Since at
most r = |SµL | eigenvalues can be recovered, we can
build a k× k Hankel matrix of observations using the first
2k ≤ 2r observations from the system. Then, we should
stop taking observations whenever the rank of this Hankel
matrix ceases to grow (i.e., when k = r), or when 2n
observations are obtained, whichever occurs first. In other
words, at most 2n observations are required to recover
the eigenvalues of L which correspond to the observable
modes of the dynamics, but in practice fewer may be used.
Hence, to recover r eigenvalues, our approach needs only
2r sampled measurements from the system.

3.2 Network of Discrete-Time Identical Agents

In many applications, the network of interest will not only
contain single integrators, but instead will consist of agents
with more general dynamics. With this in mind, consider a
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network of n agents where each agent follows the dynamics
xi [k + 1] = Ax [k] + u [k], where xi is a d-dimensional
vector of states and u [k] is a linear combination of the
states of the neighboring agents of i, i.e.,

xi [k + 1] = Axi [k] +

n∑
j=1

lijxj [k] , xi [0] = x0iβ,

y [k] =

n∑
i=1

ciγ
ᵀxi [k] ,

(6)

where lij = [L]ij , ci = [c]i, x0i = [x0]i, β is the
unscaled individual initial condition, and γ is the unscaled
individual observation vector. In other words, all agents
start with the initial condition β weighted by x0i, and
all individual observations are γᵀxi[k] weighted by ci.
Stacking the vectors of states in a large vector x =
(xᵀ

1 , . . . ,x
ᵀ
n)

ᵀ
, the dynamics can be written as

x [k + 1] = (In ⊗A+ L ⊗ Id)x [k] , x [0] = x0 ⊗ β,

y [k] = (c⊗ γ)
ᵀ
x [k] .

We assume the state matrix A of each agent and the indi-
vidual unscaled initial condition β and observation vector
γ are known, but the (normalized) Laplacian matrix L is
unknown. We aim towards reconstructing the (observable)
eigenvalue spectrum of L from a finite sequence of outputs.
A technical difficulty in this case is that we no longer have
mk = y[k]; however, as we will see, we may still recover the
moments using the finite sequence of observations. This
result is summarized in the following theorem.

Theorem 4. Given the sequence of observations (y [k])
2n−1
k=0

from the system in (6), consider the Hankel matrix Y
defined in (5) and denote its rank by r. The moments of
µL satisfy the following equality:
m0

m1

...
m2r−1

=


b0,0ν0 0 · · · 0
b1,0ν1 b1,1ν0 · · · 0

.

..
.
..

. . .
...

b2r−1,0ν2r−1 b2r−1,1ν2r−2 · · · b2r−1,2r−1ν0


−1

y0
y1
...

y2r−1


where νk−s := γᵀAk−sβ, bk,s :=

(
k
s

)
, and the matrix

is invertible when γᵀβ 6= 0. Then, the eigenvalues of L
contained in the support of µL are roots of the polynomial

pL (x) = xr + αr−1x
r−1 + · · ·+ α1x+ α0,

where the coefficients α0, . . . , αr−1 satisfy
α0

α1

...
αr−1

=−


m0 m1 · · · mr−1

m1 m2 · · · mr

...
...

. . .
...

mr−1 mr · · · m2r−2


−1

mr

mr+1

...
m2r−1

.
Proof. Considering the diagonalization L = UΛU−1, we
have

(In ⊗A+ L ⊗ Id)k

=
[
(U ⊗ Id) (In ⊗A+ Λ⊗ Id)

(
U−1 ⊗ Id

)]k
= (U ⊗ Id) (In ⊗A+ Λ⊗ Id)k

(
U−1 ⊗ Id

)
= (U ⊗ Id)

[
k∑
s=0

(
k

s

)(
In ⊗Ak−s

)
(Λs ⊗ Id)

] (
U−1 ⊗ Id

)
.

Thus,

y [k] = (c⊗ γ)
ᵀ

(In ⊗A+ L ⊗ Id)k (x0 ⊗ β)

=

k∑
s=0

(
k

s

)
(cᵀU ⊗ γᵀ)

(
In ⊗Ak−s

)
(Λs ⊗ Id)

(
U−1x0 ⊗ β

)
=

k∑
s=0

(
k

s

)(
cᵀUΛsU−1x0

) (
γᵀAk−sβ

)
.

Hence, we obtain

y [k] =

k∑
s=0

(
k

s

)
νk−s

n∑
i=1

ωiλ
s
i =

k∑
s=0

(
k

s

)
νk−sms. (7)

From the sequence (y [k])
2n−1
k=0 , we obtain a lower triangular

system of linear equations that can be solved to find the
sequence of moments (mk)

2n−1
k=0 . Specifically, if we collect

2r observations, with bk,s =
(
k
s

)
, we have that (7) for

k = 0, . . . , 2r − 1 results in
y0
y1
...

y2r−1

=


b0,0ν0 0 · · · 0
b1,0ν1 b1,1ν0 · · · 0

...
...

. . .
...

b2r−1,0ν2r−1 b2r−1,1ν2r−2 · · · b2r−1,2r−1ν0




m0

m1

...
m2r−1


As long as ν0 = γᵀβ 6= 0, the above matrix is full-rank.
We may then recover the moments by a simple inversion,
and apply Theorem 3 to find the eigenvalues of L. 2

4. CONTINUOUS-TIME DYNAMICS

In the case of continuous-time dynamics, there are some
subtle but important differences to the case of discrete-
time. Fortunately, our main results are still applicable in
this domain, as we describe in the following subsections.

4.1 Network of Continuous-Time Single Integrators

Consider a network of coupled continuous-time single
integrators:

ẋ(t) = −Lx(t), x (0) = x0,

y(t) = cᵀx(t),

where L := D−G is the combinatorial Laplacian, which is
symmetric and, hence, diagonalizable with real eigenvalues
as L = UΛUᵀ. We thus have

y (t) = cᵀe−Ltx0.

In practice, we take discrete samples of the output with an
arbitrary period τ > 0; diagonalizing L = UΛW , we have

yk := y (kτ) = cᵀUe−ΛkτWx0

=

n∑
i=1

ωi
(
e−λiτ

)k
,

since Λ is diagonal, W = Uᵀ = U−1, and ωi as defined
in (2).

Similarly to the discrete-time case, we define the following
signed Borel measure on R :

µL (z) :=

n∑
i=1

ωiδ
(
z − e−λiτ

)
,

with k-th moment given by

mk :=

∫
R
zk

n∑
i=1

ωiδ
(
z − e−λiτ

)
dz =

n∑
i=1

ωi
(
e−λiτ

)k
= yk.

In contrast with the discrete-time case, the support of this

measure is SµL
:=
{
e−λiτ :

∑
j : λj=λi

ωj 6= 0
}

. However,
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(a) Network topology, with single agent
whose output is measured highlighted.

(b) Output y[k] = eᵀiLx0, where we ob-
serve only agent i.

(c) Comparison of true and estimated
eigenvalues.

Fig. 1. 10-agent preferential attachment network in discrete-time, generated according to Barabási and Albert (1999).
The initial condition is randomly generated as x0 ∼ Uniform[0, 1]n. There are 10 unique eigenvalues of L in this
case, which are all recovered via our estimation approach.

(a) Network topology, with agents whose
outputs are measured highlighted.

(b) Output y[k] = cᵀe−Lkτx0, where we
observe three agents with equal weight.

(c) Comparison of true and estimated
eigenvalues (repeated values are overlaid).

Fig. 2. 12-agent single integrator ring network in continuous-time, with sampling rate τ = 1 and random initial condition
x0 ∼ Uniform[0, 1]n. Here there are 7 unique eigenvalues of L, all of which are recovered via our estimation approach.

we may still apply Theorem 3 to recover the support of µL,
i.e., the quantities e−λiτ , from the finite sequence (yk)

2n−1
k=0 .

The eigenvalues of the Laplacian matrix corresponding to
the observable modes of the system may then be recovered
by taking a logarithm and dividing by −τ .

4.2 Network of Continuous-Time Identical Agents

Similarly to the more general setting in Section 3.2, we
consider the dynamics of a network of continuous-time
agents, which we describe (in a compact form) as follows

ẋ(t) = (In ⊗A− L⊗ Id)x(t), x (0) = x0 ⊗ β,

y(t) = (c⊗ γ)
ᵀ
x(t).

Hence, considering a sampling period τ > 0, we have that

y (kτ) = (c⊗ γ)
ᵀ
e(In⊗A−L⊗Id)kτ (x0 ⊗ β)

= (c⊗ γ)
ᵀ (
e−Lkτ ⊗ eAkτ

)
(x0 ⊗ β)

=
(
cᵀUe−ΛkτWx0

) (
γᵀeAkτβ

)
= νk

n∑
i=1

ωi
(
e−λiτ

)k
,

where νk := γᵀeAkτβ and ωi is defined in (2). Applying
Theorem 4 followed by a logarithmic transformation, we
again obtain the eigenvalues of the Laplacian matrix.

5. SIMULATIONS

In this section we illustrate our results on a variety of
simulated networks. In each case, some underlying network
structure is created which is unknown to us. We then
simulate the evolution of the system with random initial
condition x0 and an observability vector c which is un-
known to the algorithm, and then compare the estimated
eigenvalues to the true spectrum of the Laplacian matrix.

Figure 1 shows the result of using Theorem 3 on the ran-
domly generated 10-agent preferential attachment network
shown in Figure 1(a) (see Barabási and Albert (1999)),
where we model each agent using single integrator dy-
namics in discrete-time, as in (1). In Figure 1(b), we show
the evolution of our output signal measured from a single
agent highlighted in the figure. Figure 1(c) compares both
the true and estimated eigenvalues. In this case there are
10 unique eigenvalues of L and all of these are perfectly
recovered using a sequence of 20 measurements retrieved
from a single agent.

In Figure 2 we see the results of applying Theorem 3
followed by a logarithmic transformation on the 12-agent
ring network shown in Figure 2(a) with continuous-time
single integrator dynamics from Section 4. Here we observe
the sum of the measurements obtained from the three
highlighted agents; the overall measurement is shown in
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Figure 2(b). This network has only 7 unique eigenvalues,
all of which are estimated (without multiplicities) by
our algorithm after recovering the support of SµL

and
performing a logarithmic transformation, as shown in
Figure 2(c).

6. CONCLUSION

In this paper, we have proposed an efficient methodology
for recovering the observable eigenvalues of the Laplacian
matrix of a network of interacting dynamical agents using
a sparse set of output measurements. Unlike other meth-
ods, we require only a single finite sequence of measure-
ments from the multiagent network of length, at most,
2n. Moreover, we need no prior knowledge of the network
topology, initial condition, or which agents are contribut-
ing to the measurements. We develop our technique for sys-
tems in both discrete- and continuous-time. We consider
the case of agents modeled by single integrators, as well
as more complex dynamics. Our simulation results show
that we are able to recover the spectrum of the Laplacian
in all cases with high accuracy. Future work on this prob-
lem may extend the approach to other, potentially non-
diagonalizable, matrices, and consider the effects of noise
on the ability to recover the eigenvalues.
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