
Control strategies for adaptive resource
allocation in cloud computing

Tiago Salviano Calmon ∗,∗∗ Amit Bhaya ∗∗ Oumar Diene ∗∗

Jonathan Ferreira Passoni ∗∗ Vinicius Michel Gottin ∗

Eduardo Vera Sousa ∗

∗Dell EMC R&D Center Rio de Janeiro, Rio de Janeiro, RJ
21941-907 Brazil

∗∗ Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901
Brazil

Abstract: Using a compute infrastructure efficiently to execute jobs while respecting Service
Level Agreements (SLAs) and thereby guaranteeing Quality of Service (QoS) poses a number
of challenges. One such challenge lies in the fact that SLAs are set prior to the execution of
a job, but the execution environment is subject to a number of possible disturbances, such
as poor knowledge about actual resource necessity, demand peaks and hardware malfunctions,
amongst others. Thus by using a fixed resource allocation, the manager of a shared computing
environment risks violating user SLAs. Furthermore, the complexity of managing several
workload executions increases with the number of workloads, implying the need for an automatic
method to manage and control the execution of workloads. The execution time SLA is specially
important in streaming scenarios such as web applications and continuous video processing,
and is the focus of this paper. A method based on adaptive model predictive control (aMPC)
is proposed here to adapt the amount of allocated resources to iterative workloads. The
methodology is tested applied to Deep Learning Workloads, in standalone and multi-workload
versions. The results show that using adaptive optimal control with a linearized model improves
performance with respect to simpler control laws as well as reinforcement learning approaches.

Keywords: Cloud computing, model predictive control, adaptive control.

1. INTRODUCTION

Over the last few years, Cloud Computing has gained the
attention of businesses because of its benefits, which in-
clude pay-per-use computation for customers and resource
sharing for providers. Through virtualization, the main
technology behind clouds, it is possible to abstract a pool
of computation devices and offer computational resources
better tailored to customer needs, who might contract
more computation as their necessities grow.

In such an environment, multiple resource abstractions
have emerged, the most prominent example being con-
tainers. Through the usage of containers, an infrastruc-
ture provider can operate in a different namespace of the
operating system. It is also possible to offer computation
without the customer needing to know exactly which un-
derlying infrastructure is running his code. This can be
achieved in the Platform as a Service (PaaS) paradigm and
also the Function as a Service (FaaS) paradigm, which is
also known as serverless computing.

In each of these paradigms, the usual agreements upon
quality of service (QoS) expected by the customer are ex-
pressed through several Service Level Agreements (SLAs).
These include bounds on response time, execution time,

? ABs work was partially supported by BPP grant 309625/2011-
4 from the Brazilian agency CNPq and grant APQ1-210.509/2016
from the agency FAPERJ of the state of Rio de Janeiro.

uptime percentage, among others. The levels of SLAs are
usually agreed upon in the contract prior to the service de-
livery through reference values called SLA metrics, which
the provider attempts to respect regardless of conditions
that might affect the execution environment. Violating
these agreements results in fines for the service provider
and also diminishes the trust that a customer attributes
to it.

One way to ensure SLAs is to dedicate a fixed amount of
resources to them. There are two issues with this approach.
Firstly, in general, an application cannot be assumed to be
bounded by one particular resource. Some applications,
for example, might have an IO-intensive phase and, after-
wards, a compute-intensive phase. Dedicating resources to
an application in such a scenario is inefficient, resulting
in idle resources at the different phases of the application.
Secondly, the initial guess the quantity of resources are
needed to run an application might be an under- or over-
estimate. Obtaining an accurate estimate is certainly not
a trivial task, especially if the workload is unknown.

In contrast with the hypothesis underlying SLAs, which
are contracted prior to the execution of a job, the execution
environment is quite dynamic. New workloads might ar-
rive and compete for resources; unplanned demand peaks
might occur, disrupting the original workload planning due
to tasks with higher priorities, greater need to share the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7963



environment and overheads might arise because of context
switching.

Service providers aim to maximize profit by minimizing
resource usage while respecting SLAs. Static resource
allocation, which dedicates a fixed amount of resources
to a job from start to completion, is clearly sub-optimal.

This paper proposes a methodology to dynamically al-
locate resources based on feedback of the job execution
and prior knowledge of its stages: specifically, the task
of controlling iterative workloads, with finite or infinite
lengths. Examples of such workloads are the training of
most machine learning algorithms, such as training of Deep
Neural Networks (DNNs); processing images in a video in
real-time, for example, in autonomous vehicles; processing
requests in a RESTful API. (Pautasso et al. (2013))

The remainder of this paper is organized as follows.
Section 2 presents a brief literature review. Section 3
formulates the optimization problem for both the single
workload/single metric problem as well as for the multi-
workload/multi-metric problem. An analytical solution
to the Single Input Single Output (SISO) problem is
provided. Section 4 presents results and compares them to
those obtained using an adaptive deadbeat controller, as
well as a Reinforcement Learning (RL) solution based on
Deep Q Networks. Finally, section 5 presents conclusions
and future work.

2. LITERATURE REVIEW

The area of adaptive software has drawn a lot of attention
with the advent of Cloud Computing. Efficiently allocating
resources is paramount for infrastructure providers, and,
in such a market, might make the difference between
company success or failure. Indeed, many solutions for this
problem have been proposed in different fields. Solutions
based on Control Theory, Queuing Theory and Machine
Learning based solutions are the methods of choice, for
purposes of comparison with the proposed method.

Queuing theory solutions are somewhat similar to those
obtained using control theory in terms of using a transfer
function between requests and the SLA metrics. However,
these transfer functions are derived directly from queuing
models, which gives the system less flexibility in terms
of demand rates, controls and fine tuning. The actuation
possibilities in these kinds of works are usually the number
of servers performing request processing and obeying the
same distribution of throughput power. Some examples of
publications using this approach are Goudarzi and Pedram
(2011), Desnoyers et al. (2012).

Machine Learning based approaches such as those in
Gambi et al. (2016), Chen et al. (2016) assume that the
correct allocation can be found using a trained algorithm.
They usually do not take into account the dynamics of the
workload but focus instead on characterizing workloads
that are better suited for co-allocation and determining
the quantity of resources to be assigned to each workload
using a static predictor.

Solutions based on control theory model the relationship
between resource allocations and performance metrics as
a differential or difference equation system. The controller

is then synthesized based on the nominal characteristics of
the plant and offers some benefits, stability and set-point
tracking being the most important and usually found in
the solutions.

Liu et al. (2005) proposed a solution using system identi-
fication tools to obtain a plant, and then designed a linear
feedback controller for the plant, evaluating performance
on real data. In their setting, the plant is linear and as-
sumed to be fixed over time, which is a strong assumption
for the particular problem of controlling infrastructure
since the plant itself is nonlinear, as shown in figure 1.
Unmodeled dynamics also affect the performance of a fixed
controller adversely.

Angelopoulos et al. (2016) describe the use of model
predictive control (MPC) in software adaptation, for an
example problem of setting up meetings using software,
and the multiple goals associated with it. The authors
provide a formal description of MPC and apply it to their
example. The proposed solution requires a learning phase
to be carried out before the running stage. Also, even
with the adaptation provided by the MPC framework, the
model parameters are fixed after the training phase.

Farokhi et al. (2016) uses an adaptive controller and
focuses on memory control for VMs, whereas our work is
more general in terms of resources. Furthermore, Farokhi
et al. (2016) also require a warm-up time using default
plant settings before starting to adapt to the environment.

In Nathuji et al. (2010), the authors model the system as
a Multi-Input Multi-Output (MIMO) system, with inputs
being generically defined as the levers available to oper-
ators such as the virtual processor capping mechanism.
Outputs are also generally defined as SLA metrics of in-
terest. In a sense, it is more of a definition of a framework
than a solution. The main contribution is to consider a
sum of step functions, defined as Q-States, which, in turn,
define utility.

In Kusic et al. (2009), the proposition is to employ a
two-level control using Model Predictive Control (MPC).
Level zero control assigns a portion of the Virtual Machine
(VM) resource to each cluster. The Level 1 controller is
tasked with the control of the size of each cluster and
the amount of hosts turned on. These controllers work in
tandem with different timespans. Level 0 control is used at
each iteration, whereas the level 1 controller algorithm is
more time consuming and needs to be triggered at each k
timesteps, with k being a ratio between control evaluation
time and the actual execution time of the workload.

In Shevtsov and Weyns (2016) the authors couple adaptive
controllers for multiple different goals with an optimization
procedure to decide allocations based on the aforemen-
tioned goals with possible trade-offs between them. This
work also relies on a learning phase and a subsequent
operation phase. The authors do not provide details of
the optimization procedure when trade-offs need to be
considered.

In Cerf et al. (2016) the authors rely on a MPC control
strategy to control Hadoop Clusters. Their goal is to
minimize the usage of control actions, and, thus, the
MPC formulation is only triggered when the cost of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7964



changing controls is below a predetermined percentage of
the current cost. This feature is becoming less important
in a container-based execution environment, where costs
of reconfiguration in terms of time and orchestration is
small. Furthermore, it only considers a single workload
with varying load through time.

In Wang et al. (2015), a hierarchical approach consist-
ing of optimization of resources at the cloud level and
dynamic fuzzy model predictive control at the host level
is proposed. Wang et al. (2015) relies on fuzzy logic for
model estimation and genetic algorithm for solving the
MPC problem. These approaches, combined, will result in
the amount of resources allocated per workload. On top
of that, a cross-host resource manager is responsible for
moving VMs through hosts if their capacity is exceeded.
This approach is interesting, although there are limitations
considering the possibly time-consuming fuzzy estimation
plus resource allocation using a genetic algorithm. Further-
more, the FMPC formulation does not address resource
limits or multiple workloads sharing the same host, leaving
these decisions for the cross host resource manager.

3. PROBLEM FORMULATION AND PROPOSED
SOLUTION

In a data center, cloud environment, or any other shared
execution environment, users must compete for resources
in order to run their workloads within acceptable service
levels. The infrastructure provider, on the other hand,
wants to ensure that a maximum number of users are
running their workloads concurrently in order to enhance
infrastructure utilization and maximize profits.

In a simple setting with less than a dozen workloads, an
operator can simply schedule these jobs to run without
concurrency and this will be an acceptable solution. In
the ever-growing real data centers and clouds nowadays,
the reality is different: hundreds or even thousands of
users want to run their workloads with different service
levels. The infrastructure manager must deal with this
complexity and assign an appropriate amount of resources
to each of the users in accordance with their needs. This
situation has the following characteristics:

• The management task becomes too complex for a
single operator. With multiple human operators, com-
munication issues arise, and inter-connectivity of
workloads becomes close to impossible to be properly
dealt with, making infrastructure usage inefficient;
• Since the shared execution environment is highly

dynamic, it does not suffice to make a good allocation
at the beginning of the workload; instead, executions
must be tracked and allocations corrected over time;
• The relationship between allocations and service level

for every single resource and every single service level
metric cannot be assumed to be known a priori.
Instead, it is an important task to learn the dynamics
ruling these relationships as well.

We now formalize the problem in mathematical terms. Let
x denote the state or service level, and let u[k] be the
amount of a particular resource allocated to the workload
at discrete time instant k. As an example, inspection of
response times of a neural network w.r.t. allocated CPU

amounts leads to the behavior depicted in figure 1. In this
picture, the points represent the mean of observed values
in 100 executions, in seconds, and the error bars are the
standard deviations for each of the limits.

Fig. 1. The relationship of time per epoch and amount
of CPU core allocation for a Deep Neural Network
Training Workload for 100 executions of epochs using
a fixed allocation of resources, which are represented
in the x-axis.

In particular, there is a class of workloads that is iterative,
i.e., consists of repeated iterations of equal sizes over
time. Such workloads are present in stream use cases
such as request processing by a RESTful API or real-
time surveillance, and also on batch workloads such as
training of the majority of machine learning algorithms,
optimization procedures, and many others.

This leads us to propose the following non-linear model:

u[k] = f(x[k]) (1)

x[k + 1] = g(u[k] + ∆u[k]) (2)

where f and g are assumed to be continuous functions,
that are inverses of each other: f mapping service level
to resource usage and g vice versa. Using a Taylor series
expansion, we write:

x[k + 1] = g(f(x[k]) + ∆u[k]) (3)

x[k + 1] = g(f(x[k])) + g′(u[k])∆u[k] +O(g′′) (4)

By neglecting the higher order terms, and noting that
g(f(x(k)) = x(k) (since g and f are inverses of each other),
we are led to a model in the increment ∆u[k] of the form:

x[k + 1] = x[k] + b(x)∆u[k] (5)

where b(x) denotes g′(f(x)). Observe that this approx-
imate model contains the product of a function of the
state x and the control ∆u and is therefore nonlinear. To
use this approximate model in an environment where the
dynamics change, the usage of Online Learning algorithms
is employed. One of the simplest forms of Online Learning
is Recursive Least-Squares (RLS) Kailath et al. (2000). By
using a online adaptation algorithm such as RLS, one is

able to learn instantaneous values of estimates b̂(x[k]) of
b(x). The dynamical model to be controlled is then written
as:

x[k + 1] = x[k] + b̂(x[k])∆u[k] (6)

3.1 Analytical Solution for optimal control of one workload

In this section, we provide a formalization of the optimal
control problem to be solved iteratively. This problem can
be solved efficiently with several available optimization
tools or, for the specific case of a single workload, solved
analytically to generate an optimal update rule for the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7965



controller. A convenient formulation is as the following
discrete-time optimal control problem with a quadratic ob-
jective function which is a weighted sum of the deviations
from the SLA summed with the square of the incremental
control:

min
u

J(x, u) := wx(x[k]− r)2 + wu(u[k])2 (7)

s.t. x[k + 1] = x[k] + b̂[k]∆u[k]

u[k] < Umax

where wx and wu are the weights assigned to set-point
deviation and control action, respectively.

Defining w = wx

wu
, the compact form of the objective

function is:

J(x, u) = w(y − r)2 + u[k]2 (8)

and appropriate choice of w allows a trade-off between
meeting the SLA and resource allocation.

For this simple constrained optimization problem, the
solution can be found by calculus plus constraint checking:

∂J

∂u
= −2wb(x)(x− b(x)u− r) + 2u (9)

Setting the right hand side to zero yields u∗:

u∗ =
wb(x)

(1 + wb(x))2
(x− r) (10)

Finally, we must check if the local extremum u∗ is a
minimum, maximum or saddle point, by checking the
second derivative of J w.r.t. u

∂2J

∂u2
= 2(wb2(x) + 1) (11)

which is always a positive number for w > 0.

3.2 Optimal Control Problem Proposition for Multiple
Workloads

After posing the problem of allocating a single workload
in section 3.1, we now present an optimal control strategy
that solves the problem of allocating multiple workloads
in a single machine with a finite amount of resources. In
this case, Umax is once again defined as the maximum
amount of resources available in the machine. Finally, a
new version of the optimal adaptive control problem is
posed, for multiple workloads

The value of u∗[k] to be used at step k is determined by
solving the following constrained nonlinear programming
problem:

min
u

k+d∑
i=k

‖x[i]− r‖2 + ‖u[i]‖2 (12)

subject to x[i+ 1] = x[i] + B̂k∆u[i]

1 · u[i] < Umax; i ∈ {k, · · · , k + d}

Using this formulation, we propose to use a control scheme
based on Model Predictive Control (MPC) to iterativelly
solve this problem for a finite number of steps at each
iteration using the current estimated matrix B̂k.

where 1 is a vector of ones of appropriate size and d is
the size of the optimization window. The resulting control
loop is depicted as a block diagram in figure 2.

Optimizer

Controller Plant
r(k) z

z−1

z
z−1

e(k)

−
+

RLS

∆u(k)

∆̃u(k) ũ(k) u(k)

y(k)

b̂(k)

y(k)

xU = λ1 · u(k)

xL = λ2 · u(k)

λ2 ≤ 0 ≤ λ1

Fig. 2. The block-diagram for the solution for multi-
workload control. There are three main components,
the control module, the adaptation module, repre-
sented by the RLS block and the optimization pro-
cedure. The two blocks representing saturation pre-
vent actuations signals from becoming too large and
affecting the validity of the approximation in equation
(5).

4. RESULTS AND ANALYSIS

In this section we present the architecture used for exper-
imental validation architecture, the results obtained using
our methods and baselines usually used in such scenarios.

We begin by describing our testing environment to com-
pare control schemes. We used a Virtual Machine inside
a Dell EMC vBlock, and used container-based solution
to share resources between applications. The virtual ma-
chine used contains 32 virtual CPU cores, each operating
at 2.8 GhZ with 32 GB of RAM memory. The virtual
machine also had the Ubuntu Operating System version
16.04 installed. Although we used a Virtual Machine on
an enterprise-level array, all experiments reported in this
paper can be executed in a common desktop computer
or laptop. The container-based solution used was Docker,
which allows the manager to switch allocations by just
sending command-line instructions, which can be embed-
ded in the code. Another interesting feature of Docker
is that it allows for fractional number of CPU cores to
be assigned to each task, since it does time-sharing of
the pool of available CPU cores. Finally, it is noteworthy
that, while Docker needs a time window to adapt to the
new allocation, this time window is usually much smaller
than 1 epoch of training of a Neural Network. The overall
architecture is detailed in figure 3.

First, we test the controllers against a single workload
with unknown resource usage. Justification for the usage of
control is also provided by an execution with disturbance.
The second test is to control multiple workloads at once,
using again the different control methodologies. We use the
adaptive Model Predictive Control methodology proposed
in this paper against a fixed feedback controller.

4.1 Standalone Test

In this test, a Deep Neural Network, as described in table
1 to predict handwritten digits from the MNIST dataset
LeCun et al. (2010) was trained alone. There are two sets
of tests in this section, one in which we just want to

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7966



Fig. 3. The testing environment used to test all three
methodologies. The workloads are executed as docker
containers, and, at each iteration, they report their
metrics to kafka, a high-performance framework for
real time streaming messages. These metrics are cap-
tured by the monitor module, which shares it to
other components of the control module, namely the
adaptation module, and the controller. After a control
decision is formulated, the actuator applies it in the
docker daemon.

Layer # of Neurons # of Inputs

Dense 1 + ReLU 512 401920
Dense 2 10 5130
Softmax 10 10

Table 1. Description of Tensorflow’s sample
Deep Neural Network to predict handwritten
digits from the MNIST dataset LeCun et al.

(2010).

regulate to their set-points without any disturbances and
another one with the same goal but with another unknown
workload starting at the middle of the execution of the
controlled workload.

In both executions, we are able to see in figure 4 that
the controller is able to track the set-points, even though
for higher values of the weighting parameter w (defined in
3.1) oscillatory behavior is observable. This happens due
to the fact that w is being used to scale the importance
of set-point deviation in comparison to control usage. It
is natural that, for higher values of w, more aggressive
actions are chosen. This leads to oscillatory behavior in
some cases, as depicted in the choice of w = 3.33.

Another experiment done was to validate the necessity of
a controller, instead of using a nonlinear regression tech-
nique only at the beginning. First, the non-linear regres-
sion assumes some knowledge of the workload, whereas the
controller does not. Second, and most important, having
a reasonable estimate at the beginning will not help in
the case delineated in figure 5, in which a concurrent
workload (in this experiment, just a smaller execution
of the same training procedure of a Neural Network to
recognize handwritten digits) is added in the middle of
the execution of the controlled workload.

The proposed analytical optimal control methodology is
compared with a discrete action Deep Neural Network
trained using Q-Learning theory, whose allowable actions
are described in equation (13), using ε = 0.1 and KMAX =
5 and an adaptive deadbeat controller, whose control law
is described in equation (14). We also couple the deadbeat
controller to a saturation in order to not allow it to deviate
from the linear zone corresponding to the instantaneous
linearization found with the RLS block.

Fig. 4. Using the analytical optimal feedback law to control
a single workload with varying values of w. Oscillatory
behavior appears with lower values, and settling time
increases in correspondence to the magnitude of the
weighting parameter w (defined in 3.1).

Fig. 5. Using the analytical optimal feedback law to control
a single workload and w = 1, adding a noisy container
in the middle of the execution. The controller is able
to increase the resources used by the container in
order to not suffer performance issues.

ai = ε · 2±k; k ∈ {0, 1, · · · KMAX} (13)

u[k] =
1

b̂k
· e[k] (14)

The comparison between the methodologies is performed
using the Sum of Time Absolute Error (STAE), which is
the discrete version of the widely used Integral of Time
Absolute Error (ITAE). This criterion can be calculated
according to equation (15).

STAE =

kf∑
k=k0

= k · ‖(y[k]− r[k])‖2 (15)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7967



Fig. 6. Comparing analytical optimal solution with q-
learning and deadbeat controller approaches. Clearly,
the approach using Q-Learning takes a longer time
to settle, whereas the deadbeat controller and the
analytical optimal have similar performance.

Methodology STAE

OptControl 351.43± 25.55
Deadbeat 409.30± 32.21
DeepRL-Q 653.10± 77.44

Table 2. Comparison between each of the
methodologies’ performance in terms of STAE

for five runs.

Table 2 shows a comparison between different methodolo-
gies using the sample workload of training a Deep Neural
Network to predict handwritten digits from MNIST with
40 epochs and using TensorFlow (Abadi et al. (2015)). At
the end of each epoch, which is considered the iteration in
this particular test, the time is measured and the controller
decides what kind of adaptation it will perform on the
number of CPU cores.

4.2 Multi-Workload test

The adaptive MPC controller was also tested for multiple
workloads interfering with each other. In the multi work-
load test, we set two DNN trainings to run in parallel
and assign a time per epoch set-point to each of them.
Each of these workloads are executed using the set-point
as 25s and with starting allocation of 4 full CPU cores.
By performing this experiment, the goal is to check if the
proposed methodologies are robust to work with multiple
workloads. Details of both executions can be found in
figure 7, in which both workloads track the set-points
determined to them after a few epochs.

5. CONCLUSION AND FUTURE WORK

In modern data centers and other shared computational
environments such as clouds and edge computing, it is
increasingly important to abstract away the management
of workloads due to the increasing complexity of the envi-
ronment. In such a scenario, it is important to automatize
SLA compliance for workloads in order to enhance prof-
itability and avoid penalties, fines and dissatisfaction of
the users.

Fig. 7. Multi workload test. Both Neural Networks were
trained at the same time and machine. At each
iteration, their metrics was sent to a solver in a
different machine, that would process the data and
optimize for 10 steps. The next allocation was chosen
and the controller would wait another epoch before
optimizing again.

In this work, a method for automatically controlling it-
erative workloads was presented. This method relies on
system approximation and online identification of a cou-
pling matrix between SLA metrics and the amount of
resources dedicated to a workload. We further evaluated
this method against two other methodologies, a deadbeat
controller based on the same adaptation engine and a
Deep-Q network that uses a Deep Neural Network as an
approximator for its reward function, which is just the
absolute error.

Finally, this method was also evaluated when more than
one workload is running in the same environment, with
results similar to those of the single workload experiment.

For future work, it would be interesting to inspect the
combined behavior of limiting multiple resources for a
workload and evaluate the best kinds of models for them.
Another interesting direction is to further explore Re-
inforcement Learning algorithms, in special actor-critic
setting and other continuous action variants. Finally, ap-
plying the same methodologies here proposed to different
problems such as online selecting the correct batch size for
training a neural network within a time constraint is also
interesting.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Wat-
tenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heteroge-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7968



neous systems. URL http://tensorflow.org/. Soft-
ware available from tensorflow.org.

Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E.,
and Mylopoulos, J. (2016). Model predictive control for
software systems with CobRA. In Proceedings - 11th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2016, 35–
46.

Cerf, S., Berekmeri, M., Robu, B., Marchand, N., and
Bouchenak, S. (2016). Cost function based event trig-
gered model predictive controllers application to big
data cloud services. In 2016 IEEE 55th Conference on
Decision and Control (CDC), 1657–1662. IEEE.

Chen, M., Huang, S., Fu, X., Liu, X., and He, J. (2016).
Statistical Model Checking-Based Evaluation and Op-
timization for Cloud Workflow Resource Allocation.
IEEE Transactions on Cloud Computing.

Desnoyers, P., Wood, T., Shenoy, P., Singh, R., Patil, S.,
and Vin, H. (2012). Modellus: Automated modeling
of complex internet data center applications. ACM
Transactions on the Web, 6(2).

Farokhi, S., Jamshidi, P., Bayuh Lakew, E., Brandic, I.,
and Elmroth, E. (2016). A hybrid cloud controller
for vertical memory elasticity: A control-theoretic ap-
proach. Future Generation Computer Systems, 65, 57–
72.

Gambi, A., Pezzè, M., and Toffetti, G. (2016). Kriging-
Based Self-Adaptive Cloud Controllers. IEEE Transac-
tions on Services Computing, 9(3), 368–381.

Goudarzi, H. and Pedram, M. (2011). Multi-dimensional
SLA-based resource allocation for multi-tier cloud com-
puting systems. In Proceedings - 2011 IEEE 4th In-
ternational Conference on Cloud Computing, CLOUD
2011, 324–331.

Kailath, T., Sayed, A.H., and Hassibi, B. (2000). Linear
estimation. Prentice Hall.

Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N.,
and Jiang, G. (2009). Power and performance manage-
ment of virtualized computing environments via looka-
head control. Cluster Computing, 12(1), 1–15.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, 2.

Liu, X., Zhu, X., Singhal, S., and Arlitt, M. (2005).
Adaptive entitlement control of resource containers on
shared servers. 2005 9th IFIP/IEEE International
Symposium on Integrated Network Management, IM
2005, 2005, 163–176.

Nathuji, R., Kansal, A., and Ghaffarkhah, A. (2010). Q-
clouds: Managing performance interference effects for
QoS-aware clouds. EuroSys’10 - Proceedings of the
EuroSys 2010 Conference, 237–250.

Pautasso, C., Wilde, E., and Alarcon, R. (2013). REST:
advanced research topics and practical applications.
Springer.

Shevtsov, S. and Weyns, D. (2016). Keep It SIMPLEX:
Satisfying multiple goals with guarantees in control-
based self-Adaptive systems. Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, 13-18-Nove, 229–241.

Wang, L., Xu, J., Duran-Limon, H.A., and Zhao, M.
(2015). Qos-driven cloud resource management through
fuzzy model predictive control. In 2015 IEEE Inter-

national Conference on Autonomic Computing, 81–90.
IEEE.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7969


