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Abstract: For a pure electric car-following system, if the auto-following vehicle acts in
an aggressive following manner, battery life fades evidently, since overcharging or over-
discharging damage the cell irreversibly. In this regard, this paper proposed an artificial
potential function for battery life extension. First, the electric vehicle physical model and
an empirical lithium-ion battery model have established form real-world data measurement.
The physical layer models car-following dynamics and the battery model describes the energy
consumption. Second, with the perceptive of the battery life in a loss-minimal, optimize manner,
the controller mathematically computes the optimal acceleration/deceleration value with the
Lagrange multipliers method. Then using the Matlab curve fitting tool toolbox to fusion optimal
acceleration data with potential function, thus the acceleration consistent rule is realized through
the consistency of an artificial potential function. Finally, the control strategy is validated
through a simulation test in Matlab/Simulink, and the results show that the proposed control
strategy extends battery life while keeping good tracking ability.
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1. INTRODUCTION

Recent studies have been started to explore the intro-
duction of multi-objective, e.g. spacing control, electricity
economy, and string ability analysis, into the car-following
system Li et al. (2010). The game theory techniques con-
sider each autonomous vehicle as an agent, and the con-
troller design is seen as a game between the actions of each
agent and the disturbances introduced by the environmen-
t Li et al. (2017a). But, this approach has exponential
complexity. In Luo et al. (2015), the author proposed a
position-based nonlinear model predictive control strategy
for the i-Hybrid electric vehicle, which coordinates track-
ing safety, fuel consumption, and ride comfort subject to
terminal constraints on stable tracking. Although model
predictive control is a promising way to solve the multi-
objective problem, it shows undesired computational com-
plexity. Thus, game theory and model predictive control
both cannot easily embed multiple design objectives in
battery life optimal applications.
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It is noted that for a pure electric car-following system,
the performance is highly dependent on energy storage
devices functionality to predict and control critical health
issues Asadi and Vahidi (2010). And in the car-following
scenario, the rear car needs frequent acceleration and de-
celeration to ensure the desired distance, and this has a
great impact on battery life. Thus, accurate and instan-
taneous information on the state of the battery, such as
state of charge and state of health, should be considered
into a car-following control strategy to guarantee safe and
reliable battery operation He et al. (2012). But, most work
only focuses on the lifetime of batteries due to degradation
that occurs with cycling and calendar aging.

To this point, a feasible and effective algorithm with low
computational complexity is needed. In this paper, we
first model the car-following system dynamics. Then find
the coefficient of each vector in the linear combination of
the gradients of the constraint equation by solving the
system of equations. Lastly, using the Matlab cftool to
fusion optimal acceleration data with potential function,
so the acceleration consistent rule is realized through the
consistency of an artificial potential function. Thus, artifi-
cial potential functions based on the Lagrange multipliers
method are developed as a control strategy, with percep-
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tive of the battery state of charge and state of health in a
loss-minimal, optimized manner.

The paper organized as follows: electric vehicle longitudi-
nal dynamic model are constructed in Sec. 2. In Sec. 3,
the Lagrange multiplier method based Artificial Potential
Function control strategy is designed. Then experiments
are conducted to prove the effectiveness of the control
strategy followed with result analysis and conclusion sum-
marized in Sec. 4 and Sec. 5, respectively.

2. ELECTRIC VEHICLE LONGITUDINAL DYNAMIC
MODEL

As sketched in Fig. 1, the green area represent a relative
safe position and domain by attractive force, while the
distance between dsafe,max and dsafe,min denote the warn-
ing distance, which affected by repulsive force. And the
dsafe,min are the minimum distance when drive into this
area, enormous repulsive force will be added.

2.1 Electric vehicle powertrain model

In this paper, we use the energy consumption model in Li
et al. (2017b), which is a quasi-steady backward approach.

Pt = (αvf
2 + frmg +

bvf
Rt

) · vf (1)

where α = 0.5ρCDAf is the aerodynamic resistance
constant determined by air density ρ, Af is the frontal
area of the EV (1.8 m2), CD is the coefficient of drag
(0.3); fr is the rolling resistance constant (0.015); g is the
gravity acceleration; vf is the velocity of vehicle; b is the
bearings damping coefficient (1.0 m) and Rt is an vehicle
tire radius (0.3 m).

The motor power loss expression and regenerative braking
power is defined as below:

Pm =
r ·Rt
K2

· (maf + αvf
2 + frmg +

bvf
Rt

)2 (2)

Pg = ηgmafvf (3)
where r is the resistance of the conductor, η is the efficiency
of the generator. The DC-DC converter loss ηDC = 0.96
for battery and ancillary power Pa = 7.0Kw is consider
as the constant, which not determined by velocity and
acceleration. This part can described as:

Ploss = (1− ηDC)Pbat + Pa (4)

Based on the above introduce, the instantaneous power of
a pure electric vehicle can be measured with the equation
below:

Pbat = Pt + Pm + Pg − Ploss (5)
As treated in paper Li et al. (2017b), these source of power
consumption are assumed to be mostly independent, and
thus their effects can be summed up to embody the total
energy consumption.

2.2 Lithium battery model

(a) SOC-OCV model The internal resistance model as
follows:

Vcell(k) = U(k)− i(k) ·R (6)
where Vcell, U , i andR represents the terminal voltage,open-
circuit voltage, current, and internal resistance of cell at
time sequence k, respectively.

Fig. 1. Side view of car-following system

A function describes the quantitative relationship between
state-of-charge Open Circuit Voltage (OCV) Rahimi-Eichi
et al. (2013) is used to calculate Vocv(k), which is defined
as:{
Vocv(w) = K0 − K1

w −K2w +K3 ln(w) +K4 ln(1− w)

Vcell(k) = Vocv −R · i
(7)

where w, Vocv, Vcell(k) is the battery SOC, instantaneous
OCV, measured cell voltage, respectively. Thus, the pa-
rameters K0, K1, K2, K3, K4 can map the current SOC
estimation value onto an accurate OCV.

Given the terminal cell power Pbat = Vocv · Ibat, And then
the SOC dynamics can be delineated by

soc(k + 1) = soc(k)− i(k) ·∆t
Q

(8)

where soc, Q, and ∆t are the cell SOC, the nominal
cell capacity, and the sampling interval, respectively. The
following electrical constrains must be fufilled when oper-
ating the EV powertrain:

imin ≤ i(k) ≤ imax

socmin ≤ soc(k) ≤ socmax

where imin and imax are the cell current bounds (maximum
charge/discharge current); socmin and socmax are the SOC
bounds.

(b) Health model A semi-empirical life model is adopted
in this paper to simulate the capacity loss of the battery
cell. The activation energy Ea in[J/mol] and the power-
law factor z are determined by:

Ea(c) = 31700− 370.3c z = 0.55

It note that 20% capacity loss is considered as end-of-
life(EOL) of automotive battery, and the total discharge
Ah throughput Atol is, therefore, acquired by:

Atol(c, Tc) =

[
20

M(c) · exp(Ea(c)
RcTc

)

]1/z
(9)

where M(c) is a function of the C-rate, Tc, Rc is the
lumped battery temperature in 313K(40oC), ideal gas
constant 8.31J/mol · K. As a result, the dynamic state-
of-health (SOH) model is thereby established as Ebbesen
et al. (2012)

soh(k + 1) = soh(k)− |i(k)| ·∆t
7200Atol(c, Tc)

(10)
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Fig. 2. Car-following control strategy and global longitudinal dynamics of pure electric vehicle

based on the SOH model, the values of SOH can be cal-
culated.The following health constraints must be fulfilled
when calculated the powertrain:

sohmin ≤ soh(k) ≤ sohmax

where sohmin and sohmax are the SOH bounds.

3. CAR-FOLLOWING CONTROL STRATEGY

In this section, we modeling the car-following system,
and use Lagrange multipliers method (LMM) to design
an artificial potential function controller by take battery
health into consideration.

3.1 Car-following system model

The inter-distance dynamics can be represented as a
double integrator driven by the difference between the
leader vehicle acceleration ẍp and the follower vehicle
acceleration ẍf as depicted below:

d̈gap = ẍp − ẍf , (11)

where d̈gap is the gap between the two vehicles, and the
safety constrains are shown in Fig. 1. By setting corre-
sponded maximum braking capacity and maximum speed,
the safe inter-distance that avoids collision is obtained

λ =
27B2

max

8(ėv(0) + ėx(0))
3 ,

V rmax = ev,max +
λ

2
ex,max,

dsafe,max =
0.77(V rmax)

2

Bmax
+ dsafe,min,

where Bmax, V rmax are set according to the real driving
situation, and we assume an deceleration potential of
Bmax − 3m · s−2, reference velocity V rmax = 120km · h−1

for a given road and constant weather condition.

3.2 Artificial potential function design

The artificial potential field provides a more flexible way
to deal with real-time constraints Wu et al. (2020). At
the decelerating and accelerating stage, the initial speed
is divided into l (l = v0/∆), equal portions with interval
∆ that refer to the time of wireless communication de-
lay, which is assumed that acceleration remains constant
during each interval ∆. The time spent in changing speed
during the ith interval ti is the ratio of the deviation of
speed ∆ divided by the constant acceleration ai during the
ith interval. Besides, the distance xi driven during each
interval is given by:

xi =
(v0 + i∆)

2 − [v0 + (i− 1)∆]
2

2ai
(12)

The constraint in the car-following regime is :
i∑

j=1

xj = xsafe + vf

i∑
j=1

ti − xgap (13)

where
i∑

j=1

xj is the distance passed by the subjects vehicle,

xsafe is the initial headway spacing between two vehicles,
xgap is the final headway spacing between two vehicles

when they reach the same level of speed,
i∑

j=1

ti is the

time spent. In dynamic driving situations, the leading
vehicle may change speed frequently. Therefore, during
each time interval from wireless communication, the con-
troller receives changes in leading vehicles speed computer
the optimal acceleration/deceleration value with Lagrange
multipliers method accordingly.

The control scheme is shown in Fig. 2, where xp,f , ẋp,f , is
the position of preceding car i.e. the leader vehicle, ex,t, ev,t
is the tracking error of the position, velocity respectively.
D(s) = e−τs , τ denote the latency induced by the wireless
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communication. H(s) = 1/s represents the integrator in
simulation.

From Milanés and Shladover (2014), a generalized vehicle
longitudinal dynamic is described by a first-order transfer
function:

G(s) =
1

Ts+ 1
(14)

where T is a time-constant representing drive-line dy-
namics. To obtain the closed-loop and design ẍf , it is
required to have a balanced use of the position error and
the velocity error in a single controller design, thus we
adopted the coordinate transformation in Milanés et al.
(2013). The error state ef can be defined as:

ef =

(
ex,t + ζev,t

ev,t
ėv,t

)
(15)

where the constant ζ determines the weight of ev,t with
respect to ex,t, i.e. it determines the ratio for system
damping. The dynamics can be described by:(

xt
ẋt
ẍt

)
= ef +

1

T
(ut−1 − ūt) (16)

and the control input ūt is then designed through potential
function with Lagrange multipliers.

The upper control loop strategy have a direct influence on
inner loop, i.e. battery system. More specifically, based on
the Eq(2),(7),(10), the two coupled loops can be linked by
the following approximate relationship:

soh ∝ i̇bat ∝ ȧf (17)

which means that the battery life has a direct relationship
with the current change rate, also, proportional to accel-
eration change rate. Therefore, the cumulative SOH loss ϑ
during a time period t (unit in s) is expressed as:

ϑ(a, t) =

∫ t

0

|a|
7200Atol(c, Tc)

dt (18)

The primary objective is to minimize the cumulative SOH
loss ϑ(a, t) to extend the battery life. The optimal a∗ could
be obtained as a result of Eq(19)

∂ϑ

∂a
= 0 (19)

To minimize ϑ(a, t), a technique for solving optimization
problems with multiple constraints Bertsekas (2014) is
designed. As one constraint regarding the headway spacing
between the leader and the follower, thus one Lagrange
multiplier κ is added to formulate a Lagrange function
based on the objective function Eq(18). In this case,
Lagrange multiplier κ means the rate at which the optimal
cumulative SOH loss value changes if such constraint
changes, resulting in optimal acceleration a∗ during each
interval ∆ and one optimal Lagrange multiplier κ∗:

Z(x) =

i∑
j=1

xj − xsafe − vf
i∑

j=1

ti + xgap = 0 (20)

H(x, κ) = ϑ(a, t) + κZ(x) (21)

∂H(x, κ)

∂a
= 0,

∂H(x, κ)

∂κ
= 0 (22)

It is noted that this method is easy to integrate, due the
result can be fitted into a polynomial form by Matlab
cftool, i.e. linear function. In this case, we can use this

linear function of acceleration a∗ during each interval ∆
to design an artificial potential function in deceleration
and acceleration process, while guarantee the battery life.
Thus, a Lagrange multipliers method based artificial po-
tential function (LMM-APF), which consider the battery
life influences and characteristics between acceleration and
deceleration process, is presented:
ψRP (xt) = c1xt

4 − c2xt3 + c3xt
2, dgap ≥ dsafe,min

ψRP (xt) = c4(1− exp(−c5(xt − c0)))
2
, dgap ≤ dsafe,min

ψAP (xt) = c6(1− exp(−c7xt))2, dgap ≤ dsafe,max

(23)
where c = [ c1 c2 c3 c4 c5 c6 c7 ] are the design pa-
rameters. It note that the equilibrium state of the de-
sired inter-vehicle distance, i.e. c0, can be obtained by
setting the derivative of such a potential function to
control the potential towards zero. The artificial poten-
tial function parameters are determined when knowing
the optimal results from solving the Eq(20),(21),(22).
In this paper, the optimize parameter results are c =
[ 0.05 0.06 0.4 184.05 0.15 178.03 0.1 ]. From its defini-
tion, a global minimum of this function is at the point
of dsafe, if the condition c1 · c2 · c3 · c4 · c5 · c6 · c7 > 0 are
satisfied.

Based on Eq(16),(15), use the derivative of such a function
to control the potential towards zero, thus the control
input ūt is defined below:

ūt =
∂ψ(ef ,11)

ef ,11
+ ut−1 (24)

where ∂ψ(ef ,11) is chosen in Eq(23). Then, the battery
health and gap-closing state can be restricted within the
normal operational range. Furthermore, models defined
here can be used to fill the gap between experimental
results on a car simulation software and a microscopic
simulation.

4. EXPERIMENTS AND RESULTS

This section evaluated the car-following system perfor-
mance with the tracking capability and energy perspective.
To perform the simulations, the specifications of the prin-
ciple powertrain components parameters and the battery
are listed as follow: (a) battery internal resistance is 0.01
Ohm; battery Nominal capacity is 2.3 Ah; maximal charge
current -35 A; maximal discharge current 70 A; initial
SOC is 100%; initial SOH is 100%; (b) amax is 3 m · s−2;
amin is -3 m · s−2;

The presented approach is evaluated with the real driving
cycle from NEDC. In the paper, to determine the tracking
capability, index S is defined in terms of the error in the
speed and the error in the distance as:

S =
1

n

p∑
i=1

(∣∣∣∣∆v(i)

KDV

∣∣∣∣+ |∆d(i)|
)

(25)

Where KDV is a weighting coefficient, and n is the length
of ∆d to calculate S.

Due to space limitations, only the comparing results of the
NEDC driving cycle with the period of the first 600s are
shown in Fig 3 and Fig 4, with an intuitive view of speed
track in the first 13s driving cycle. In Fig 3, the good
behavior of the tracking capability can be appreciated,
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Fig. 3. Tracking capability comparison among LMM-APF,
ETF-PD and IDM control strategy, (a) is the speed
error from the leader; (b) is the acceleration distribu-
tion ; (c) is time gap keeping, initial at 2.4 m

due to the simplicity of transfer function. The results
indicate that: (1) as depicted in picture (c), the ETF-
PD controller implemented in our control scheme does not
perceptibly follow the position changes of the preceding
vehicle, leaving behind with big time gap. (2) as depicted
in picture (a), the IDM controller are quite sensitive to the
change of speed, following tightly to the speed variations
of leader. It can represent the scenario that drivers operate
their vehicles more aggressively on a road without hesita-
tion; (3) LMM-APF controller overcome these drawbacks,
providing smooth and stable car following responses.

The differences appearing on Fig 4 indicate that the
acceleration control strategy may be considered as a major
factor of influence on the battery life, and this point will be

Fig. 4. Battery state comparison among LMM-APF, ETF-
PD and IDM control strategy, (d) is instantaneous
power output; (e) is SOC sustenance in %; (f) is SOH
sustenance in %

illustrated. Although the speed tracking is pretty similar
for all the vehicles see Fig 5, it is noted that IDM act most
frequently, while ETF-PD suffers from response lag effect
and caused big overshot. Thus the battery current curve
would be more smooth and preferred.

Detailed tracking capability, acceleration rate, and track-
ing capability are summarized in Tab 1. The acceleration
rate standard deviation revealed that LMM-APF con-
troller caused the least fluctuation with numerical result
in 0.49, followed by IDM with numerical result in 0.74,
while ETF-PD in 1.52. The tracking capability is a sign of
car-following system’s performance. In this regard, all of
the systems exhibited relatively good tracking safety with
a tracking capability index below 0.7. LMM-APF tracking
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Fig. 5. NEDC speed track comparison among LMM-APF,
ETF-PD and IDM

Table 1. Acceleration rate and tracking capa-
bility experimental results

Model Acceleration rate Tracking capability

IDM 0.74 0.32
LMM-APF 0.49 0.65
ETF-PD 1.52 0.63

Table 2. Battery state and energy consumption
experimental results

Model SOH SOC Power consumption (J)

IDM -9.5% -0.8% 3.4 ×106

LMM-APF 3.5% -1.2% 3.46 ×106

ETF-PD -6% -0.77% 3.8 ×106

capability index was 0.65, which was essentially equal to
the ETF-PD value of 0.63 and was exceeded by the IDM
tracking capability index of 0.32.

Table 2 summarizes the experimental results for the SOH
and SOC deviation from the preceding vehicle and tracking
capability during the driving cycle. It can be found that
the proposed LMM-APF control strategy works well to
ensure the battery charge and discharge sustenance, while
extend battery life to 3.5%, with a loss SOC value at -1.2%.
It is noted that, in energy view, although IDM consumes
the least energy due to is good tracking capability, LMM-
APF power consumption value was 3.46× 106, which was
essentially equal to the IDM value of 3.4 × 106 and was
exceeded by the ETF-PD power consumption value of
3.46× 106.

5. CONCLUSION

In this paper, artificial potential function with Lagrange
multipliers was proposed for car-following system opti-
mization of battery life. It was found that without sacrific-
ing safety, and keeping a relatively good tracking perfor-
mance, the proposed control strategy can extend the SOH
value by 3.5% with SOC loss in value of 1.2% under 600s
NEDC driving cycle, due to smooth transition between
acceleration and deceleration. Although, the IDM model
producing smooth car-following behavior, the SOH value
declined by 9.5%, due to its aggressive way of following
manners. Meanwhile, the ETF-PD model consumed the

most power in the whole process, due to slow response
and large clearance gap variations.
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