
On Semiseparable Kernels and Efficient
Computation of Regularized System

Identification and Function Estimation ?

Tianshi Chen ∗, Martin S. Andersen ∗∗

∗ School of Science and Engineering and Shenzhen Research Institute
of Big Data, The Chinese University of Hong Kong, Shenzhen,

518172, China, (e-mail: tschen@cuhk.edu.cn).
∗∗Department of Applied Mathematics and Computer Science,

Technical University of Denmark, Denmark (e-mail: mskan@dtu.dk).

Abstract: A long-standing problem for kernel-based regularization methods is their high
computational complexity O(N3), where N is the number of data points. In this paper, we show
that for semiseparable kernels and some typical input signals, their computational complexity
can be lowered to O(Nq2), where q is the output kernel’s semiseparability rank that only depends
on the chosen kernel and the input signal.

Keywords: System identification, kernel-based regularization, semiseparable kernels, kernel
design, efficient computation.

1. INTRODUCTION

It has been almost a decade since the kernel-based reg-
ularization method (KRM) was first introduced in Pil-
lonetto and Nicolao [2010]. KRM has attracted increasing
attention in the system identification community and has
been applied to handle various kinds of problems in system
identification e.g., Pillonetto et al. [2014] for a survey (see
also Chiuso [2016], Ljung et al. [2020]).

In the general setup Pillonetto and Nicolao [2010],[Pil-
lonetto et al. 2014, Part III], the computational complexity
of KRM is O(N3), where N is the number of data points.
Clearly, when N is large, it is computationally prohibitive
to apply KRM to handle any problems aforementioned. In
fact, this is a longstanding problem not only for KRM but
also for the related Gaussian process regression Rasmussen
and Williams [2006] and kernel methods e.g., Schlkopf
et al. [1999], Cucker and Smale [2002]. To reduce the com-
putational complexity, two approximation methods have
been proposed Chen and Ljung [2013], Carli et al. [2012].
One of them Chen and Ljung [2013] is to truncate the
infinite impulse response at a sufficiently high order n,
assume that N ≥ n, and study the kernel-based regu-
larized finite impulse response (FIR) model identification
Chen et al. [2012],[Pillonetto et al. 2014, Part I]. Then
by using the matrix inversion lemma and the Sylvester’s
determinant theorem, the computational complexity of
KRM is lowered to O(n3). The other one Carli et al.
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[2012] is to assume that the kernel has its eigenfunctions
and eigenvalues in closed form expressions and to truncate
the infinite eigenexpansion of the kernel at a finite order
l, and the computational complexity is lowered to O(l3).
Unfortunately, the method Chen and Ljung [2013] cannot
be used to handle systems with slow dynamics (with large
n) and the assumption of the method Carli et al. [2012]
is too strong to apply for general kernels, e.g. Rasmussen
and Williams [2006].

In this paper, we will consider the issue of how to lower
the computational complexity of KRM. We find that this
issue is not an isolated issue and has close connections
to the issue of kernel design. Our finding starts from the
nice numerical properties of the Tuned-Correlated (TC)
kernel Chen et al. [2012] (also known as the first order
stable spline kernel e.g., Pillonetto et al. [2014]), whose
kernel matrix has tridiagonal inverse, and moreover, has
factors and determinants in closed form expression Chen
et al. [2016]. Later we further find in Carli et al. [2017] and
Proposition 1 in this paper that the Diagonal-Correlated
(DC) kernel Chen et al. [2012] has the same numerical
properties as the TC kernel. However, it is easy to check
that the stable spline (SS) kernel Pillonetto and Nicolao
[2010] may not have those numerical properties, for exam-
ple, its kernel matrix inverse is not tridiagonal but dense.
On the other hand, we have found that the SS kernel and
the DC kernel are closely related, e.g., Chen [2018, 2019].
We are intrigued by finding a mathematical explanation
for the delicate difference between the structure of the SS
kernel and the DC kernel. Moreover, we wonder whether
the SS kernel also has similar numerical properties as the
DC kernel but that may appear in an implicit way. To
this goal, we first try the maximum entropy property of a
kernel Chen [2018], because we derived those numerical
properties based on the maximum entropy property of
a kernel. Unfortunately, it did not work. Then we find
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in matrix computations R. Vandebril and Mastronardi
[2008b,a] that tridiagonal inverse is a sufficient condition
for a general semiseparable matrix but not necessary,
which motivates us to check the semiseparability of a
kernel. Fortunately, the semiseparable structure of a kernel
turns out to be the common structure property that both
the SS kernel and the DC kernel have, and their difference
lies in that they have the semiseparability rank eqaual to 2
and 1, respectively. Moreover, exploring the semiseparable
structure of a kernel allows to store the kernel matrix
and perform several operations of the kernel matrix very
efficiently R. Vandebril and Mastronardi [2008b,a].

Still, it is not interesting if we are only able to lower the
computational complexity for just the SS kernel and the
DC kernel. It only becomes interesting if we can design
more general kernels that on the one hand can encode
the corresponding prior knowledge of the underlying sys-
tem to be identified and on the other hand can have
the semiseparable structure. Fortunately, the two kernel
design methods proposed in Chen [2018] can very well be
used to accomplish this task. In particular, the Simula-
tion Induced (SI) kernel and the Amplitude Modulated
Locally Stationary (AMLS) are both semiseparable un-
der mild assumptions. However, we are still half way to
address the issue. This is because the key to lower the
computational complexity of KRM is to store the output
kernel matrix and perform several operation of the output
kernel matrix efficiently. Then it is natural to ask whether
the output kernel would be semiseparable if the kernel
is semiseparable. Fortunately, although it is not always
true and depends on the structure of the input signal, it
is true for some typical input signals widely used in the
system identification/control community, such as the step
signal, the exponential decay signal, sinusoidal signal, their
products, and their linear combinations.

Finally, by exploring the semiseparable structure of the
output kernel, we lower the computational complexity of
KRM from O(N3) to

• O(Nq2): when marginal likelihood maximization is
used to estimate the hyper-parameter,
• O(Nq3): when SURE or generalized cross validation

method is used to estimate the hyper-parameter,

where q is the output kernel’s semiseparability rank that
is equal to the kernel’s semiseparability rank plus the
rank of the input signal, see (17). Clearly, q can be much
smaller than N , leading to very efficient computation. The
implementation relies on efficient algorithms for semisep-
arable matrices which can be found in R. Vandebril and
Mastronardi [2008b,a], Andersen and Chen [2020].

2. KERNEL-BASED REGULARIZED SYSTEM
IDENTIFICATION

To setup the background for subsequent discussions, we
briefly review in this section the kernel-based regulariza-
tion methods (KRM) for system identification.

We consider stable causal linear time-invariant (LTI) sys-
tems described by

y(t) = (g ∗ u)(t) + v(t), t = t1, t2, · · · , tN , (1)

where t ≥ 0 is the time instant, t1 < t2 < · · · < tN ,
y(t), v(t), u(t) ∈ R and g(t) ∈ R are the measurement

output, the measurement noise, the input and the impulse
response of the LTI system, respectively, and (g ∗ u)(t) is
the convolution between g(t) and u(t). The measurement
noise v(t), t = t1, · · · , tN , are assumed to be i.i.d. with
mean zero and variance σ2 and moreover, independent of
the input u(t) with t ≥ 0. The goal is to estimate the
impulse response g(t) as well as possible based on y(t)
with t = t1, · · · , tN and u(t) with t ≥ 0 for the continuous
time (CT) case and y(t), u(t) with t = t1, · · · , tN for the
discrete time (DT) case. The values of u(t) with t < 0 are
set to zero when needed.

The KRM relies on a positive semidefinite kernel k(t, s; η) :
R+ × R+ → R, where η is the hyper-parameter used to
parameterize the kernel and assumed to reside in a set
Ω ⊂ Rm. The KRM finds an estimate of g(t) in the
reproducing kernel Hilbert space (RKHS) Hk associated
with the kernel k(t, s; η) by minimizing a kernel-based
regularized least squares criterion

ĝR = arg min
g∈Hk

tN∑
t=t1

(y(t)− (g ∗ u)(t))2 + σ2‖g‖2Hk
, (2)

where ‖ · ‖Hk
is the norm of Hk. According to the

representer theorem [Pillonetto et al. 2014, Theorem 3],
the optimal solution ĝR in (2) evaluated at t ≥ 0 takes the
form of

ĝR(t) =

N∑
i=1

ĉiā(t, ti; η), (3a)

where ĉi is the ith element of ĉ = (Ψ(η)+σ2IN )−1YN with
IN being the N -dimensional identity matrix,

YN = [ y(t1) · · · y(tN ) ]
T
, (3b)

and the (i, j)th element of Ψ(η), i, j = 1, · · · , N , defined
through a positive semidefinite kernel function ψ(t, s; η),
i.e., Ψi,j(η) = ψ(ti, tj ; η) with

ψ(t, s; η) = (ā(·, s; η) ∗ u)(t), (3c)

ā(b, s; η) = (k(b, ·; η) ∗ u)(s). (3d)

Here, ψ(t, s; η) and Ψ(η) are often called the output kernel
and output kernel matrix, respectively, e.g., Pillonetto
et al. [2014].

2.1 Kernel Design

The stable spline (SS) kernel and the diagonal correlated
(DC) kernel are the first two kernels introduced in Pillonet-
to and Nicolao [2010] and Chen et al. [2012], respectively,

kSS(t, s;α) =
e−α(t+s)e−αmax{t,s}

2
− e−3αmax{t,s}

6
, (4a)

kDC(t, s;α, β) = e−α(t+s)e−β|t−s|, α > 0, β ≥ 0, (4b)

kTC(t, s;β) = e−β(t+s)e−β|t−s|, β > 0, (4c)

where (4c) is a special case of (4b) with α = β and called
the tuned-correlated (TC) kernel Chen et al. [2012] and
also called the first order stable spline kernel.

For the issue of kernel design, there are at least two
concerns that should be taken into account:

1) the prior knowledge of the system to be identified
should be used to design the kernel, and
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2) the kernel should be designed such that its structure
should ease the computation of (3) and the hyper-
parameter estimation.

For the concern 1), several kernel design methods were
introduced recently, e.g., Chen [2018], Zorzi and Chiuso
[2018]. For the concern 2), the linear multiple kernel
structure in Chen et al. [2014] brings convenience to the
hyper-parameter estimation such that a stationary point
can be found efficiently.

2.2 Hyper-parameter estimation

The most widely used hyper-parameter estimation method
is the empirical Bayes (EB) method that is also called the
marginal likelihood maximization method. It embeds the
regularization term ‖g‖2Hk

in (2) in a Bayesian framework
by assuming that g(t) is a zero mean Gaussian process with
covariance function k(t, s; η), the measurement noise v(t)
are normal and moreover, g(t) and v(t) are independent.
It then estimates η by maximizing the marginal likelihood
p(YN |η), i.e.,

η̂EB = arg min
η∈Ω

{
Y TN (Ψ(η) + σ2IN )−1YN

+ log det(Ψ(η) + σ2IN )
}
.

(5a)

2.3 High Computational Complexity

The regularized impulse response (3) and the hyper-
parameter estimation (5) all depend on the computation of
(Ψ(η) + σ2IN )−1 (or its variant) and/or its determinant.
Unfortunately, straightforward computation of them re-
quires O(N3) flops. Hence, it is interesting and important
to develop efficient computation methods in order to deal
with large data sets.

3. KERNEL STRUCTURE FOR EFFICIENT
REGULARIZED SYSTEM IDENTIFICATION

Our goal is to look for a kernel structure for the kernel
function k(t, s; η) such that (3) and (5) can be computed
efficiently. Since both (3) and (5) involve the output
kernel ψ(t, s; η) and the output kernel matrix Ψ(η), the
kernel structure we look for should enable that several
operations of Ψ(η), e.g., the Cholesky factor, can be
computed efficiently.

It is natural to start the investigation from the kernel
(or equivalently, the kernel matrix) instead of the output
kernel (or equivalently, the output kernel matrix).

3.1 From Maximum Entropy to Semiseparablility

The first candidate we consider is the maximum entropy
property of a kernel Carli et al. [2017], Chen et al. [2016],
Chen [2019]. As shown in Carli et al. [2017], due to the
maximum entropy property of the TC kernel (4c) , the
factors and determinant of the TC kernel matrix can be
computed with O(n) flops. Here, we first show that the
same result can also be obtained for the DC kernel, because
it has the same type of maximum entropy property as the
TC kernel [Chen et al. 2016, Prop. 5.2].

Proposition 1. Consider the DC kernel (4b). Let t1, · · · , tn
∈ R be strictly increasing and KDC ∈ Rn×n with KDC

i,j =

kDC(ti, tj). Then the following results hold:

1) KDC has the following factorization:

KDC = V −1diag(e−2βt1 − e−2βt2 , · · · ,
e−2βtn−1 − e−2βtn , e−2βtn)V −T , (6)

where diag(a) with a ∈ Rn is a diagonal matrix with
the elements of a as the main diagonals, V −T represents
(V T )−1 and V is upper bidiagonal with

Vi,i =
1

e−(α−β)ti
, i = 1, · · · , n,

Vi,i+1 = − 1

e−(α−β)ti+1
, i = 1, · · · , n− 1, (7)

2) The Cholesky factor L of
(
KDC

)−1
, i.e.,

(
KDC

)−1
=

LLT , is lower bidiagonal with

Li,i =
1

e−αti
√

1− e−2β(ti+1−ti)
, i = 1, · · · , n− 1,

Ln,n =
1

e−αtn
, Lj,i = − e−β(tj−ti)

e−αtj
√

1− e−2β(tj−ti)
,

i = 1, · · · , n− 1, j = i+ 1. (8)

3) The
(
KDC

)−1
is tridiagonal with(

KDC
)−1

1,1
=

1

e−2αt1(1− e−2β(t2−t1))
,

(
KDC

)−1

i,i
=

1− e−2β(ti+1−ti−1)

e−2αti(1− e−2β(ti−ti−1))(1− e−2β(ti+1−ti))
,

i = 2, · · · , n− 1,(
KDC

)−1

n,n
=

1

e−2αtn(1− e−2β(tn−tn−1))
, (9)

(
KDC

)−1

i,j
=
(
KDC

)−1

j,i
= − e−β(tj−ti)

e−α(ti+tj)(1− e−2β(tj−ti))
,

i = 1, · · · , n− 1, j = i+ 1.

4) The determinant of KDC is given by

det
(
KDC

)
= e−2α

∑n

i=1
ti
n−1∏
i=1

(
1− e−2β(ti+1−ti)

)
.

The proofs of all propositions, theorems and corollaries are
skipped due to the space limitation.

Proposition 1 is an extension of the results in Carli et al.
[2017], Chen et al. [2016] (from unifrom sampling to
nonuniform sampling Carli et al. [2017] and from the TC
kernel to the DC kernel Chen et al. [2016]), and can be used
to develop efficient algorithms for KRM, e.g., Carli et al.
[2017]. Unfortunately, although the SS kernel (4a) also has
a maximum entropy property [Chen 2018, Proposition 4.4],
it is different from the one that the DC kernel has. Hence,
the SS kernel does not have the numerical properties of the
DC kernel as shown in Proposition 1, e.g., its inverse is not
tridiagonal, implying that the maximum entropy property
is not what we look for.

On the other hand, we found recently in Chen [2019]
that the DC kernel can be seen as a stable generalized
first-order spline kernel, that is to say, the SS kernel
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and the DC kernel are in fact closely related. Then we
are even more intrigued by their delicate difference and
wonder whether or not the SS kernel has similar numerical
properties as the DC kernel. Fortunately, we find in matrix
computations R. Vandebril and Mastronardi [2008b,a]
that, if a symmetric matrix has tridiagonal inverse, it must
be semiseparable but the converse may not be true. This
observation motivates us to consider a new candidate for
our goal that is the semiseparability of a kernel, and in
particular to consider whether the DC kernel, the SS kernel
and even the more general spline kernels are semiseparable
or not Andersen and Chen [2020].

To be specific, we first recall some definitions and proper-
ties in relation to semiseparable kernels.

Definition 1. R. Vandebril and Mastronardi [2008b,a] A
function f(t, s) : R+ × R+ → R is said to be extend-
ed {p, q}-semiseparable, where p, q ∈ N, if there exist
µi, νi : R+ → R, i = 1, · · · , p and hi, li : R+ → R, i =
1, · · · , q, such that

f(t, s) =



p∑
i=1

µi(t)νi(s) t ≥ s
q∑
i=1

hi(t)li(s) t < s

. (10)

A kernel k(t, s) : R+ × R+ → R is said to be extended p-
semiseparable, where p ∈ N, (or extended semiseparable
with semiseparability rank p), if there exist µi, νi : R+ →
R, i = 1, · · · , p, such that

k(t, s) =



p∑
i=1

µi(t)νi(s) t ≥ s
p∑
i=1

νi(t)µi(s) t < s

. (11)

Definition 2. R. Vandebril and Mastronardi [2008b,a] A
matrix A ∈ Rn×m is said to be extended {p, q}-generator
representable semiseparable where p, q ∈ N, if

A = tril(UJT ) + triu(PQT , 1), (12)

where U ∈ Rn×p, J ∈ Rm×p, P ∈ Rn×q, Q ∈ Rm×q and
for a square matrix B, tril(B) denotes the lower-triangular
matrix obtained from B by setting all elements above the
main diagonal to zero, and triu(B, 1) denotes the upper-
triangular matrix obtained from B by setting all elements
below the first superdiagonal to zero, and U, J, P,Q are
called generators of A.

A square and symmetric matrix K ∈ Rn×n is said to
be extended p-generator representable semiseparable (or
equivalently, K is an extended generator representable
semiseparable matrix with semiseparability rank p), where
p ∈ N, if

K = tril(UJT ) + triu(JUT , 1) , S(U, J) (13)

where U, J ∈ Rn×p are called generators of K.

Lemma 1. R. Vandebril and Mastronardi [2008b,a] Con-
sider the extended p-semiseparable kernel k(t, s) in (11).
Let t1, · · · , tn ∈ R+ be a strictly increasing sequence. Then
its kernel matrix K with Ki,j = k(ti, tj), i, j = 1, · · · , n,
has the properties:

• K is extended generator representable p-semiseparable
with generators U, J in (13) defined as follows

U(:, i) = [µi(t1) · · · µi(tn)]
T
,

J(:, i) = [νi(t1) · · · νi(tn)]
T
, i = 1, · · · , p,

where U(:, i), J(:, i) are the ith columns of U and J ,
respectively.

• The implicit generator representation K = S(U, J)
allows to store K using O(np) memory and more-
over, perform several operations efficiently, e.g., the
Cholesky factor and the matrix-vector products can
be computed in O(np2) and O(np) flops, respectively.

Remark 1. The generator representation of an extended
generator representable semiseparable matrix can help to
perform several operations efficiently. The readers are re-
ferred to R. Vandebril and Mastronardi [2008b,a] for a
comprehensive exposition of semiseparable matrices and
other rank structured matrices and to R. Vandebril and
Mastronardi [2008b], Andersen and Chen [2020] for rele-
vant algorithms.

Now we show that the SS kernel and the DC kernel are
semiseparable kernels.

Proposition 2. The SS kernel (4a) and the DC kernel
(4b) are extended 2-semiseparable and 1-semiseparable,
respectively. In particular, the SS kernel (4a) can be
written in the form of (11) respectively, with p = 2 and

µ1(t) = −e
−3αt

6
, ν1(s) = 1, µ2(t) =

e−2αt

2
, ν2(s) = e−αs,

and the DC kernel (4b) can be rewritten in the form of
(11) with p = 1 and

µ1(t) = e−(α+β)t, ν1(s) = e−(α−β)s.

Moreover, let t1, · · · , tn ∈ R+ be strictly increasing, KSS ∈
Rn×n with KSS

i,j = kSS(ti, tj) and KDC ∈ Rn×n with

KDC
i,j = kDC(ti, tj), i, j = 1, · · · , n, are extended gener-

ator representable 2-semiseparable and 1-semiseparable,
respectively.

3.2 Sufficient Conditions for Semiseparable Kernels

Now it becomes obvious that the semiseparable structure
of a kernel is a candidate for our goal. However, it is not
interesting unless we can design more general semisepara-
ble kernels. Recalling the two concerns for kernel design
in Section 2.1, we should design kernels that are on the
one hand semiseparable and on the other hand capable to
embed the available prior knowledge. Having this idea in
mind, we recall the two methods proposed in Chen [2018]:

1) the system theory method: it is to design the sim-
ulation induced (SI) kernel. Recall that a SI kernel
kSI(t, s) admits a state-space model realization in the
form of

ẋ(t) = Ax(t) +Bb(t)w(t), (14a)

or, x(t+ 1) = Ax(t) +Bb(t)w(t), (14b)

g(t) = Cx(t), (14c)

x(0) ∼ N (0, Q), (14d)

kSI(t, s) = E(g(t)g(s)), (14e)

where x(t) ∈ Rp, p ∈ N, A,Q ∈ Rp×p, B ∈ Rp×1, C ∈
R1×p, b(t) ∈ L1, w(t) ∈ R is the white Gaussian noise
such that E(w(t)w(s)) = δ(t−s) and δ(t) is the Dirac
delta for the CT case and Kronecker delta for the
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DT case. Here, the available prior knowledge for the
nominal model and uncertainty is embedded in the
triple (A,B,C) and b(t), respectively.

2) the machine learning method: it is to design the am-
plitude modulated locally stationary (AMLS) kernel.
Recall that an AMLS kernel takes the form

kAMLS(t, s) = b(t)b(s)kc(t− s), (15)

where kc(t − s) is a stationary kernel with kc(0) =
1 and b(t) ∈ L1. Here, the function b(t) and the
stationary kernel account for the decay and varying
rate of the impulse response, respectively.

Theorem 1. The SI kernel (14) is extended p̄-semiseparable
with p̄ ∈ N and p̄ ≤ p, where p is the order of the state-
space model in (14).

Theorem 1 indicates that any kernel that has a state-space
model realization in the form of (14) is semiseparable. For
example, the spline kernel and a stationary kernel with
proper rational power spectral density can be shown to be
semiseparable in this way.

Corollary 1. The lth order spline kernel (16) with l ∈ N,
defined by,

kS
l (t, s) =

∫ 1

0

Gl(s, τ)Gl(t, τ)dτ (16)

where 0 ≤ t, s ≤ 1, Gl(r, τ) = (r − τ)l−1/(l− 1)! for r ≥ τ
and Gl(r, τ) = 0 otherwise, is extended l-semiseparable.

Corollary 2. A stationary kernel with proper rational
power spectral density is semiseparable and the semisepa-
rability rank is no larger than the order of the denominator
of the power spectral density.

Theorem 2. The AMLS kernel (15) is semiseparable if the
stationary kernel kc(t− s) is semiseparable. In particular,
(15) is semiseparable if the stationary kernel kc(t − s)
has a proper rational power spectral density, and the
semiseparability rank is no larger than the order of the
denominator of the power spectral density.

3.3 Semiseparable Output Kernels

Interestingly, whether ψ(t, s; η) could be semiseparable or
not depends on the kernel k(t, s; η) and the input u(t).

Proposition 3. Assume that the kernel k(t, s) is extended
p-semiseparable and the input u(t) is an unit impulsive
input, i.e., u(t) is the Dirac delta for the CT case and the
Kronecker delta for the DT case. Then the output kernel
ψ(t, s; η), as defined in (3c), is equal to k(t, s) and thus
extended p-semiseparable.

Then one wonders whether ψ(t, s; η) could be semisepara-
ble for some more general input u(t). Fortunately, this is
true and summarized in the following theorem.

Theorem 3. Assume that the kernel k(t, s) is extend-
ed p-semiseparable, as defined in (11), and there exist
πi, ρi : R+ → R, i = 1, · · · , r with r ∈ N such that the
input u(t) satisfies the following property

u(t− b) =

r∑
i=1

πi(t)ρi(b). (17)

Then the output kernel ψ(t, s; η), as defined in (3c), is
extended (p+ r)-semiseparable and the function ā(t, tl; η)
in the estimate (3) is extended {p, p+ r}-semiseparable.

Remark 2. It should be noted that both the output kernel
ψ(t, s; η) and the function ā(t, tl; η) can be written in the
form of (11) and (10), respectively. In other words, both
ψ(t, s; η) and ā(t, tl; η) have generator representation, the
expression of which however cannot be included here due
to the space limitation.

4. EFFICIENT ALGORITHM FOR REGULARIZED
SYSTEM IDENTIFICATION

We sketch below efficient algorithms for KRM by exploit-
ing the semiseparable structure of the kernel k(t, s), the
output kernel ψ(t, s), and the function ā(t, tl; η). It can
be shown from (3), (5), the generator representations of
ψ(t, s; η) and ā(t, tl; η), and the predicted output

(ĝR ∗ u)(t) =

N∑
l=1

ĉlψ(t, tl), (18)

that the key is to perform efficiently the operations

(a) the Cholesky factor L ∈ RN×N of Ψ(η) + σ2IN , i.e.,
Ψ(η) + σ2IN = LLT ,

(b) the diagonal elements of Ψ(η) + σ2IN
(c) the matrix-vector product L−1x for x ∈ RN ,
(d) the matrix-vector product L−Tx for x ∈ RN ,
(e) the trace of H(η), i.e., Tr(Ψ(η)(Ψ(η) + σ2IN )−1),
(f) the matrix-vector product Ax for A ∈ RNest×N and

x ∈ RN , where the (i, j)-element Ai,j = ā(t∗i , tj ; η)
and t∗i ≥ 0, i = 1, · · · , Nest, are time instants at which
we are interested in estimating the impulse response
and Nest is the number of time instants.

In particular, items (a)-(c) are key for the computation of
(5a), and items (a)-(d) are key for the computation of (18),
and items (a)-(d) and (f) are key for the computation of
(3). Let q = p+r. By using the algorithms in Andersen and
Chen [2020], it can be shown that the items (a)-(f) can be
computed in O(Nq2), O(Nq2), O(Nq), O(Nq), O(Nq3),
O(Nestq) flops, respectively. Therefore, (18) and the cost
function of (5a) can be computed in O(Nq2) flops. If we let
Nest = N and the test time instants t∗i = ti, i = 1, · · · , N ,
the estimated impulse response ĝR(t) at t = t1, · · · , tN can
be computed in O(Nq2) flops.

5. NUMERICAL SIMULATION

5.1 Test data-bank

To test the proposed method we generate a data-bank of
systems and data sets as follows:

• We first generate 1000 generic tested systems as fol-
lows. Firstly, a SISO continuous-time system of 50th
order is generated using the command m=rss(50) in
MATLAB. Then the system m is sampled at 12 times
of its bandwidth to yield the corresponding discrete-
time system md using the following commands in
MATLAB: bw=bandwidth(m);
md=c2d(m,2*pi/(12*bw)). In order to choose a
generic system with somewhat slow dynamics, we
check the pole of md and only save the system m as
a generic system if it has least one pole outside the
circle with center at the origin and radius 0.995 on the
complex plane. Lastly, we set the feedforward matrix
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of md to 0 (to enforce a natural time-delay) and save
it as one generic system.
• We then generate 4 data sets.

D1 and D2: For the 1000 generic systems, we
simulate each of them with the input signal chosen
to be an unit step signal pand an output additive
white Gaussian noise whose variance is one tenth of
the variance of the noise-free output for D1 and equal
to that of the noise-free output for D2.

D3 and D4: For the 1000 generic systems, we
simulate each of them with the input signal chosen
to be exp(−0.001t) cos(0.1t + π/3) and an output
additive white Gaussian noise whose variance is one
tenth of the variance of the noise-free output for D3
and equal to that of the noise-free output for D4.

The number of data points N in the data records
in D1-D4 is chosen to be 3000.

5.2 Simulation Setup

In the numerical simulation, we test both the SS and DC
kernels. The generalized marginal likelihood maximization
method is used to estimate the hyper-parameter and the
noise variance σ2, and then to derive the corresponding
regularized impulse response estimate (3). The following
model of fit is introduced to evaluate the quality of the
regularized impulse response estimate (3)

fit = 100

1−

[∑Nest

k=1
|g0k − ĝk|2∑Nest

k=1
|g0

k
− ḡ0|2

]1/2
 , ḡ0 =

1

Nest

Nest∑
k=1

g0k (19)

whereNest = 2500, g0
k and ĝk are the true impulse response

and the estimated regularized impulse response at the kth
order, respectively.

5.3 Simulation Results and Findings

The average model fits are shown in the following table.

D1 D2 D3 D4

SS 64.7 50.8 68.8 51.4
DC 72.2 56.4 70.1 53.7

The proposed implementation gives same average model
fits as the implementation Chen and Ljung [2013] but with
significantly less time.

6. CONCLUSION

In this paper, we studied the efficient computation of the
kernel-based regularized system identification. In particu-
lar, for some typical input signals, such as step signal, mul-
tiple sinusoidal signals, and by exploring the semiseparable
structure of a kernel, it is possible to reduce the computa-
tional complexity from O(N3) to O(Nq2), where N is the
number of data points and q is the semiseparability rank
of the output kernel. This result is very important and
paves the way to develop efficient computation framework
for kernel-based regularization methods.
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