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Abstract: Multiparametric programming has proven to be an efficient strategy to alleviate the
computational burden of solving model predictive control problems online. Recently, it has been
shown that through a second-order Taylor approximation to the Basic Sensitivity Theorem, the
exact solution of multiparametric/explicit quadratically constrained nonlinear model predictive
control problems is enabled. As a result, the state space is nonlinearly partitioned, and the
optimal control actions are expressed as nonlinear functions of the states of the system. In this
work, an algorithm for the complete exploration of the parameter space and the derivation of
the parametric solution of the aforementioned problem is provided. The proposed strategy is
utilized to implicitly explore the parameter space by identifying the unique and optimal active
sets which describe the parametric solution. The applicability of the presented methodology is
demonstrated on a regulation problem of a nonisothermal continuously-stirred tank reactor near
an unstable steady-state.

Keywords: Model predictive and optimization-based control, Real time optimization and
control, Nonlinear process control.

1. INTRODUCTION

Multiparmetric/explicit model predictive control (mpMPC
or eMPC) is a control strategy, which aims to optimally
control constrained systems. In contrast to traditional
model predictive control (MPC), the online optimization
problem is solved offline through multiparametric pro-
gramming algorithms. The solution of the aforesaid prob-
lem results in the map of optimal partitions of the pa-
rameter space (critical regions), where the optimal control
actions are expressed as a function of the parameters of the
system. Hence, the solution of the MPC problem reduces
from a repetitive solution of an optimization formulation
at each sampling instant to a set of function evaluations. In
this respect, mpMPC can be implemented for the control
of various real-time optimization applications, such as em-
bedded control systems (Dua and Pistikopoulos (1999)).

Since the last two decades and its first inception (Bempo-
rad et al. (2002)), research efforts in the mpMPC literature
have primarily focused on the optimal control problems
which involve a quadratic performance index and linear
constraints for continuous and hybrid systems. Such prob-
lems require the solution of a multiparametric Quadratic
(mpQP) or Mixed-Integer Quadratic Programming (mp-
MIQP) problem (Bemporad et al. (2002), Oberdieck and
Pistikopoulos (2015)). However, nonlinearities which can
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appear in the problem description, give rise to a non-
linear multiparametric program (mpNLP). In the cases
where these expressions realize themselves as quadratic
functions, a multiparametric Quadratically Constrained
Quadratic Program (mpQCQP) needs to be solved. In
a MPC framework, such terms could be ellipsoidal ter-
minal sets, quadratic constraints on the inputs/states or
quadratic functions which are used to approximate general
nonlinear equations in the control formulation.

Contributions to address the solution of mpQCQPs have
been based on algorithms to solve general mpNLPs. How-
ever, the solution of mpNLPs or mpMINLPs is very chal-
lenging and the exact solution of such classes of problems,
without an a posteriori comparison of all feasible solutions,
has not been provided. In particular, even though the
initial contributions in mpNLP had been very influen-
tial (Fiacco (1976), Fiacco et al. (1983)), the majority
of the subsequent efforts for the solution of these prob-
lems has been based on approximations of the original
optimization formulation (Dua and Pistikopoulos (1999),
Johansen (2004), Grancharova et al. (2007), Katz et al.
(2020)) or partially require an online solution element (Fo-
tiou et al. (2006)). Recently, solution methods have been
presented (Charitopoulos and Dua (2016), Charitopoulos
et al. (2019)), based on Gröbner Bases and the analysis of
critical solutions.

In this work and based on our previous contribution (Di-
angelakis et al. (2018)), we focus on convex mpQCQPs and
provide an algorithm for the exact solution of quadratically
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constrained nonlinear model predictive control (NMPC)
problems and the derivation of the optimal map of so-
lutions. We illustrate the applicability of the proposed
approach on the optimal regulation of a nonisothermal
continuously-stirred tank reactor (CSTR) around an un-
stable steady-state, taking into account economic criteria.

2. MULTIPARAMETRIC PROGRAMMING

2.1 Explicit Model Predictive Control

In the seminal contribution of (Bemporad et al. (2002)), it
was shown that a MPC problem can be reformulated into
a mpQP. Assume the following MPC problem as in (1)

min
u

J = xTNPxN +

OH−1∑
k=1

xTkQRxk

CH−1∑
k=0

uTkRuk

s.t. xk+1 = Axk +Buk + Cdk
yk = Dxk + Euk
x ≤ xk ≤ x
u ≤ uk ≤ u
y ≤ yk ≤ y
d ≤ dk ≤ d

(1)

In formulation (1), x ∈ Rnx is the vector of the states of the
system, u ∈ Rnu is the vector of control actions, y ∈ Rny is
the vector of the outputs, d ∈ Rnd is the vector of measured
disturbances, QR and R are the weights of the controller,
P is derived from the solution of the discrete Riccati
equation, and OH and CH are the output and control
horizons respectively. The matrices A,B,C,D,E define
the linear discrete state-space model describing a given
process, where the index k denotes the sampling instant.
In a multiparametric programming setting, the aforemen-
tioned states, outputs and disturbances are treated as
uncertain bounded parameters incorporated in (2)

min
u

f(u, θ) =
1

2
uTQu+ uTHT θ + θTQθθ + cTuu

+cTθ θ + cc

s.t. gi(u, θ) := Aiu ≤ bi + Fiθ

u ∈ Rnu , θ ∈ Θ :=
{
θ ∈ R(nx+ny+nd) |PAθ ≤ Pb

}
Q � 0
i ∈ I

(2)

In problem (2), Q ∈ Rnu×nu , H ∈ R(nx+ny+nd)×nu ,
cu ∈ Rnu×1, cθ ∈ R(nx+ny+nd)×1 and cc a scalar. The
index i ∈ I corresponds to the ith inequality constraint,
where for each constraint gi(x, θ), we have Ai ∈ R1×nu ,
F i ∈ R1×(nx+ny+nd), and bi is a scalar, while Θ, described
by the matrices PA ∈ Rw×(nx+ny+nd) and Pb ∈ Rw×1,
represents a polytopic convex subset of the parameter
space in which the parameters θ vary.

Problem (2) can be efficiently solved using state-of-the-art
software (Oberdieck et al. (2016), Herceg et al. (2013)).
The optimal multiparametric solution of (2) returns a list
of critical regions, where in each critical region the vector
of the bounded uncertain parameters is related to the
optimal continuous control law. Hence, the explicit offline
solution of the MPC problem is given by Eq. (3)

u∗ = Kiθ
∗ + ri, θ

∗ ∈ CRi = {CRiAθ ≤ CRib} (3)

where u∗ is the optimal control action at the parameter
realization θ∗. The convex polytope CRi defines the ith

critical region, and Ki and ri characterize the optimal
control action. Each critical region, CRi, is associated
with a unique set of active inequality constraints. The
derivation of each critical region is achieved by (i) ensuring
the inactive constraints of the problem remain inactive,
and (ii) by guaranteeing that the optimal Lagrange multi-
pliers at the optimal control action remain positive for the
corresponding parameter space.

Advantages of the explicit form of the controllers include
the construction of the optimal partitions of the parameter
space before the operation of a process has been initiated,
the enhanced online computational performance due to
the alleviation from the repetitive solution of optimiza-
tion problems, and the ability to embed optimal control
schemes in complex engineering applications, such us the
integration of design, control and scheduling of process
systems (Burnak et al. (2019), Tian et al. (2020)).

3. AN ALGORITHM FOR QUADRATICALLY
CONSTRAINED NMPC

3.1 Basic Sensitivity Theorem: The Quadratic Case

We consider problems described by (4)

min
u

f(u, θ) =
1

2
uTQu+ uTHT θ + θTQθθ + cTuu

+cTθ θ + cc
s.t. gi(u, θ) := uTQc,iu+ uTHT

c,iθ +Ac,iu

≤ bc,i + Fc,iθ + θTQc,θ,iθ

u ∈ Rnu , θ ∈ Θ :=
{
θ ∈ R(nx+ny+nd) |PAθ ≤ Pb

}
Q � 0, Qc,i � 0
i ∈ I

(4)

Qc,i ∈ Rnu×nu , Hc,i ∈ R(nx+ny+nd)×nu , Ac,i ∈ R1×nu ,

F c,i ∈ R1×(nx+ny+nd), Qc,θ,i ∈ R(nx+ny+nd)×(nx+ny+nd).
Linear equality constraints are omitted from the problem
formulation for brevity. Note that the matrices Q and Qc,i
are positive definite. If the matrices Qc,i, Hc,i, and Qc,θ,i
do not exist, problem (4) is equivalent to (2).

Assume that there exist Lagrange multipliers λi which
correspond to p active constraints, and that the first-order
KKT conditions hold (Floudas (1995))

∇uL(u∗, λ∗, θ∗) := ∇uf(u∗, θ∗) +

p∑
i=1

λ∗i∇ugi(u∗, θ∗) = 0

g(u∗, θ∗) ≤ 0
λ∗i gi(u

∗, θ∗) = 0, i = 1, ...p
λ∗i ≥ 0 i = 1, ...p
∀i ∈ I

For the construction of the parametric solution of the
problem described by (4), the vector F , which incorporates
the equalities of the KKT conditions is defined
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F (u, λ, θ) =

[
∇uL(u, λ, θ)
λigi(u, θ)

]
= 0 (5)

where L(u, λ, θ) is the Lagrange function of problem (4)
and λi is the corresponding Lagrange multiplier associated
with active constraint gi(u, θ), where F ∈ R(nu+p)×1.

Based on the conditions and principles of the Basic Sensi-
tivity Theorem (Diangelakis et al. (2018)), a once contin-
uously differentiable vector function η = [u(θ)T , λ(θ)T ]T

exists, satisfying the second-order sufficient conditions for
a local minimum along with the associated Lagrange mul-
tipliers λ(θ). Namely, without loss of generality the vector
F can be written as

F =
[
Q+

p∑
i=1

λiQc,i

]
u+

[
HT +

p∑
i=1

HT
c,i

]
θ + cu +

p∑
i=1

λiAc,i

uTQc,iu+ uTHT
c,iθ +Ac,iu− bc,i − Fc,iθ − θTQc,θ,iθ


= 0
λi > 0 ∀i

Concatenating the vectors η and θ we define the vector α =
[ηT |θT ]T . Assuming a given feasible parameter realization
θ∗ and a corresponding optimal solution described by u∗

and λ∗, and if ∇θη(θ∗) and ∇θθη(θ∗) exist, a second-order
Taylor expansion of the vector F around α∗ = [η∗T |θ∗T ]T

is expressed as

F ≈ [
1

2
(a− a∗)T∇aaF (a∗) +∇aF (a∗)](a− a∗) = 0 (6)

Hence, for problems which are described with a convex
quadratic objective function, convex quadratic and/or
linear constraints the exact solution for convex mpQCQps
is enabled and be obtained through the solution of the
system of quadratic equations described by (6).

3.2 Exploration of the Parameter Space

Strategies for the exploration of the parameter space in
multiparametric programming problems can be identified
in geometrical, combinatorial, and combinations of the
aforementioned approaches. Geometrical algorithms are
based on the fact that given an initial critical region, the
neighborhood around each facet is explored to identify
adjacent critical regions, until the full parameter space
is explored. On the other hand, combinatorial algorithms
aim to implicitly explore the parameter space by enumer-
ating all possible active sets which can yield an optimal so-
lution for a feasible parameter realization. In this work, the
complete exploration of the parameter space is achieved by
utilizing an active set-based approach, inspired by (Gupta
et al. (2011)). The proposed approach employs a strategy
for the identification of optimal active-sets. To avoid the
exhaustive enumeration of active sets a pruning criterion is
employed. A candidate active set can be infeasible, feasible
or optimal. If the active set results to an optimal solution,
the active set will yield a critical region.

Let V refer to the set of the indices of the inequality
constraints in I

V = {1, ..., r} (7)

We define the set AS, which includes all candidate active
sets

AS(V) = {{A1 = {} ,A2 = {1} , ...,Ar+2 = {1, 2} , ...,
A2r = {1, 2, ..., r}} (8)

We highlight that for a deterministic QCQP with n op-
timization variables and r inequality constraints, where
r > n, the number of strongly active constraints at the
optimal solution can be up to n. The number of optimal

active sets, represented by the set AS
′
, where AS

′
⊂ AS,

is

AS
′
(V) =

{
A1 = {} ,A2 = {1} , ...,A(r

n) = {1, 2, ..., n}
}
(9)

where AS is the set of all possible candidate active sets.

Firstly we solve the following feasibility problem for every
candidate active set:

min
u,θ

0

s.t. gi(u, θ) = 0,∀i ∈ Ak
gj(u, θ) ≤ 0,∀j 6= i
θ ∈ Θ := {θ ∈ Rm |PAθ ≤ Pb}
u ∈ Rnu ,Ak ⊂ AS

′

(10)

The solution of problem (10) determines whether there is
a pair of the vectors x, θ, which yields a solution and hence
render the given active set to be feasible. The remaining
active sets which do not lead to a feasible solution are
discarded from consideration because if they cannot be
feasible, they cannot be optimal. A schematic diagram of
our active set approach is illustrated in Figure 1.

Proposition 1. Let A1 and A2 be two candidate active sets
for the solution of (10). If A1 ⊂ A2 and A1 leads to an
infeasible solution, then A2 will also lead to an infeasible
solution.

Proposition 1 follows from the fact that if a given active
set leads to an infeasible solution and since A1 ⊂ A2, the
active set A2 will make the problem even more constrained,
and hence remain infeasible. For problem (10) a feasible
solution suffices for a given active set to be considered
since it indicates that there is feasible parameter space
that might lead to an optimal parametric solution.

After the completion of this step, a candidate active
set combination could be either feasible and/or optimal.
Therefore, problem (11) is formulated for the remaining
active sets, to determine whether a given active set will
provide a globally optimal solution and the corresponding
critical region
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Fig. 1. A schematic diagram which represents the active
set approach used for the solution of problem (10).

max
t,x,θ,λ,s

t

s.t. ∇xL(x, θ, λ) = 0
gi(x, θ) = 0, ∀i ∈ Ak
gj(x, θ) + sj = 0, ∀j 6= i
t ≤ λi ∀i ∈ Ak
t ≤ sj ∀j 6= i
θ ∈ Θ := {θ ∈ Rm |PAθ ≤ Pb}
λi ≥ 0, sj ≥ 0, t ≥ 0

x ∈ Rn, θ ∈ Rm,Ak ⊂ AS
′

(11)

In problem (11), t is a scalar, which assists in the identifica-
tion of degenerate active sets. The solution of this problem
can be (i) Feasible with t > 0. The given active set is op-
timal along with the corresponding unique critical region,
(ii) Feasible with with t = 0. The mpQCQP is degener-
ate due to failure of the strict complementary slackenss
(SCS) or the linear independence constraint qualification
(LICQ), (iii) Infeasible. There is not a parameter vector
θ ∈ Θ for which the given candidate active set can yield
an optimal solution, and the active set is discarded. As
soon as all optimal active sets have been identified, the
second-order approach to the Basic Sensitivity Approach is
applied to construct the optimal multiparametric solution.

The resulting system of quadratic equations is solved using
SageMath, where the theory of Gröbner Bases and the
Buchberger algorithm Buchberger and Winkler (1998) is
utilized to construct the optimal multiparametric solution
and the corresponding critical regions.

3.3 Degeneracy

Primal degeneracy occurs as a consequence of the presence
of weakly active constraints in the critical region. In the
current approach, primal degeneracy can occur if λi = 0
or sj = 0. If a Lagrange multiplier is zero for the currently
considered active set, the corresponding constraint is not
part of the optimal active set. That optimal active set
would have already been discovered in a parent node
of that active set in a previous step of the proposed
algorithm. On the other hand if a slack variable sj = 0,
which leads to the corresponding gj(x

∗, θ∗) = 0, that
jth constraint must be included in the optimal active set
combination. However, this active set combination will

be discovered later in a child subsequent node of the
currently considered active set. Hence, these cases are
not kept as optimal active sets since they would have
already been checked in a previous step of the algorithm
or will be discovered in a future step of the algorithm.
Dual degeneracy cannot occur in the class of problems
considered in this work since the matrices Q and Qc,i are
positive definite. An overview of the overall algorithm is
shown in Table 1.

Table 1. Algorithimic strategy for the exact
solution of mpQCQPs.

Step 1: Reformulate the NMPC to the form of problem (4).
Step 2: For a given active set, solve problem (10). If the
problem is feasible, the active set is kept. Otherwise, the active
set is discarded along with all active sets which include it.
Step 3: Formulate and solve (11) for all remaining active sets.
If t > 0 the active set is optimal, while if t = 0 or the problem
is infeasible, the considered active set is discarded.
Step 4: If the active set includes quadratic constraints use
(6) and analytically solve the system of quadratic equations to
obtain the optimal parametric solution.
Step 5: Substitute the parametric expressions on the inactive
inequality constraints and Lagrange multipliers to define the
optimal solution and the critical regions.

4. OPERATION OF A NONISOTHERMAL CSTR

4.1 Process Description

Consider the operation of an ideal nonisothermal CSTR,
adopted by Kazantzis and Kravaris (2000). The irre-
versible reaction that is occurring in the reactor is

2Na2S2O3+4H2O2 → Na2S3O6+Na2SO4+4H2O (12)

For the given reaction and by denoting Na2S2O3 and
H2O2 as components A and B respectively, the rate of
consumption of Na2S2O3 is given by the kinetic law

−rA = koexp(−
E

RT
)cAcB (13)

where ko is the pre-exponential factor, E the activation
energy, R the gas constant, T the reactor temperature,
and cA and cB , the concentrations of species A and B. By
assuming constant mixture density and reactor volume,
and that stoichiometry at the feed stream is present at
all times (i.e. cB(t) = 2cA(t)), the dynamic model of
the CSTR is given by the following ordinary nonlinear
differential equations

dcA
dt

=
F

V
(cA,in − cA)− 2koexp(−

E

RT
)c2A

dT

dt
=
F

V
(Tin − T )− 2

(∆H)R
ρcp

koexp(−
E

RT
)c2A

− UA
V ρcp

(T − Tj)

(14)

In addition, considering a nominal value of the manipu-
lated action, which is the dilution rate, F

V = 0.2s−1, the
resulting steady-states are presented in Table 2.
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Table 2. The steady-states of system (14).

ss1 ss2 ss3
cAs 0.987 0.667 0.0755
Ts 271.664 308.499 376.270

The eigenvalues for these steady-states of the given system
are depicted in Figure 2

Fig. 2. Eigenvalues for the steady-states of (14) for a value
of the dilution rate of F

V = 0.2s−1.

From the values of the steady-states of the system and
through a local stability analysis, it is observed that the
first and third steady-states are stable while the middle
steady-state is unstable. The first steady-state results in a
low yield and hence it is not a desired operating point for
the CSTR. Apart from that, it has been experimentally
identified that near the third steady-state undesirable
side reactions occur (Vejtasa and Schmitz (1970)). The
middle steady-state provides satisfactory yield results,
while avoiding the impact of additional reactions to the
process. The control objective is to regulate the operation
of the CSTR around the aforementioned steady-state, by
manipulating the dilution rate.

4.2 Explicit Nonlinear Model Predictive Control

The Jacobian linearization of system (14) at ss2 is con-
sidered, and the following deviation variables to shift the
origin to the desired steady-state are defined

x =

[
cA − cAs
T − Ts

]
u =

F

V
− F

V
|s

(15)

Consequently, the linearized dynamic model is discretized
with a time step τ = 0.2s, assuming zero-order hold, and
the resulting state-space model is shown below

xk+1 =

[
0.9194 −0.0013
5.8554 1.1394

]
xk +

[
0.0685
−6.9670

]
uk (16)

The states of the system, treated as uncertain parameters,
are considered to be the measured outputs from the reac-
tor. Based on the developed model the following NMPC

problem is formulated, which aims to drive the system to
the shifted origin from a given initial state vector

min
u

xTNPxN +

N−1∑
0

xTi QRxi + uiRui

s.t xk+1 = Axk +Buk ∀k ∈ [0, ..., N − 1]
xk ≤ xk ≤ xk ∀k ∈ [0, ..., N ]
uk ≤ ui ≤ uk ∀k ∈ [0, ..., N − 1]

α

N−1∑
k=0

uk + β

N∑
i=1

uk−1xk,1 ≤ Cost

xN ∈ X
(17)

where QR =

[
0.01 0

0 0.01

]
, R = 10, N = 2 and P is

the terminal weight matrix derived via the discrete-time
Riccati equation. The lower and upper bound on the
states are−0.667molL and −308.499K, and 1.667molL and
100K respectively, while the bounds on the manipulated
action are −0.2s−1 and 0.8s−1. Additionally, we include
a quadratic constraint in the problem formulation which
incorporates a cost, with arbitrary parameters a = 33.4
and β = 10.6, associated with the operation of the CSTR.
Namely, it is assumed that the cost of operation of the
reactor is a function of the reactant which needs to be
purchased, as well as of a separation cost described by the
product of the reactant flowrate and the concentration of
A. The determination of the upper bound of the constraint
is achieved by calculating the half of the maximum value
of the aforementioned cost. Hence, it is required that
the operation of the CSTR must not exceed the given
maximum cost. Apart from that, a polytopic terminal
set constraint is included in the problem formulation to
impose the states to exist in that region at the end of the
prediction horizon.

The resulting problem is reformulated by propagating the
states into an mpQCQP. The problem is solved using
the proposed algorithm. We assume that the initial con-
centration of A and the temperature of the reactor are
0.417mol/L and 15K respectively. The full parametric so-
lution is obtained in 31s using MATLAB and GAMS, and
by using a global optimization algorithm (Tawarmalani
and Sahinidis (2005), Misener and Floudas (2014)) to solve
the deterministic optimization problems. The systems of
quadratic equations are solved using SageMath. As a re-
sult, by solving the problem using the proposed approach,
326 candidate active sets are identified and the optimal
map of parametric solutions includes 23 critical regions.
The closed-loop response of the system is depicted in
Figure 3. The solution of the NMPC was compared to
the same problem, which did not include the quadratic
constraint in the problem formulation. The resulting solu-
tion of the NMPC achieved a 5.2% reduction in the cost
of operation of the reactor compared to the linear MPC.

5. CONCLUSION

In this work we presented an algorithmic strategy for
the exact solution of multiparametric quadratically con-
strained quadratic programming problems. The identifi-
cation of all critical regions of the parameter space is
founded on an active set-based approach, which implicitly
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Fig. 3. Concentration of A, temperature and dilution rate
in deviation form through closed-loop simulation.

explores the parameter space. Based on that a second-
order approach to the Basic Sensitivity Theorem can be
applied to construct the corresponding critical regions
and the optimal multiparametric solution. The proposed
approach was successfully applied in the regulation of
a nonisothermal CSTR reactor near an unstable steady-
state with economic considerations. Our current research
efforts seek to expand to other classes of quadratically
constrained optimal control problems.
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