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Abstract: This paper addresses the problem of human intention inference in the context of
human-robot collaboration by fusing information from both hand motion obtained using skeletal
tracking and eye gaze obtained using pupil tracking to predict a human’s current intention.
Intention is modeled as a motion profile that converges to a goal location. A Kalman filter is
used on eye gaze data to obtain gaze point estimates. The gaze estimates are transformed into
a reference frame common to the hand data. An IMM filter that tracks hand motion is designed
which takes advantage of the gaze filter’s model probabilities by fusing them with its own. The
fusion is performed with user chosen parameters that determine the degree to which each filter’s
predictions are weighed over time. An experiment is designed to show the utility of the proposed
algorithm in a setting in which multiple reaching tasks are completed in an unknown order. The
results show that the proposed algorithm can accurately predict the human’s intention before
the tasks are completed.

1. INTRODUCTION

When two humans interact, they infer one another’s intent
in order to safely and effectively collaborate Baldwin and
Baird (2001); Simon (1982). When humans and robots col-
laborate, inference of the human’s intention improves the
overall performance of the task Liu et al. (2016); Li and Ge
(2014); Warrier and Devasia (2016). So far in the human-
robot collaboration context, the fusion of pupil tracking
and hand motion data to estimate the human intention is
not studied. This paper presents a methodology for early
estimation of human’s hand reaching intention by fusing
information from pupil tracking and hand motion. Over
the past decade, there has been an increased interest in the
measurement and estimation of 3-dimensional (3D) human
eye gaze. Studies have suggested a human’s gaze is directly
related to their intended actions Yarbus (1967). In Flana-
gan and Johansson (2003), it is demonstrated that adults
predict action goals by fixating on the end location of an
action even before it is reached. In Kleinke (1986), it is
shown that gaze communicates attention. It follows natu-
rally that gaze information is a likely candidate to improve
current human intention estimation schemes. Various dif-
ferent modalities of information about the human, e.g.,
characteristics of the objects in the workspace (Koppula
et al., 2013), human movement (Mainprice et al., 2015),
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Fig. 1. A simulated test scenario generated in Gazebo.
Hand motion measurements are acquired by a Kinect
sensor, and gaze data is collected by Pupil Glasses.

or physiological information, such as electromyography
(Razin et al., 2017), heart rate and skin response (Kulic
and Croft, 2007), have been used to infer the intention. In
Sakita et al. (2004), gaze is used as an intention measure to
provide instruction to a robot assistant. In Strabala et al.
(2013), the intention to handover an object is predicted
by using key features extracted from the vision and the
pose (position + orientation) data. In Lang et al. (2017), a
Gaussian Process (GP) is used to predict hand trajectories
during an object handover task. Intention inference as a
goal-reaching motion profile estimation for collaboratively
carrying heavy objects is presented in (Ravichandar and
Dani, 2015a). In Ravichandar et al. (2018), gaze infor-
mation estimated from RGB camera images using a con-
volution neural network (CNN) model is utilized to ini-
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tialize model probabilities for hand motion tracking using
an Interacting Multiple Model (IMM) filter Bar-Shalom
et al. (2001). This method, however, does not utilize gaze
information after initialization.

The algorithm presented in this paper continuously mon-
itors the human’s gaze using pupil data and hand mo-
tion during a task. A method of acquiring the homoge-
neous transformation between the reference frame of the
gaze measurements and the reference frame of the hand
measurements is presented. As shown in Figure 1, FP
represents the reference frame of the gaze measurements,
and FK represents the reference frame of the hand mea-
surements. The Hyperface convolutional neural network
(CNN) presented in Ranjan et al. (2017) is used to predict
orientations of the human head in RGB images such that
the filtered gaze data recorded in FP can be transformed
into a reference frame common to the hand position data
FK . This information is leveraged before the mixing stage
of each iteration of the IMM filter. The fusion equation
contains two free parameters that can be chosen by the
user. The first parameter controls the degree to which the
model probabilities from each filter are weighed as time
progresses. The second controls the rate at which the shift
occurs. This enables the algorithm to determine the de-
sired reaching motion intention when tasks are performed
sequentially as the gaze is likely to fixate on the target
before the hand gets close to the target. The shift in weight
over time prevents the algorithm from failing in the likely
event that the gaze will shift to the next goal in a sequence
before the previous reaching motion is complete. Section 2
describes a generic case wherein the proposed algorithm is
viable. In Section 3, a description is given on converting
points in FP to FK as well as a summary of the Hyperface
CNN. In Section 4, models for the gaze and hand data are
given. The novel algorithm for human intention estimation
using fused gaze and motion model likelihoods is proposed
in Section 5. Section 6 describes the experiment performed
and results. Figure 1 shows a simulated recreation of the
described set-up.

2. PROBLEM FORMULATION

Consider a situation in which a human and a robot are
working collaboratively to complete an objective com-
prised of a sequence of subtasks such as a manufacturing
assembly or a surgical task. The sequence is not neces-
sarily required to be completed in a specific order, i.e.,
the order of the tasks can be interchanged to achieve the
same desired result. Each task is associated with a model
which consists of a motion profile that terminates at a goal
location. The goal locations are the positions of the task-
relevant objects in the workspace. The only information
known to the robot at the onset of the objective is the goal
location of each model. The human partner may progress
through the sequence in any order which they see fit. The
robot does not have knowledge of the sequence a priori but
must be able to infer which task is currently being com-
pleted. During the operation, the robot partner collects
measurements of the human partner’s current hand motion
and gaze point location. Using this information, the robot
must infer which model the human is operating under, or
moreover, which task the human is currently performing. A
Microsoft Kinect Sensor is used to track the 3-dimentional

Fig. 2. Overview of the Hyperface CNN architecture.

(3D) position of the human’s skeleton in the Kinect frame,
FK , and Pupil Glasses by Pupil Labs Kassner et al. (2014)
worn by the human are used to acquire 3D estimates of the
human’s gaze locations in the Pupil glasses frame, FP . The
transformation of the gaze points into FK can be obtained
using the 3D location of the human’s head as tracked by
the Kinect sensor in conjunction with the Hyperface CNN,
which can detect faces in RGB images and predict the roll,
pitch, and yaw orientations.

3. EYE GAZE DATA PROCESSING

Given a single 3D measurement of a gaze point AP ∈ R3 in
the Pupil glasses frame FP , it is required to transform AP
into frame FK in order to calculate corresponding model
probabilities. The motivation behind this transformation
is two fold. Firstly, the positions of the goal locations are
defined in FK . More importantly, it is desirable to have the
gaze point measurements with respect to a static frame.
FP , however, is dynamic with respect to the goal locations
because the glasses are being worn by a mobile human. Let
the origin of FP be approximated by the 3D coordinates
of the human head, Xhead ∈ R3, measured by the Kinect
sensor in FK . Thus, the translation component of the
homogeneous transformation matrix can be represented
by Xhead. The rotation component can be obtained using
the Hyperface CNN. Hyperface is a CNN architecture
that takes an RGB image of any size as its input and
returns whether or not the image contains one or more
faces, places landmarks on relevant points of the faces,
provides a measure of the visibility of the landmarks, gives
estimates of the roll, pitch, and yaw of each face in the
image in its own reference frame FH , and predicts the
gender associated with each face. Hyperface is trained
on annotated images provided by the Annotated Facial
Landmarks in the Wild (AFLW) dataset Koestinger et al.
(2011). The general structure of the Hyperface CNN
architecture is shown in Figure 2. The RBG images of
size 640 × 480 collected by the Kinect sensor are used as
input for the Hyperface CNN in order to obtain solely
the roll, pitch, and yaw estimates of the human’s head
in FH . In order to utilize this information, the point AP
must first be transformed into the Hyperface frame FH
using AH = RHP AP , where PH denotes a point in the the
Hyperface frame FH and RHP ∈ R3×3 denotes the rotation
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matrix from frame FH to FP . The complete transformation
can then be given as

AK = RKHR
H
P AP +Xhead (1)

TKP =

[
RKHR

H
P Xhead

01×3 1

]
(2)

where RKH ∈ R3×3 denotes the rotation matrix from
FK to FH and is obtained using the prediction of the
human head orientation from Hyperface, and TKP ∈ R4×4

is the homogeneous transformation that maps the point[
(Ap)

T , 1
]T

to the point
[
(AK)T , 1

]T
.

4. MOTION MODELS

In this section, human hand motion and human eye-gaze
motion models are described in detail.

4.1 Human Hand Motion

At any given time, the human is assumed to be operating
according to one of N models. Let G = [g1, g2, . . . , gN ]
represent the vector of all N goal locations. Then, the ith

model Mi is associated with a single goal location gi. Each
model is characterized by the motion of the human hand
as well as the evolution of the gaze point. The human hand
motion associated with the ith model is given by[

xH(k + 1)
ẋH(k + 1)
ẍH(k + 1)

]
= diag3(1) diag3(Ts) diag3(

1

2
T 2
s )

0 diag3(1) diag3(Ts)
0 0 0

[ xH(k)
ẋH(k)
ẍH(k)

]

+

[
0
0

fi(xH(k), ẋH(k), ẍH(k))

]
+

[
W1

W2

W3

]
w1(k)

(3)

where xH ∈ R3 is the 3-dimentional (3D) position of
the human hand, Ts is the sampling time, the operator
diagη(ρ) denotes a square matrix of dimension η × η
with the value ρ along the central diagonal, fi : R3 ×
R3 × R3 → R3 is a continuously differentiable function
associated with the ith model, W1 = diag3( 1

6T
3
s ), W2 =

diag3( 1
2T

2
s ), W3 = diag3(Ts), and w1 ∼ N (0, Q1) is a

Gaussian distributed process noise with zero mean and
known covariance Q1 ∈ R3×3 that represents the model
uncertainty in acceleration update. Each function fi is
approximated by a neural network whose parameters are
learned from data collected during the training phase.
The training is performed subject to a contraction metric
which garuntees, even with minimal training data, that
predictions made by each fi are stable and exponentially
converge to the ith goal location. For a more detailed
look at the training method, the reader is referred to
Ravichandar and Dani (2015b). The noisy measurements
of the human partner’s hand positions are modeled as

zH(k) = xH(k) + ν1(k) (4)

where ν1(k) ∈ R3×3 is a Gaussian distributed measure-
ment noise with zero mean and known covariance R1 ∈
R3×3.

4.2 Human Eye-Gaze Motion

Unlike the hand motion, which has a distinct motion model
for each goal location, there is a single model for the gaze
as the behavior of the eye motion is expected to be similar
regardless of goal location. The evolution of the human’s
gaze point is modeled as[

xE(k + 1)
ẋE(k + 1)

]
=[

diag3(1) diag3(Ts)
0 diag3(1)

] [
xE(k)
ẋE(k)

]
+

[
W4

W5

]
w2(k)

(5)

where xE ∈ R3 is the 3D position of the human’s gaze,
W4 = diag3( 1

2T
2
s ),W5 = diag3(Ts), and w2 ∼ N (0, Q2)

is a Gaussian distributed process noise with zero mean
and known covariance Q2 ∈ R3×3 that represents model
uncertainties in velocity update. The measurement model
is given as

zE(k) = xE(k) + ν2(k) (6)

where ν2(k) ∈ R3×3 is a Gaussian distributed measure-
ment noise with zero mean and known covariance R2 ∈
R3×3.

5. ESTIMATION OF HUMAN INTENTION

Consider the N models, M1,M2, . . . ,MN , with goal loca-
tions g1, g2, . . . gN and the measurement models defined in
(4) and (6). Let XH = [xTH , ẋ

T
H , ẍ

T
H ]T , XE = [xTE , ẋ

T
E ]T

denote the human hand and eye-gaze state vectors, re-
spectively, and Z1:k

H = [zH(1), zH(2), . . . , zH(k)], Z1:k
E =

[zE(1), zE(2), . . . , zE(k)] denote a set of k measurements
of the human hand and the eye-gaze, respectively. The
objective is to fuse the information obtained from the mea-
surements of the gaze point and the human hand in order
to infer which model the human is currently operating
under and effectively compute the state estimate X̂H(k|k).
Note that the true model that the human is operating
under is not known and the human could switch among the
N models at any time. The formulation is separated into
two subsections. First, a Kalman filter (KF) that estimates
the current gaze point is presented. The gaze point esti-
mates are used to calculate probabilities that the human
is operating according to each model. The second is an
IMM filter for human hand motion which uses N extended
Kalman filters (EKFs) running in parallel to filter the hand
motion. At the beginning of each iteration of the IMM
filter, the model posterior probabilities produced in the
previous iteration are fused with those from the eye-gaze
filter to generate more informative model probabilities.

5.1 Eye-gaze Filter

Using the dynamics in (5) and the noisy measurements in
(6), a Kalman filter is designed to obtain estimates of the
gaze point and the corresponding covariances. Once two
measurements are available, the filter is initialized using
the two-point differencing method. Each iteration, x̂E
and S, the eye-gaze filter’s state estimate and innovation
covariance, respectively, are obtained. The probability that
the current estimated gaze point is associated with the
model having a goal location gj can be represented as
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Fig. 3. A block diagram to summarize the data aquisition, processing, intention estimation, and hand motion prediction
for the proposed algorithm.

µEj (k) = P (x̂E(k)|gj)
µEj (k) =

1√
|2πS|

e−
1
2 (x̂E−gj)TS−1(x̂E−gj) (7)

5.2 Hand Motion Filter With Gaze Fusion

Once the first model probability µEj (0) is made available
by the eye-gaze filter, the prior probabilities for the IMM
µHj (0) can be initialized as µHj (0) = µEj (0). In subsequent
iterations of the filter, the model probabilities from each
filter µHj (k) and µEj (k) are fused according to

µFj (k) = αe−βTtµEj (k) + (1− αe−βTt)µHj (k) (8)

where Tt ∈ [0,∞) denotes the time since the most recent
model switch, α ∈ [0, 1] is a user defined parameter that
determines the degree to which the weight shifts between
the model probabilities from the two filters over time, and
β ∈ (0,∞) is a user defined parameter which controls how
quickly the weight shift occurs. Dynamically weighing the
model probabilities can account for situations wherein one
source is expected to provide more reliable insight. For
example, at the onset of a task, the human partner may
look directly at the goal location even though their hand
may be far away. However, as time goes on, the human may
begin to look at the next goal location in a sequence before
their hand reaches the previous goal. In this case, one
would want µEj (k) to hold a higher weight at the beginning
of a task because it provides better insight to the current
objective. However, toward the end of the objective, µHj (k)
should hold more weight because the gaze point has shifted
although the current goal location has not changed.

Interaction/Mixing: At the beginning of each iteration,

the initial conditions (state estimate x̂0jH (k − 1|k − 1) and

covariance P̂ 0j
H (k − 1|k − 1)), where superscript 0 denotes

initial condition, j denotes the number of the filter, at
time k, are adjusted by mixing the filter outputs from the
previous iteration (time instant k−1) in the following way

x̂0jH (k − 1|k − 1) =

N∑
i=1

x̂iH(k − 1|k − 1)

× µFi|j(k − 1|k − 1), j = 1, .., N (9)

P̂ 0j
H (k − 1|k − 1) =

N∑
i=1

µFi|j(k−1|k−1)P̂ iH(k−1|k−1)

+ [x̂iH(k−1|k−1)− x̂0jH (k−1|k−1)]

[x̂iH(k−1|k−1)− x̂0jH (k−1|k−1)]T ,

j = 1, .., N (10)

where x̂iH(k−1|k−1), P̂ iH(k−1|k−1) are the state estimate
and its covariance respectively corresponding to model Mj

at time k−1 and the mixing probabilities µFi|j(k−1|k−1)

are given by

µFi|j(k − 1|k − 1) =
Πijµ

F
i (k − 1)

c̄j
, i, j = 1, 2, ..., N (11)

where Πij = p(M(k) = Mj |M(k − 1) = Mi) is the
model transition or jump probability and µFi (k − 1) =

p(Mi|Z1:k−1
H , Z1:k−1

E ) is the fused probability of ith model
Mi being the right model at time k − 1 and c̄j =∑N
i=1 Πijµ

F
i (k − 1) are the normalizing constants.

Model Matched Filtering: Once the initial conditions
x̂0jH (k−1|k−1) and P̂ 0j

H (k−1|k−1) are available for each
filter, the state estimate and its covariance for each model
are computed using the EKFs matched to the models.
Along with the state estimates and the corresponding
covariances, the likelihood functions Λj(k) are computed
using the mixed initial condition (9) and the corresponding
covariance (10). The likelihood, a Gaussian distribution
with the predicted measurement as the mean and the
covariance equal to the innovation covariance, is given by

Λj(k) = p(zH(k)|Mj(k), Z1:k−1
H )

Λj(k) = N (zH(k); ẑjH(k|k − 1; x̂0jH (k − 1|k − 1)),

SjH(k; P̂ 0j
H (k − 1|k − 1))), j = 1, .., N (12)

where SjH(k;P 0j
H (k−1|k−1)) is the innovation covariance

and ẑjH(k|k−1; x̂0jH (k−1|k−1)) is the jth filter’s predicted
measurement at time t.

Model Probability Update: After the likelihood func-
tions of the models Λj(k) are available, the model posterior
probabilities µHj (k) are calculated as follows
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µHj (k) = P (gj |Z1:k
H ) = P (Mj(k)|Z1:k

H )

µHj (k) = p(zH(k)|Mj(k), Z1:k−1
H )P (Mj(k)|Z1:k−1

H )

µHj (k) =
Λj(k)c̄j∑N
i=1 Λi(k)c̄i

, j = 1, 2, ...., N (13)

and the goal location estimate ĝ(t) is given by

ĝ(k) = arg max
g∈G

µHj (k) (14)

The optimization problem in (14) is solved by choosing
the location gi ∈ G corresponding to the model Mi with
the highest model probability µHi (k) at time k. Figure 3
summarizes the gaze and motion fusion algorithm in the
form of a block diagram.

Fig. 4. Five frames from the RGB video collected by
the Kinect sensor each overlaid with a bounding box
around the current predicted goal object.

Fig. 5. The top plot shows vertical dotted lines when the
current most likely model has changed. The lower plot
compares the true model with the predicted model.

Fig. 6. Hand position tracked by the IMM filter using fused
model probabilities.

6. EXPERIMENTAL RESULTS

In order to validate the utility of the proposed data fusion
method, an experiment is designed in which a human
partner must complete a set of tasks in any order. Using
available measurements of the human hand motion and
eye gaze location, the robot must determine the sequence
of tasks being completed on the fly. This experimental
structure is analogous to real life collaborative tasks such
as two workers collaboratively hammering nails into a
board at multiple locations, carrying a heavy object from
one location to one of many possible destinations, or
manufacturing a product that may have leniency in the
order in which it is assembled, i.e. an electrical circuit.
For this experiment, six goal objects, N = 6, are used:
a hammer, a screwdriver, pliers, two wood blocks of
different sizes, and a cardboard box. The objects are placed
arbitrarily within the field of view of a Kinect sensor at
known locations in FK . The human first grabs one of the
tools at random, and relocates it atop any one of the
three boxes as they see fit. The human’s 3D gaze point is
determined using noisy measurements provided by Pupil
glasses worn by the human partner and the filter described
in (5). Noisy measurements of the human hand motion
are made available by the Kinect motion sensor’s skeletal
tracking feature according to (4). The gaze point can be
represented in the Kinect frame using (1). The objective
is to show that the proposed algorithm can predict which
tool the human is reaching for before it is grasped, and
determine where it will be placed before it reaches that
point. The results of this experiment are shown in the
following section. Figure 4 shows frames from the RGB
video acquired by the Kinect at relevant time instances,
namely, the first and last frames along with each frame
in which a model switch was predicted. A bounding box
has been overlaid on each image around the object which
the algorithm believes is the goal location at the current
time instance. The parameter α from (8) was chosen to
be 0.6 and β was chosen to be 1 meaning that whenever
a model change is predicted, the fused model probabilities
are weighted 60% on µE and only 40% on µH . The more
time spent operating under the same model, the more
weight that is shifted to µH . As a direct result of this,
the prediction of the goal location at the onset of the
experiment is correct even though the human hand is not
yet near the target object. As the subject reaches for the
first goal location, i.e., the screwdriver, their gaze begins
to move towards the next goal location. This causes the
model prediction to change slightly before the true model
changes and once again gives µE a higher weight. The
incorrect intermediate predictions seen in frames 22 and
46 are due to the gaze point traveling over the objects
between the previous goal and the current goal. Frame 76
shows that the correct model prediction is made 35 frames
before the screwdriver is actually placed on the wood
board in frame 111. Figure 5 shows the performance of
the algorithm over time. The top plot shows the evolution
of each of the six model probabilities associated with each
object in the experiment. The vertical dotted lines denote
the times when the algorithm predicts that the current
model has changed. The bottom graph shows a comparison
between the true intention and the estimated intention.
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The hand position tracked by the IMM filter using the
fused model probabilities can be seen in Figure 6.

7. CONCLUSION

A novel framework is presented that fuses information
from skeletal tracking measurements of a human hand and
pupil position measurements in order to predict which of a
finite and known set of actions is the human’s true action
intention. In an initial training phase, the human demon-
strates each of the possible actions and hand positions are
recorded using skeletal tracking with a Microsoft Kinect
Sensor. Hand position data is then used to train multiple
single layer NN’s (one per action) subject to contraction
constraints such that the predictions made by the NN are
stable. In the execution phase, the Kinect Sensor is used
to collect skeletal tracking data of the human’s hand and
head, and Pupil Lab’s Pupil Glasses, worn by the human,
are used to acquire 3D gaze point estimates from pupil
position data. The gaze tracking data is transformed into
a frame common to the hand tracking data by using the
Hyperface CNN to predict roll, pitch, and yaw orientations
associated with a face detected in an RGB image and
the human head tracked by the Kinect Sensor to predict
the homogenous transformation matrix between the two
frames. Each iteration, a Kalman filter is used on the trans-
formed gaze data in order determine model likelihoods
conditioned on gaze measurements. The first likelihood
aqcuired from the gaze filter is used to initialize the hand
tracking IMM. In subsequent interations, the likelihoods
from the Kalman filter and IMM are fused before the
Mixing/Interacting stage of the IMM. The IMM predicts
both the human hand position conditioned on both the
gaze and hand measurements as well as the current action
intention from the trained models. This algorithm is shown
to accurately predict the correct action intention before
the completion of each task in a sequence.
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